花生蛋白膜制备及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于花生蛋白分子中存在着大量的氢键、疏水键、范德华力、离子键和配位键,使得花生蛋白具有较好的成膜性能。本研究对花生蛋白膜的制备工艺进行了优化,考察了物理、化学和酶法改性对花生蛋白膜性能的影响,通过复合改性提高了蛋白膜的机械强度并对其在包装上的应用进行了初步研究。
     以花生分离蛋白为原料对蛋白膜的制备工艺条件进行了优化。在单因素试验的基础上对花生蛋白浓度、甘油添加量、pH、加热温度四个因素进行了响应面试验研究,确定了最优制备条件:花生蛋白浓度6%(w/w)、甘油添加量25%(g/g蛋白)、pH9、加热温度70℃、加热时间20min。在此条件下,花生蛋白膜的抗拉强度为14.87±3.00MPa,断裂延伸率为12.06±2.56%,透光率为69.94±2.42%,感官品质良好(L、a、b值分别为92.43±0.60、0.78±0.16、5.54±0.70),水蒸气透过率为2.75±0.050×10~(-11)g·mm/h·kPa·m~2。
     考察了物理改性(微波、超声波、紫外辐照)、化学改性(还原剂、交联剂、表面活性剂)和酶法改性(谷氨酰胺转移酶)对花生蛋白膜性能的影响,确定了7种改性方法的最佳作用条件。通过对7种改性方法对花生蛋白膜机械强度改善效果的比较得出,对花生蛋白膜的抗拉强度提高最显著的是TGase改性,其最优工艺参数为:谷氨酰胺转移酶最适添加量为1.5U/g(蛋白),在此条件下抗拉强度提高了54.62%;对断裂延伸率提高最显著的是十二烷基磺酸钠改性,其最优工艺参数为:十二烷基磺酸钠最适添加量为10%(g/g蛋白),在此条件下断裂延伸率提高了168.30%。
     通过对物理-化学与物理-酶法的复合改性研究,确立了紫外辐照-谷氨酰胺转移酶复合改性作为提高花生蛋白膜抗拉强度的最优改性方法。复合改性最优工艺参数为:向花生蛋白中添加谷氨酰胺转移酶(1.5U/g蛋白)制备花生蛋白膜,并采用40W紫外灯辐照花生蛋白膜4h,在此条件下蛋白膜的抗拉强度为3.22±0.070MPa、断裂延伸率为98.61±6.31%,透光率为50.32±0.33%,感官品质良好(L、a、b分别为87.20±0.80、1.78±0.22、10.88±0.32),水蒸气透过率为2.67±0.021×10~(-11)g·mm/h·kPa·m~2。采用扫描电镜分析实验考察了花生蛋白粉、复合改性后花生蛋白膜的微观结构,结果表明花生蛋白制备成花生蛋白膜后,球形结构遭到破坏;经过紫外辐照-TGase复合改性的花生蛋白膜的蛋白颗粒在变小的同时结构更加致密。
     对花生蛋白膜在包装上的应用进行了初步研究。结果表明,花生蛋白膜的水分吸附等温线呈“S”型,通过模型拟合计算出花生蛋白膜的单分子层含水量为0.070(g/g花生蛋白膜)。DSC试验表明增塑剂和TGase增强了蛋白膜的热稳定性,复合改性制备的花生蛋白膜更易失去水分。根据花生蛋白膜的水分吸附等温线以及相对湿度对其热特性的影响,得出花生蛋白膜适于50%~70%的相对湿度下应用。考虑到花生蛋白膜的不耐水性,故将其应用于内包装,但要结合被包装食品的质量要求(水分含量、水分活度等质量指标),是否适宜花生蛋白膜的包装。
Peanut protein has excellent film-forming property because of which has a large amount of hydrogen bond, hydrophobic bond, van der waals force, ionic bond and coordination bond. In this paper, the preparation, modification technology and application of peanut protein films which making use of peanut protein were studied.
     The preparation technology of peaut protein films which making use of peanut protein isolate was optimized. On the base of single factors experiments, the effects of peanut protein concentration, glycerol dosage, pH and reaction temperature on the properties of peanut protein films were studied by response surface methodology. The results showed that peanut protein concentration 6% (w/w), glycerol dosage 25% (g/g peanut protein), pH 9 and reaction temperature 70℃were optimal for the preparation of peanut protein films. In this way, the mechanical properties and water vapor permeability of peanut protein films were up to 14.87±3.00MPa, 12.06±2.56% and 2.67±0.021×10~(-11)g·mm/h·kPa·m~2 respectively.
     Physical methods (including microwave heating, ultrasonic wave and ultraviolet irradiation), chemical methods (including reducing agent, cross linking agent and surfactant) and enzymatic methods (transglutaminase) were utilized to modify peanut protein films’s properties, and the optimal condition of 7 modification methods were obtained finally. Furthermore, the transglutaminase modification which dosage was 1.5U/g (peanut protein) was found to be more effective for tensible strength and the sodium dodecyl sulfate modification which dosage was 10% (g/g peanut protein) was found to be more effective for elongation at break at the same time. And the effect of the two optimal methods on tensible strength and elongation at break were 54.62% and 168.30% respectively.
     The physical-chemical and physical-enzymatic modification methods were researched, and the best compound modification method was defined, that was transglutaminase dosage of 1.5U/g (peanut protein) for enzyme modification and a radiating time of 4h for ultraviolet irradiation modification by additional experiment. These two methods which were applied in turn were confirmed to increase the mechanical properties of peanut protein films to 3.22±0.070MPa and 98.61±6.31% for tensible strength and elongation at break respectively. The observation by scanning electron microscope showed that the sizes and shapes of those protein molecules had not been changed significantly by these processes methods. But peanut protein’s structure had been destroyed completely. The granularity and structure of peanut protein became to be smaller and more compact by compound modification.
     The application of peanut protein films in food packaging was preliminary studied. The results indicated that the water sorption isotherm of peanut protein films was showed "S" type. By using the GAB model, the monolayer moisture content of the peanut protein films were calculated, and was 0.070(g/g peanut protein film). Futhermore, the thermal stability of peanut protein when was made to films was improved. Moreover, associated the effect of relative humidity on the thermal property of films, the films could be applied in environment which relative humidity was 50%~70%, but with a view of hydrophilic group of films, it could be appied in inner packing.
引文
[1]敖利刚,吴磊燕,赖富饶.植物蛋白膜的应用及研究进展[J].现代食品科技,2007,23(8):86-89,9
    [2]包惠燕,欧仕益,李爱军,等.pH为中性的大豆分离蛋白膜的制备及特性[J].食品工业科技,2004,25(12):56-58
    [3]包惠燕,李爱军,欧仕益,等.几种大豆分离蛋白膜的特性及其在汤料包装上的应用[J].食品包装与设计,2005,6(21):79-81,84a
    [4]包惠燕,李爱军,欧仕益,等.冷冻保藏对大豆分离蛋白膜机械性能的影响[J].食品科学,2005,26(1):57-59b
    [5]陈默,胡长鹰,王志伟,等.香兰素对大豆分离蛋白膜抗菌作用的影响[J].包装工程,2008,29(10):83-85
    [6]陈新健,刘通讯.可食性小麦面筋蛋白膜机械性能的研究[J].广东工业大学学报,1998,15(1):23-26
    [7]陈义勇,徐宇,花生蛋白膜的特性研究[J].食品开发与研究,2010,31(3):58-62
    [8]陈志周.可食性大豆分离蛋白膜生产工艺研究[硕士学位论文].石家庄:河北农业大学,2004
    [9]陈志周,张子德,田金强,等.增强剂和交联剂对大豆分离蛋白膜性能的影响[J].保鲜与加工,2004,4(2):21-23
    [10]迟玉洁,朱秀清,李文滨,等.大豆蛋白质化工产品加工技术[M].北京:科学出版社,2008
    [11]范大明,陈卫,赵建新,等.用大豆蛋白膜改善预油炸春卷微波加热后的脆性[J].农业工程学报,2007,23(9):265-268
    [12]冯治平,刘清斌.可食性花生分离蛋白膜的保藏性能研究[J].食品科技,2004,9:16-19
    [13]冯治平,黄丹.还原剂对花生分离蛋白膜的保藏性能影响研究[J].食品科技,2007,3:242-246
    [14]冯治平,刘达玉.改善花生分离蛋白成膜及保藏特性研究[J].食品科学,2005,26(1):52-56
    [15]冯治平,刘达玉.交联作用改善大豆分离蛋白膜保藏特性研究[J].食品研究与开发.2003,24(5):35-37
    [16]顾伟,刘雷艮,左保齐.天然生物可降解材料在生物医学领域中的应用[J].苏州大学学报(工科版),2006,26(1):69-73
    [17]郭乾初,欧仕益.阿魏酸在大豆分离蛋白制备可食性膜中的应用[J].食品工业科技,2002,23(1):23-26
    [18]郭兴凤,胡二坤.制备条件对胶原蛋白膜拉伸特性的影响[J].河南工业大学学报(自然科学版),2008,29(1):4-6
    [19]韩兆鹏,元晓梅,王璋.可食性大豆分离蛋白膜制备和基础特性分析[J].食品科学,2004,25(增刊):19-20
    [20]姜燕,唐传核,温其标.增塑剂对大豆蛋白可食膜特性的影响[J].食品与发酵工业,2005,31(11):112-116
    [21]姜燕,温其标,唐传核,等.谷氨酰胺转移酶对食物蛋白质成膜性能的影响[J].华南理工大学学报(自然科学版),2006,34(8):110-114a
    [22]姜燕,温其标,唐传核,等.谷氨酰胺转移酶对大豆分离蛋白膜水分吸附特性和热特性的影响[J].生物物理学报,2006,22增刊b
    [23]姜燕,唐传核,温其标.注模前酶作用时间对三种酶法改性大豆蛋白膜机械性能的影响[J].食品工业,2008,3:52-24a
    [24]姜燕,唐传核,温其标.酪蛋白酸钠膜的DSC分析[J].食品工业科技,2008,29(12):80-81,84b
    [25]姜燕,唐传核,温其标.大豆分离蛋白膜的DSC分析[J].食品与发酵工业,2008,34(1):28-30c
    [26]姜燕,唐传核,温其标.大豆分离蛋白膜的水分吸附特性[J].食品科学,2008,29,(10):51-54d
    [27]姜燕,唐传核,温其标.工艺条件对酶法改性大豆蛋白膜性能的影响(Ⅰ)[J].食品与生物技术学报,2009,28(1):63-67a
    [28]姜燕,唐传核,温其标.工艺条件对酶法改性大豆蛋白膜性能的影响(Ⅱ)[J].食品与生物技术学报,2009,28(2):219-223b
    [29]姜燕,唐传核,温其标.酪蛋白酸钠膜的水分吸附特性[J].食品与生物技术学报,2009,28(5):607-610c
    [30]康宇杰,欧仕益.可食性大豆分离蛋白膜的研究进展[J].中国粮油学报,2003,18(4):38-42
    [31]李梦琴,张剑,李超.氯化钙改性谷朊粉可食性复合膜的研究[J].中国粮油学报,2006,21(5):32-35
    [32]李少彬,闫玉生,李辉,等.等离子体磺酸化丝素蛋白膜聚四氟乙烯复合小口径人工血管的制备[J].中国组织工程研究与临床康复,2010,14(8):1357-1360
    [33]刘砚,熊柳,孙高飞,等.花生分离蛋白可食性膜的制取及性能[J].中国油脂,2008,33(9):19-22
    [34]刘媛媛,王强,王春艳.花生蛋白膜制备工艺研究[J].中国油脂,2010,35(12):28-32
    [35]刘媛媛,王强,王春艳.花生蛋白膜研究进展[J].食品科学,2011,32(1):251-255
    [36]李永馨,赖照玲,边宝林,等.改性玉米蛋白膜的研究[J].中国包装,1996,16(2):68-69
    [37]罗桂莲,杨雯,叶帆.成膜条件对丝素膜结构及性能的影响[J].苏州大学学报(工科版),1992,12(4):21-27
    [38]罗建锋,田少君.增塑剂对可食性小麦蛋白膜性能的影响[J].郑州工程学院学报,2003,24(2):35-38
    [39]马丹,马越,张超,等.乳化剂提高大豆分离蛋白可食性膜性能的研究[J].中国粮油学报,2009,24(12):42-46
    [40]孟陆丽,田少君,闫景坤,等.环境温度对植物蛋白膜的影响[J].粮油食品科技,2005,13(1):1-4
    [41]孟陆丽,梁少华.脂质对小麦蛋白膜理化特性的影响[J].粮油加工与食品机械,2006,5:62-64,67a
    [42]孟陆丽,程谦伟,田少君,等.存放时间对植物蛋白膜的影响[J].食品工业科技,2006,27(9):153-156b
    [43]莫文敏,曾庆孝,张孝祺.热处理和碱处理对可食性大豆分离蛋白膜性能的影响[J].食品工业科技,2001,22(3):22-24a
    [44]莫文敏,邹英昭,曾庆孝.还原剂影响可食性大豆分离蛋白膜性能的研究[J].食品与发酵工业,2001,27(11):5-8b
    [45]欧仕益,康宇杰,李爱军,等.阿魏酸对可食性大豆蛋白膜理化特性的影响[J].中国粮油学报,2003,18(3):83-84,94,05
    [46]彭海萍,彭红卫.利用酶法修饰小麦面筋蛋白制备食用包装膜研究[J].粮食与油脂,2003,6:3-5
    [47]任红,杨洋,韦小英.超声波强化大豆分离蛋白膜性能的研究[J].现代食品科技,2006,22(2):101-103
    [48]宋臻善,熊犍.超声辐射对大豆分离蛋白膜性能的影响[J].食品工业科技,2007,28(5):94-97
    [49]孙庆申,王璞,贺阳,等.大豆分离蛋白薄膜对草莓保鲜效果评价[J].食品工业科技,2010,31(1):327-329
    [50]孙旸 ,孙春玉,李靓,等.大豆分离蛋白膜的制备及相关因素分析[J].中国农学通报,2010,26(18):92-95
    [51]汤虎,徐志宏,孙智达,等.可食性膜的研究现状与展望[J].农产品加工,2007,2:20-25
    [52]田少君,孟陆丽,程谦伟,等.环境湿度对植物蛋白膜的影响研究[J].食品工业科技,2005,4(26):68-71
    [53]田少君,闫景坤,阎静.不同增塑剂对玉米醇溶蛋白膜机械性能的影响[J].粮油加工,2006,8:88-90
    [54]师雯.可食性膜在包装中的应用[J].中国包装工业,2006,4:43-44
    [55]汪学荣,阚建全,汪水平.可食性大豆分离蛋白膜的制膜工艺研究[J].食品科学,2008,29(5):153-158
    [56]王翀,张春红,赵前程,等.大豆蛋白膜的研究进展[J].粮食加工,2008,33(3):61-63,83
    [57]王翀,张春红,赵前程,等.大豆分离蛋白与谷朊粉可食性复合膜研究[J].粮食与油脂,2009,3:21-24
    [58]王晶,任发政,商洁静.增塑剂对乳清蛋白-丝胶复合可食用膜性能的影响[J].食品科学,2008,29(6):59-63
    [59]王若兰,卞科.微波处理对植物蛋白基可食膜特性改善效果的研究[J].食品科学,2002,23(11):93-98
    [60]王永胜,侯春林,肖仕初,等.几丁质-胶原蛋白膜的制作及皮下埋植实验[J].中国修复重建外科杂志,2003,17(3):233-236
    [61]韦小英,任红,杨洋,等.超声处理对大豆蛋白膜性能和微观结构的影响[J].食品科技,2006,10:55-58
    [62]吴海文,王强,周素梅.花生蛋白及其功能性研究进展[J].中国油脂,2007,32(9):7-11
    [63]闫景坤,田少君.冷藏、冻藏时间对玉米醇溶蛋白膜的影响[J].粮食与油脂,2006,11:25-27
    [64]闰景坤,郭兴凤,田少君.冷藏温度对玉米醇溶蛋白膜的影响[J].食品工业科技,2007,3:178-180
    [65]张春红,王翀,赵前程.十二烷基磺酸钠对大豆分离蛋白膜性能的影响[J].粮油加工,2008,1(1):112-114
    [66]张旭,于国萍,李昕,等.玉米醇溶蛋白膜的抗氧化和抑菌作用研究[J].食品科技,2009,16(2):28-31
    [67]张宇昊,王强.花生蛋白的开发与利用[J].花生学报,2005,34(12):12-16
    [68]周红锋,张子勇,欧仕益.大豆分离蛋白可食膜的制备及微波处理对性能的影响[J].包装工程,2006,27(2):82,92,03a
    [69]周红锋,张子勇,欧仕益.环氧基交联剂对可食性大豆分离蛋白膜性能的影响[J].中国油脂,2006,31(8):33-35b
    [70]朱正华,朱良均,闵思佳.丝素蛋白膜的研究和应用进展[J].膜科学与技术,2002,22(3):48-51
    [71] A. C. Seydim, G. Sarikus. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils [J]. Food Research International,2006,39:639-644
    [72] A. Jangchud, M. S. Chinnan. Properties of peanut protein film: sorption isotherm and plasticizer effect [J]. Lebensmittel Wissenschaftund Technologie,1999,32(2):89-94
    [73] A. Longares, F. J. Monahan, E.D. O’Riordan,et al. Physical properties of edible films made from mixtures of sodium caseinate and WPI [J]. International Dairy Journal,2005,15:1255-1260
    [74] B. Ouattaraa, M. Girouxa, R. Yefsahc, et al. Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film [J]. Radiation Physics and Chemistry,2002,63:299-304
    [75] C. C. Liu, A. M. Tellez-Garay, M. E. Castell-Perez. Physical and mechanical properties of peanut protein films [J]. Lebensmittel-Wissenschaft and-Technologie,2004,37(7):731-738
    [76] ?. Mecitoflu, A. Yemenicioflu, A. Arslanoflu, et al. Incorporation of partially purified henegg white lysozyme into zein films for antimicrobial food packaging [J]. Food Research International, 2006,39:12-21
    [77] C. H. Lan, L. Grégoire, A. Chaine, et al. Importance and efficiency of in-depth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films [J]. Food Control,2010,21:1227-1233
    [78] C. H. Tang, Y. Jiang, Q. B. Wen, et al. Effect of transglutaminase treatment on the properties of cast films of soy protein isolates [J]. Journal of Biotechnology,2005,120:296-307
    [79] C. H. Tang, Y. Jiang. Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment [J]. Food Research International,2007,40:504-509
    [80] F. Bamdad, A. H. Goli, M. Kadivar. Preparation and characterization of proteinous film from lentil (Lens culinaris) Edible film from lentil (Lens culinaris) [J]. Food Research International,2006,39:106-111
    [81] F. M. Monedero, M. J. Fabra, P. Talens, et al. Effect of oleic acid-beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based ?lms [J]. Journal of Food Engineering,2009,91:509-515
    [82] G. Cherian, A. Gennadios, C. Weller, et al. Thermomechanical behavior of wheat gluten films: effect of sucrose, glycerin and sorbito [J]. Cereal Chem,1995,72(1):1-6
    [83] G. Denavi, D. R. Tapia-Blácido, M. C. A?ón, et al.Effects of drying conditions on some physical properties of soy protein films [J]. Journal of Food Engineering,2009,90:341-349
    [84] G. A. Denavi, M. Pe′rez-Mateos, M. C.An?o′n, et al. Structural and functional properties of soy protein isolate and cod gelatin blend ?lms [J]. Food Hydrocolloids,2009,23:2094-2101
    [85] J. F. Su, Z. Huang, Y. H. Zhao, et al. Moisture sorption and water vapor permeability of soy protein isolate /poly (vinylalcohol)/ glycerol blend films [J]. Industrial Crops and Products,2010,31:266-27
    [86] J. J. Kester, O. Fennema. Resistance of Lipid Films to Water Vapor Transmission [J]. JAOCS, 1989,66(8):1139-1146
    [87] J. R. Ose′s, I. Ferna′ndez-Pan, M. Mendoza, et al. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity [J]. Food Hydrocolloids,2009,23:125-131
    [88] J. W. Rhima, J. H. Leeb, P. K. W. Ngc. Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid [J]. LWT,2007,40:232-238
    [89] J. W. Rhima, A. Gennadiosb, D. Fu, et al. Properties of Ultraviolet Irradiated Protein Films [J]. LWT,1999,32(3):129-133
    [90] K. Sanjurjo, S. Flores, L. Gerschenson, et al. Study of the performance of nisin supported in edible films [J]. Food Research International,2006,39:749-754
    [91] L. A. Kunte, A. Gennadios, S. L. Cuppett, et al. Cast Films from Soy Protein Isolated and Fraction [J]. Cereal Chemistry,1997,74:115-118
    [92] L. Z. Wang, A. E. Mark Auty, J. P. Kerry. Physical assessment of composite biodegradable ?lms manufactured using whey protein isolate, gelatin and sodium alginate [J]. Journal of Food Engineering,2010,96:199-207
    [93] M. Mastromatteo, G. Barbuzzi, A. Conte, et al. Controlled release of thymol from zein based ?lm [J]. Innovative Food Science and Emerging Technologies,2009,10:222-227
    [94] M. Ozdemir, J. D. Floros. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics [J]. Journal of Food Engineering,2008,86:215-220a
    [95] M. Ozdemir, J. D. Floros. Optimization of edible whey protein films containing preservatives for mechanical and optical properties [J]. Journal of Food Engineering,2008,84:116-123b
    [96] M. Ozdemir, J. D. Floros. Analysis and modeling of potassium sorbate diffusion through edible whey protein films [J]. Journal of Food Engineering,2001,47:149-155
    [97] M. Schou, A. Longares, C. Montesinos-Herrero, et al. Properties of edible sodium caseinate films and their application as food wrapping [J]. LWT,2008,35:605-610
    [98] N. Limpan, T. Prodpran, S. Benjakul, et al. Properties of biodegradable blend ?lms based on ?sh myo?brillar protein and polyvinyl alcohol as in?uenced by blend composition and pH level [J]. Journal of Food Engineering,2010,100:85-92
    [99] P. D. Pierro, L. Mariniello, C. V. L. Giosafatto, et al.Solubility and Permeability Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or Presence of Transglutaminase [J]. Food Biotechnology,2005,19:37-49
    [100] P. Guerrero, A. Retegi, N. Gabilondo, K.dela Caba. Mechanical and thermal properties of soy protein films processed by casting and compression [J]. Journal of Food Engineering,2010, 100(1):145-151a
    [101] P. Guerrero, K. dela Caba. Thermal and mechanical properties of soy protein ?lms processed at different pH by compression [J]. Journal of Food Engineering,2010,100(2):261-269b
    [102] S. Mani, S. Jaya, R. Vadivambal. Optimization of solvent extraction of moringa (Moringa oleifera) seed kernel oil using response surface methodology [J]. Food and Bioproducts Processing,2007,85(4):328-335
    [103] P. Mayachiew, S. Devahastin. Comparative Evaluation of Physical Properties of Edible Chitosan Films Prepared by Different Drying Methods [J]. Drying Technology,2008,26:176-185
    [104] S. Miyairi, M. Sugiura, S. Fukui. Immobilzed of symbol 98 \ f“Symbol”\ s12β-glucosidase in fibroin membrane [J]. Agric Biol Chem,1978,42(9):1661-1667
    [105] S. Kaya, A. Kaya. Microwave drying effects on properties of whey protein isolate edible flms [J]. Journal of Food Engineering,2000,43:91-96
    [106] S. Y. Cho, S. Y. Lee, C. Rhee, et al. Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging [J]. LWT-Food Science and Technology,2010,1:1-6
    [107] S. Y. Ou, Y. Wang, S. Z. Tang, et al. Role of ferulic acid in preparing edible films from soy protein isolate [J]. Journal of Food Engineering,2005,70(2):205-210
    [108] S. Y. Xu, X. F. Chen, D. W. Sun. Preservation of kiwifruit coated with an edible film at ambient temperature [J]. Journal of Food Engineering,2001,50:211-216
    [109] T. Bourtoom, M. S. Chinnan, P. Jantawat, et al. Effect of Plasticizer Type and Concentration on the Properties of Edible Film from Water-Soluble Fish Proteins in Surimi Wash-Water [J].Food Science and Technology International,2006,12:119-126
    [110] T. Sivarooban, N. S. Hettiarachchy, M. G. Johnson. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films [J]. Food Research International,2008,41:781-785
    [111] Y. Jiang, C. H. Tang, Q. B. Wen, et al. Effect of processing parameters on the properties of transglutaminase-treated soy protein isolate films [J]. Innovative Food Science and Emerging Technologies,2007,8:218-225
    [112] Y. W. Zeng, M. Zhao, J. S. Wang. Effect of Addition of Sodium Dodecyl Sulfite on Physical Properties of Wheat Gluten Films [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2005,25:15-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700