γ-聚谷氨酸发酵条件优化及结构表征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-聚谷氨酸(γ-Polyglutamic acid,即γ-PGA)是一种具有水溶性、生物可降解性、无毒、对人体无害的高分子材料,它最初是从某些微生物的荚膜中提取出来的,是由D-谷氨酸和L-谷氨酸单体组成的聚合物。γ-PGA可以作为吸水保湿剂、药物缓释材料、防冻剂、生物絮凝剂、高吸水性树脂、可降解纤维、动物饲料添加剂和重金属吸附剂,广泛的应用于食品、农业、医药、化妆品和环境等领域。本文利用本实验室筛选的Bacillus subtills NOBEL-007摇瓶发酵合成γ-PGA,对γ-PGA的发酵条件、γ-PGA的分子结构和分子量等进行了研究,为工业化生产提供理论基础。主要研究内容如下:
     (1)利用单因素实验对影响γ-PGA产量的碳源、氮源、谷氨酸钠和无机盐等因素进行研究,筛选出各因素大概的参考范围,为进一步优化做准备。经单因素实验得到的适宜初步发酵培养基配方为:葡萄糖60g/L,酵母粉6.0g/L,谷氨酸钠60g/L,NH_4Cl 3.0g/L,CaCl_2 0.2g/L、K_2HPO_4·3H_2O 3.0g/L,MgSO_4·7H_2O 0.75g/L,MnCl_2·4H_2O 0.04g/L。
     (2)用SAS软件设计完成Plackett-Burman实验,实验结果表明酵母粉、谷氨酸钠和CaCl_2对γ-PGA的产量影响最为显著,因此重点对这三个因素进行优化分析。根据Plackett-Burman实验结果设计最陡爬坡实验,以便最大限度接近最高产γ-PGA的最优值区域,建立有效的拟合方程。
     (3)根据最陡爬坡实验的结果,采用Box-Behnken实验研究结果完成系统分析后建立回归方程,结合Design-Expert软件绘出响应面分析图和等高线图,最终获得γ-PGA的最佳发酵培养基为:葡萄糖50g/L,酵母粉4.18g/L,谷氨酸钠76.89g/L,NH_4Cl 3g/L,CaCl_2 0.1422g/L、K_2HPO_4·3H_2O 3g/L,MgSO_4·7H_2O 0.75g/L,MnCl_2·4H_2O 0.04g/L,此时γ-PGA的理论产量为43.39g/L。对预测结果进行验证,得到γ-PGA的产量为43.26g/L,与理论预测值相近,说明模型的可信度较高。与优化前21.26g/L相比,γ-PGA的产量提高了1.035倍。
     (4)应用红外光谱和核磁共振对发酵产物进行鉴定分析,结果证实为γ-PGA,并解析了它的分子结构式。纸层析和茚三酮比色法测定结果表明γ-PGA是由单一的谷氨酸组成,且发酵所得γ-PGA产品的纯度为85.13%。利用浊度法/分光光度计法测得γ-PGA的等电点为3.5。SDS-PAGE电泳测得γ-PGA的分子量,发现其同其他聚氨基酸一样,是多分子量聚合物,分子量范围在100-600kD之间。利用发酵所得γ-PGA产品进行吸水性实验、保水性实验和对种子发芽率影响的实验,发现γ-PGA土壤保水性与PAM相当,但其吸收水分的能力和提高种子发芽率的能力均优于PAM。此外,还发现γ-PGA的吸水能力在蒸馏水中最强,其次是生理盐水,井水和自来水最差,在土壤中的保水实验也得到类似结果,且质量浓度为12g/L的γ-PGA保水效果最好。
As a kind of macromolecular material,γ-polyglutamic acid is water soluble, biodegradable,nontoxic,harmless towards humans. It is a polymer materials which is made of D-glutamic acid and L-glutamic acid and extracted originally from the capsule of some microorganisms.γ-PGA can be used as absorbent moisturizer,drug delivery materials,antifreeze,flocculant,superabsorbent,biodegradable fiber,animal feed additives and heavy metal adsorbent,widely being used in food, agriculture, medicine,cosmetics and the environmental protection.This paper deals with Synthesis ofγ-PGA by fermentation with Bacillus subtills NOBEL-007 which was screened in our laboratory.Work have been carried out on the fermentation conditions, molecular structure and molecular weight ofγ-PGA,thus provided theoretical basis for the industrial production ofγ- PGA.
     Single-factor design was used to study the effect of the carbon sources, nitrogen sources,sodium glutamat and inorganic salts onγ-poly glutamic acid production.Then selected the ranges of value of each related factor,making preparation for further optimization.From the single-factor test,we got appropriate fermentation medium: glucose 60g/L,yeast extract 6.0g/L,sodium glutamate 60g/L,NH_4Cl 3.0g/L, CaCl_2 0.2g/L,K_2HPO_4·3H_2O 3.0g/L,MgSO_4·7H_2O 0.75g/L,MnCl_2·4H_2O 0.04g/L.
     Using SAS software to design Plackett-Burman experiment, the results showed that the effect of yeast extract,sodium glutamate and CaCl_2 on production ofγ-PGA was the most significant,so these three factors should be optimized emphatically.In order to approach the maximum production area ofγ-PGA and establish an effective fitting equation,we designed steepest ascent experiments according to the analysis of results of the Plackett-Burman experiment.
     Design Box-Behnken experiment according to the results of steepest ascent. Analysized the results and established regression equation, and then combined the maps of response surface and contour which were droped with Design-Expert software,we get the optimal fermentation medium ofγ-PGA:glucose 50g/L,yeast extract 4.18g/L, sodium glutamate76.89g/L, NH_4Cl 3g/L, CaCl_2 0.1422g/L, K_2HPO_4·3H_2O 3g/L, MgSO_4·7H_2O 0.75g/L, MnCl_2·4H_2O 0.04g/L,and the theoretical yield ofγ-PGA was 43.39g/L. To verify the prediction results,we found that the Experimental values ofγ-PGA production was 43.26g/L which closed to the theoretical prediction, thus Demonstrated that the credibility of the model is high. Compared to the former 21.26g/L which was not optimized,γ-PGA yield increased by 1.035 times.
     Identified and analysized fermentation products by using infrared spectroscopy and nuclear magnetic resonance,we comfined that the ermentation products wasγ-PGA actually, and also got its molecular structure.Using paper chromatography and ninhydrin colorimetry to assay the composition and the purity ofγ-PGA,we foundγ-PGA was made of pure glutamic acid,and the purity ofγ-PGA was. 85.13%.The isoelectric point ofγ-PGA was 3.5 measured by turbidimetry/spectro photometry. Finally,SDS-PAGE electrophoresis was used to measure molecular weight ofγ- PGA, the same like other amino acids,γ-PGA also had polymer molecular weight,and the molecular weight range from 100kDto 600kD.
     From the study on water absorption and water holding capacity ofγ-PGA,and the effect ofγ-PGA on seed germination ratio in rats,we found thatγ-PGA had the same soil water holding capacity as PAM,and its ability to absorb water and increase seed germination rate was better than PAM.And WE also found that water absorption ofγ-PGA in distilled was the strongest,followed by saline, worst in wells and tap,and the similar results can be got by water retention experimentIn soil.The water holding capacity was hignest when the concentration ofγ-PGA was 12g/L.
引文
[1]邓毛程,宋炜,张远平.γ-聚谷氨酸高产菌株的选育和发酵培养基的初步优化[J].四川理工学院学报(自然科学版),2006,19(3):47-51
    [2] Candela T Fouet A. Poly-γ-glutamate in acteria[J]. Mo1. Mierob, 2006, 60(5): 1091-1098
    [3] Ashiuchi M, Nakamura H, Yamamoto T et al. Poly-γ-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity[J]. J Mol Catal B: Enzym, 2003, 23: 249-255
    [4]王传海,何都良,郑有飞等.保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J].中国农业气象,2004,25(2):19-22
    [5]刘静,金映虹,杨超等.利用60Coγ-射线制备微生物聚谷氨酸类吸水剂及其吸水性能研究[J].离子交换与吸附,2007,23(2):129—136.
    [6]黄金,陈宁.γ-聚谷氨酸的性质与生产方法[J].氨基酸和生物资源,2004,26 (4):44-48
    [7]吕莹,郝紫徽,李虹等.聚γ-谷氨酸的分离提纯[J].食品与发酵工业,2005,31(2):133-134
    [8]施庆珊,许虹,林小平等.γ-多聚谷氨酸的微生物合成[J].生物技术,2004,14 (1):65-67
    [9]佟盟,徐虹,王军.γ-聚谷氨酸降解影响因素及其生物降解性能的研究[J].南京工业大学学报(自然科学版),2006,28(1):50-53
    [10]佟盟,徐虹,王军.γ-聚谷氨酸降解影响因素及其生物降解性能的研究[J].南京工业大学学报,2006,28(1):50-53
    [11]陈咏竹,孙启玲.γ-多聚谷氨酸的性质、发酵生产及其应用[J].微生物学通报,2004,3(1):122-126
    [12]奚新伟,沙长青,王佳龙等.γ-多聚谷氨酸的生物合成及其相关基因[J].中国生物工程杂志,2004,8:38-41
    [13]刘晓鸥,李睿颖,徐勇虎等.聚谷氨酸的生物合成及应用前景[J].食品工程,2009(1):23-25
    [14]刘莉.谷氨酸非依赖型γ-PGA合成菌的分离鉴定及其产物应用研究[D].天津:南开大学,2009
    [15]程艳玲,赵玉娥,王海玉.生物降解型聚谷氨酸的研究进展[J].北京联合大学学报(自然科学版),2008,6:46-49
    [16] Sandaf, FujiyamaT, EndoT. Chemical synthesis of polygamma glutamic acid by poly condensation of gamma glutamic acid dimmer: synthesis and reaction of poly gamma glutamic acid methyester [J]. PolymScience PartA1, 2001, 39(5): 732- 741
    [17]张艳丽,高华,刘小红.微生物合成的聚谷氨酸及其应用[J].生物技术通报,2008,4:58-62
    [18]王军,邵丽琴.γ-聚谷氨酸的合成、化学修饰及其应用进展[J].化学与生物工程,2008:17-20
    [19] Xu H, Jiang M, Li H, et a1. Efficient Production of Poly(γ-glutamic acid) by Newly Isolated Bacillus subtilis NX-2[J]. Process Biochem. 2005, 40: 519-523
    [20]党建宁,梁金钟.以玉米为原料产γ-PGA的研究[J].中国食品添加剂,2010, 156-161
    [21]李大力,詹长娟,郄丽等.盐浓度对纳豆芽孢杆菌发酵产γ-聚谷氨酸影响的研究[J].化学与生物工程,2007,11:50-51
    [22]张智,滕婷婷,王淼.工业发酵中溶氧条件的探索[J].中国酿造,2008,23:4-6
    [23]杨革,刘艳,李桂芝.溶氧及PH对地衣芽孢杆菌合成聚γ-谷氨酸的影响[J].应用与环境生物学报,2006,12(6):22-27
    [24]杨革,陈坚,曲音波等.金属离子对地衣芽孢杆菌合成多聚谷氨酸的影响[J].生物工程学报,2001,17(6):706-709
    [25]陈三凤,刘德虎.现代微生物遗传学[M].北京:化学工业出版社,2003:312
    [26] Ing L S, Pei J W, Chwen J S. Microbial Production of a Poly(γ-glutamic acid) Derivative by Bacillus subtilis [J]. Process Biochem, 2005, 40: 2827-2832
    [27]惠明,田青.Bacillus subtilis B53合成聚谷氨酸的分批发酵过程分析[J].河南工业大学学报(自然科学版),2007,28(1):14-17
    [28] Ishwar B. Bajaj, Rekha S. Singhal. Effect of Aeration and Agitation on Synthesis of Poly (γ-glutamic acid) in Batch Cultures of Bacillus licheniformis NCIM 2324 [J]. Biotechnology and Bioprocess Engineering, 2010, 15: 635-640
    [29]曹旭.γ-聚谷氨酸的异源表达及发酵工艺研究[D].浙江:浙江大学,2007
    [30]吴群,徐虹,许琳.Bacillus subtilis NX-2合成γ-聚谷氨酸的立体构型调控机理[J].过程工程学报,2006,6(3):458-462
    [31] Jiang H, Shang L, Yoon S H. Optimal Production of Poly-γ-glutamic Acid by Met abolically Engineered Escherichia coli[J]. Biotechno1. Lett, 2006, 28: 1241- 1246
    [32] Suzuki T, Yasutaka T. Characterization of the Bacillus subtilis gw +D gene , whose product is involved inγ-polyglutamic acid degradation[J] . J of Baereriology, 2003,185(7): 2379-2382
    [33]马婕,王丹,李强.基因工程大肠杆菌合成γ-聚谷氨酸[J].过程工程学报,2009,9(4):791-795
    [34]盛瑞堂,孙猛,谭天伟.过滤法分离纯化透明质酸[J].过程工程学报,2006,6(2):285- 288
    [35] Yao J un , Xu Hong , Wang J un , Pingkai Ouyang1 Removal of Cr ( III) , Ni ( II) and Cu ( II) by poly (γ-glutamic acid) from Bacillus subtilis NX22[J]. J Biomater Sci Polymer Edn, 2007, 18: 193-204
    [36]邓禹,堵国成,李秀芬等.基于发酵液特性的透明质酸提取预处理工艺[J].过程工程学报,2007,7(2):380-384
    [37]汪新.Bacillus subtilis ZJUTZY发酵生产γ-聚谷氨酸及其分离提纯[J].浙江工业大学,2009:24-45
    [38]梁金丰,徐虹,姚俊.γ-聚谷氨酸提取的发酵液预处理及分离纯化工艺[J].食品与发酵工业,2009,35(3):6-11
    [39] Xu Hong , Jiang Min , Li Hui, et al. Efficient production of poly (γ-glutamic acid) by newly isolated Bacillus subtilis NX-2[J]. Process Biochemstry, 2005, 40(2): 519 -523
    [40]吕忠良.γ-聚谷氨酸的分离纯化[D].浙江:浙江大学材料与化学工程学院.2008
    [41]陈树云.γ-聚谷氨酸的生物合成及提取工艺研究[D].南京:南京工业大学,2006
    [42]惠明,田青,张彬等.pH值对聚谷氨酸发酵液粘度及聚合物结构的影响[J].食品与发酵工业,2006.11:3-8
    [43]姚凯,王庭慰.谷氨酸类聚合物的合成方法及其应用[J].现代塑料加工应用,2005,17(5):62-64
    [44]王汝泮,杨大巍,赵晓飞等.γ-聚谷氨酸的合成工艺与应用[J].应用科技,2008,16 (15):21-22
    [45]施庆珊.γ-聚谷氨酸的微生物合成与应用[J].精细与专用化学品.2004,12(11): 20-23
    [46]王文芹,孔玉涵.γ-聚谷氨酸生产技术及应用发酵科技通讯[J].2006,35(4):16-17
    [47]马敏,姚国伟,邓玉林.阿奇霉素合成中硼酸酯水解的研究[J].精细化工,2006,23 (6):558-561
    [48] Buescher J, Margaritis A. Microbial Biosynthesis of Poly glutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries[J]. Crit. Rev. Biotechno1, 2007, 27(1): 1-19
    [49]疏秀林,施庆珊,冯静等.一株非谷氨酸依赖型聚γ-谷氨酸高产菌株的鉴定与诱变育种[J].微生物学通报,2009,36(5): 705-710
    [50]王建平.聚-γ-谷氨酸对三种作物种子萌发和促生长作用的初步研究[D].湖北:华中农业大学,2007,22-26
    [51]张世根,宋杰,李敏等.肥料增效剂γ-聚谷氨酸的生产与应用[J].农产品加工学刊,2010.217 (8): 60-62
    [52]李晶博,李丁,邓毛程等.γ-聚谷氨酸的特性、生产及应用[J].化工进展,2008,7(l1):1789-1799
    [53]袁桂云.γ-聚谷氨酸的生产及应用研究进展[J].广州化工,2010,38(5):78-80
    [54]刘静,金映虹,杨超等.利用60Co.γ-射线制备微生物聚谷氨酸类吸水剂及其吸水性能研究[J].离子交换与吸附,2007,23(2):129-136
    [55]王嫱,陈智,陈永强等.γ-多聚谷氨酸吸附铜离子的研究[J].四川大学学报(自然科学版),2005,42(3):571-574
    [56]孙昭,马骁骏,黄静等.γ-聚谷氨酸阻垢性能的研究[J].华东师范大学学报(自然科学版).2010,5:134-142
    [57]邢楠楠,梁金钟.γ-聚谷氨酸吸附金属离子性能的研究[J].食品与发酵工业,2009,35(2):61-65
    [58] Ye H, Jin L, Hu R, et a1. Poly(gamma, L-glutamic acid)-cisplatin conjugate efectively inhibits human breast tumor xenografted in nude mice[J]. Biomaterials, 2006, (7): 5958 -596
    [59] Ye H F. Preparation and biological activity of poly (γ-glutamic acid) cisp latin conjugate[J]. Acta Pharmaceutica Sinica, 2007, 42(6): 611-617
    [60]曹小红,闫乐,王春玲等.γ-聚谷氨酸-D-半乳糖酯化衍生物-顺铂复合物的制备及其生物活性[J].中国生物工程杂志,2009,3:67-71
    [61] Parka JH, Leeb S, Kim JH, et a1. Polymeric nanomedicine for cancer therapy[J]. Prog Polymer Sci, 2008, 33(1): 113-137
    [62]金丽,叶海峰,黄静等.聚谷氨酸一顺铂复合物的制备及其生物活性[J].药学学报,2007,42(6):611-617
    [63]徐旭,伍国琳,张洁.具有乙二醇侧链的聚谷氨酸酯的合成、表征及其两亲性[J].化学学报,2008,66(9):1102-1106
    [64] Maeda H, Bharate GY, DaruwaUa J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-efect[J].Eur J Pharm Biopharm, 2009, 71(3): 409- 419
    [65]张奇.基于酶催化前体药物疗法的叶酸-PGA偶联酶的制备与生物学研究[D].华中科技大学,2006
    [66]李荣秀编译.生物高分子聚酰胺和蛋白质材料[M].北京:化学工业出版社,2005,7
    [67]吕薇.γ-聚谷氨酸的生产工艺改进及市场前景[J].医药化工,2006,3:25-30
    [68] Cao X H, Ha Z R, Wang C L, et al. Op timizing fermentation conditions of poly (γ-glutamic acid) by Bacillus natto TK-2[J]. Food and Fermentation Industry, 2008, 34 (1): 24-27
    [69] LU W K, CHIU T Y, HUNG SH, et a1. Use of response methodology to optimize culture medium for production of poly-γ-glutamic acid by Bacillus lichenifor- mis[J]. Int J Appl ci, 2004, 2: 9-58
    [70]陈坚,堵国成,卫功元等.微生物重要代谢产物-发酵生产与过程解析[M].化学工业出版社,2005:243-280
    [71]吴松刚.微生物工程[M].北京:科学出版社,2004:65-70
    [72]疏秀林,施庆珊,冯静等.γ-聚谷氨酸发酵培养基的Plackett-Burman法优化[J].生物技术通报,2007,4:173-177
    [73]李艳华,梁金钟,范洪臣.响应面法优化γ-聚谷氨酸发酵培养基的研究[J].食品科技,2008,3:45-48
    [74]曹小红,哈志瑞,王春玲等.响应面法对Bacillus natto TK-2产γ-聚谷氨酸发酵培养基(γ-PGA)的优化[J].食品与发酵工程,2008,34(1):24-27
    [75]党建宁,梁金钟.以玉米为原料产γ-PGA的研究[J].中国食品添加剂,2010,2:156-161
    [76]杜沛,晏正,陈双喜.γ-聚谷氨酸高产菌株的选育及发酵条件优化[J].河南大学学报,2010,40(2):179-184
    [77]范洪臣,李艳华,梁金钟等.响应面法优化枯草芽孢杆菌产γ-PGA的条件[J].生物加工工程,2008,5:17-23
    [78]王铁男,韩建春.响应面法优化固态发酵生产γ-多聚谷氨酸[J].食品工业科技,2008.29(3):177-179
    [79]欧宏宇,贾士儒.SAS软件在微生物培养条件优化中的应用[J].天津轻工业学院学报,2001,3:14-17
    [80] Nadia A. Soliman, Mahmoud M. Bereka, Yasser R. Abdel-Fattah. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements[J]. Biotechnological products and process engineering. 2005, 69: 259-267
    [81]马霞,张华,赵紫华.γ-聚谷氨酸的微生物发酵法生产及其表征初步分析[J].食品研究与开发,2007,128(5):18-20
    [82] Feng Shi, Zhinan Xu, Peilin Cen. Optimization ofγ-poly-glutamic acid productionby bacillus subtilis ZJU-7 using a surface-response methodology[J]. Biotechnolo- gy and Bioprocess Engineering, 2006, 11: 251-257
    [83]靳亮,王泽立,童应凯.响应面法优化卑霉素发酵培养基的研究[J].生物技术通报,2007,(2):155- 158
    [84] Chen Xiong, Chen Shouwen, SunMing, et al. Mediumoptimization by response surface methodology for poly-gammaglutamic acid production using dairy manure as the basis of a solid substrate[J]. Appl Microbiol Biotechnol, 2005, 69: 390-396
    [85]杜沛,朱丽娟,陈双喜.响应面法优化Bacillus subtilis HD-F9产γ-聚谷氨酸发酵培养基[J].河南大学学报,2010,40(5):498-503
    [86]北京大学化学系,仪器分析教学组.仪器分析教程[M].北京:北京大学出版社,2006:53-74,184-201
    [87]王昂,王丽丽,仪宏等.茚三酮比色法测定谷氨酸含量的研究[J].中国调味品,2005,8:50-52
    [88]邢新苗,刘自镕,任建平.一种简单实用的谷氨酸浓度测定法[J].微生物学杂志,2004,24 (2):62-63
    [89]陆扬.浊度/分光光度法和毛细管等电点聚焦法测定明胶等电点及其分布的比较研究[J].明胶科学与技术,2006,26(1):44-46
    [90]施树.两种胡麻饼粕提取蛋白质等电点测定[J].粮食与油脂,2007,8:25-26
    [91]陈海丽,吴震,刘明池.不同保水剂的吸水保水特性[J].西北农业学报,2010,19(1):201-206
    [92]谢建军,梁吉福,李晟等.PAAMPS高吸水树脂保水性能的研究[J].中南林业科技大学学报,2009,29(6):118-121
    [93]张智峰.保水剂研究进展[J].磷肥与复肥,2010,25(5):63-66
    [94]马申嫣,范大明,严青等.不同保水剂对可微波预油炸鸡肉串品质的影响[J].食品与生物技术学报,2009,28(6):753-758
    [95]左广玲,叶红勇,李入林等.利用大豆秸秆制备农用保水剂及其保水性能研究[J].河南农业科学,2010,4:50-53 96]左广玲,熊燕,叶红勇.马铃薯淀粉基高吸水树脂的合成及其土壤保水性能研究[J].南阳理工学院学报,2009,1(4):72-75
    [97]王强.土壤保水剂研究进展[J].山西水土保持科技,2009,4:9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700