基于关联规则和云模型的水库诱发地震风险多层次模糊综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的水利基础设施,水库在发电、防洪、供水、灌溉等方面带来巨大经济和社会效益的同时,也可能给其周边地区带来严重的生态和环境负面影响:一方面,由于修建水库土建工程量大,水库及其周缘地区原有的地理地貌和环境地质会受到很大影响;另一方面,水库建成后开始蓄水,淹没和浸湿范围通常比较大,在水的作用下,库坝区的岩石应力发生改变,这将对水文地质和地震地质造成影响。其中,水库诱发地震就是水利工程地质分析和环境影响评价工作中,非常重要的一项基本内容。
     经过长期研究,国内外对水库诱发地震的研究已取得一些成果,主要体现在水库地震统计和震例剖析研究、水库诱发地震成因机理分析研究、水库诱发地震的预测和评价方法研究三个方面。然而,当前水库诱发地震的研究尚未对其成因机理形成统一的认识,水库地震危险性预测与评价方法,大都把影响水库诱发地震的各种环境条件因素当成确定状态,忽略了水库诱发地震孕育和发生过程中存在的不确定性特征。本文在全面分析水库诱发地震的国内外研究现状和发展动态基础上,对水库诱发地震孕育和发生过程进行不确定性建模分析,以长江三峡水库及其周缘地区环境条件为基础数据,对水库诱发地震风险进行多层次评价。论文的主要内容如下:
     (1)选取新丰江水库、隔河岩水库和印度科依纳水库作为代表性的典型震例,对其成因机理和地震活动规律进行精细剖析,结合已有水库诱发地震成因假说,定性地归纳分析水库诱震组合环境条件因素,为水库诱发地震风险评价指标体系的构建奠定了基础。
     (2)针对水库诱发地震成因机理的复杂性,在系统辨识水库地震诱震环境条件基础上,采用关联规则理论,挖掘诱震环境条件与水库诱发地震活动之间的相关性,并定量分析其诱发作用的大小,构建关联规则支持下水库诱发地震风险评价指标体系,为水库诱发地震风险评价过程中的诱震因素重要性比较提供了依据。
     (3)针对水库诱发地震孕育和发生过程中的不确定性,将水库诱发地震总体组合环境条件作为一个模糊系统,对其风险从下往上逐层进行权重计算和模糊映射,研究了水库诱发地震风险多层次模糊综合评价方法,并分析了其优势与不足。
     (4)考虑到重要性标度和隶属度确定这两个过程受个人经验和主观影响较大,提出了基于云模型改进的水库诱发地震风险多层次模糊综合评价方法,通过期望、熵、超熵三个数字特征,将随机性、模糊性和离散性有机地结合起来,使水库诱发地震危险性评价结果更加客观准确。
     本文对揭示水库诱发地震孕育和发生的客观规律,对丰富、完善现有水库诱发地震预测评价模型及方法,促进水电工程地质灾害评价技术的进步具有重要理论意义,为水利水电工程导致的水库诱发地震危险性评价提供了技术支持。
As one of the important hydraulic projects, huge artificial water reservoirs are builtfor generation of hydroelectric power, flood control, water supply and irrigation purposes.Water conservancy projects make life more convenient and bring economic benefits, whilethey may also cause terrible damage to the ecology and environment. For one thing, sincereservoirs always cover a large geographical area, the construction may influence thetopographic features, the hydrogeology and the environment geology of reservoir and itssurrounding region; for another, since water flows in fractured rock may change the stressof rocks, seismogenic environment can be affected by reservoir impounding.Reservoir-induced seismicity is indeed one of the most serious hazards in waterconservancy projects. Analysis of the possible seismic risks of a reservoir and itssurrounding region is one of the major considerations in geological analysis andenvironmental impact assessments of hydraulic projects.
     Previous researches on reservoir-induced seismicity focus on three major aspects:The initial work focus on analyzing and comparising reservoir-induced seismicityexamples; on the basis of these studies, the cause mechanism and physical mechanism arediscussed; Since1990s, many workshops and symposia have been organized onreservoir-induced seismicity, and the development of this topic has transferred toquantitative prediction and evaluation. However there is no agreement on the causemechanism of reservoir-induced seismicity. Uncertainty exists both in the model structureand in the parameters, and it is thus not an easy work to evaluate the risks inreservoir-induced seismicity. Most of previous researches consider the environmentalfactors as unchangeable factors, but ignore the uncertainty of the seismogenicenvironment in reservoir-induced seismicity. The seismogenic environment ofreservoir-induced seismicity is a comprehensive and fuzzy system with multi-lever,multi-criteria and multi-objects. As an extension of previous researches, an uncertaintyassessment model based on the multi-hierarchy risk index system of reservoir-inducedseismicity is proposed, and take Yangtze Three Gorges Reservoir as an sample to illustratethis model. The main contents in this dissertation are as follows:
     (1) Select Xinfengjiang reservoir, Geheyan reservoir and Koyna reservoir asexamples, and analyse reservoir-induced seismicity causing mechanism and seismicactivities in details. According to the cause mechanism proposed by previous research, thisthesis summarizes the environmental factors which may cause reservoir-induced seismicity using quantitative analysis, which are the basis of hierarchy assessment systemof reservoir-induced seismicity.
     (2) Due to the complexity of the hydrogeology and environmental geology in thelarge submerged area of reservoir, base on the risk identification in reservoir-inducedseisimicity combine environmental factors, association rules are developed to illustrate therelationship between environmental factor and possible earthquake magnitude and thenthis thesis analyse the importance of environmental factor using quantitative method. Thenthe hierarchy assessment system of reservoir-induced seismicity based on association rulesis constructed, which supports the comparison among environmental factors.
     (3) Due to the uncertainty of the seismogenic environment of reservoir-inducedseismicity, this thesis considers the combination of envirionmental factors inreservoir-induced seisimicity as a fuzzy system and carries out weight calculation andfuzzy mapping from low layer to high layer. A fuzzy comprehensive evaluation modelbased on the multi-hierarchy risk index system of reservoir-induced seismicity is proposed,and then the advantages and disadvantages of this method are discussed.
     (4) Considering that the-decision of important scales and membership degree is ofteninfluenced by subjectivity, this thesis proposes a cloud improved multi-hierarchy fuzzycomprehensive evaluation model to assess the reservoir-induced seismicity. With thenumerical characteristic index described by expectation value (Ex), entropy (En) andhyper entropy (He), this model includes not only the medium value of the concept, butalso the fuzziness and the discreteness, causing the results of reservoir-induced seismicityassessment more objective and more accurate.
     The results in this thesis help to illustrate the objective law of seismogenicenvironment and seismic activities, and this thesis is also an extension of previousresearch in the prediction and assessment method of reservoir-induced seismicity.Moreover, this thesis contributes to improve the technology of disaster assessment inhydraulic engineering, and provides a reliable evidence of risk assessment inreservoir-induced seismicity.
引文
[1]胡毓良.水库诱发地震研究的进展,现今地球动力学研究及其应用[M].北京:地震出版社,1994:623-628.
    [2] D.A. Lockner, N.M. Beeler. Premonitory slip and tidal triggering of earthquakes[J].Journal of Geophysical Research,1999,104(B9):20133-20151.
    [3] R.M. Kebeasy, M. Maamoun, E.Lbrahim. Earquake studies at aswan reservoir[J].Journal of Geodynamics,1987,7(3-4):173-193.
    [4]周斌.水库诱发地震时空演化特征及其动态响应机制研究——以紫坪铺水库为例[J].国际地震动态,2011,6:41-44.
    [5] X.L. Lei. Possible roles of the Zipingpu Reservoir in triggering the2008Wenchuanearthquake[J], Journal ofAsian earth science,2011,40(4):844-854.
    [6]胡先明,张炜,韩进等.紫坪铺水库地震监测预测[J].四川地震,2010,4:1-6.
    [7] D.W. Simpson, W.S. Ltith and C.H.Scholz. Two types of reservoir-inducedseismicity[J], Bulletin of the Seismological Society of America,1988,78(6):2025-2040.
    [8] H.K. Gupta. A review of recent studies of triggered earthquakes by artificial waterreservoirs with special emphasis on earthquakes in Koyna, India[J]. Earth-scienceReviews,2002,58(3-4):279-310.
    [9]薄景山.水库诱发地震研究的回顾和展望[J].世界地质,1989,8(1):9-14.
    [10]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983:201-224.
    [11] D.S. Carder. Seismic investigations in the Boulder Dam area,1940-1944, and theinfluence of reservoir loading on earthquake activity[J]. Bulletin of theSeismological Society ofAmerica,1945,35(4):175-192.
    [12]丁章原.新丰江水库地震的诱发条件[J].地震战线.1978,4:1-5.
    [13] M.Y. Wang, M.Y Yang. Mechanism of the reservoir impounding earthquakes atXinfengjiang and a preliminary endeavor to discuss their cause[J], Journal ofgeophysics science,1976,19(1):1-17.
    [14] H.K. Gupta, B.K. Rastogi, H. Narain. Some discriminatory characteristics ofearthquakes near the Kariba, Kremasta and Koyna artificial lakes[J], Bulletin of theSeismological society ofAmerica,1972,62(2):493-507.
    [15]李安然,韩晓光,徐永健.初探水库地震的形成机理及其诱发环境[J].华南地震.1987,7(2):81-89.
    [16]夏其发.水库诱发地震评价研究[J].中国地质灾害与防治学报.2000,11(3):32-35.
    [17]国家地震局地震研究所.丹江口水库诱发地震文集[M].北京:地震出版社,1980.
    [18]刘素彦.基于神经网络和遗传算法的水库诱发地震危险性评价研究[D].华中科技大学,2011.
    [19]车用太,鱼金子,刘成龙等.水库诱发地震地下水监测网建设的若干问题探讨[J].地震学报,2010,32(2):203-213.
    [20] C. Kisslinger. A review of theories of mechanisms of induced seismicity[J].Engineering Geology,1976,10(2-4):85-98.
    [21] L. Chen, P. Talwani, Reservoir-induced seismicity in China[J]. Pure and AppliedGeophysics,1998,153(1):133-149.
    [22] M. Awad, M. Mizoue. Earthquake activity in the Aswan Region, Egypt[J]. Pure andapplied geophysics,1995,145(1):69-84.
    [23] S. Seth, A.W. Douglas etc. The1966Kremasta reservoir earthquake sequence[J].Earth and planetary science letters,1982,59(1):49-60.
    [24] R.P. Denlinger, C.G. Bufe. Reservoir conditions related to induced seismicity and theGeysers steam reservoir[J]. Bulletin of the Seismological society of American,1982,72(4):1317-1327.
    [25] T. Luciano. Analysis of the cross-correlation between seismicity and water level inthe koyna area of India[J]. Bulletin of the Seismological Society of America,2010,100(5):2317-2321.
    [26] C. Langenbruch, S. Shapiro. Decay rate of fluid-induced seismicity after terminationof reservoir simulations[J]. Geophysics,2010,75(6): MA53-MA62.
    [27] Y.L. Hu, Z.Y. Liu, Q.Y. Yang. Induced seismicity at Wujiangdu reservoir, China: acase induced in the karst area[J]. Induced Seismic Envents,1996,147(2):409-418.
    [28]姜朝松,彭万里,王绍晋等.乌江渡水库地震诱震条件及成因[J].地震学报,1992,12(1):94-102.
    [29]曾心传,高士钧.水诱发地震应力场初步探讨[J].华南地震,1989,1:73-85.
    [30]刘素梅,徐礼华,Talwani.基于丹江口水库孔隙水压力计算的水库诱发地震机理研究[J].土木建筑与环境工程,2010,32(2):125-129.
    [31] S.M. Liu, L.H. Xu, P. Talwani. Reservoire-induced seismicity in the DanjiangkouReservoire: a quantitative analysis[J], Geophysical Journal International,2011,185:514-528.
    [32]常宝琦,梁纪彬.水库地震震级预测的讨论[J].华南地震,1994,14(1):77-82.
    [33]张国宝,宫海灵.水库诱发地震研究.中国水力发电工程学会第四届地质及勘探专业委员会第一次学术交流会论文集[C].2008.
    [34]常宝琦,肖安予.对百盆珠水库诱震危险性的初步预测[J].华南地震,1986,6(1):94-102
    [35]徐宗学,黄乃安,常宝琦.广西龙滩水库诱发地震环境影响评价[J].华南地震,1989,9(2):84-91
    [36]吴丽萍.模糊综合评判方法及其应用研究[D].太原理工大学硕士论文,2006.
    [37]潘灵刚.基于模糊理论的冯家山水库汛期讯限水位的研究[D].西北农林科技大学硕士论文,2010.
    [38]郭旺军.基于模糊综合理论的某连续梁桥加固前后可靠度评估[D].武汉理工大学硕士论文,2010.
    [39]门治君.模糊数学法在建设工程项目评标中的研究及应用[D].西安理工大学硕士论文,2010.
    [40]甄雁翔. Fuzzy综合评判丢包区分模型构建方法的研究[D].北京邮电大学博士论文,2010.
    [41]左军.层次分析法中判断矩阵的间接给出法[J].系统工程,1988,10(6):56-63.
    [42]徐泽水.层次分析法中构造判断矩阵的新方法[J].系统工程,1997,(S1):204-206.
    [43]侯岳衡,沈德家.指数标度及其与几种标度的比较[J].系统工程理论与实践,1995,15(10):43-46.
    [44]李长春,叶少有.基于变权法的模糊评判在土石坝老化评估中的应用[J].水利与建筑工程学报,2008,6(1):101-104.
    [45]张坤军,席广水,张玲彬.基于变权法的模糊综合评判在地面沉降危害评价中的应用[J].测绘通报,2009,(1):45-47.
    [46] F. Torfi, R.Z. Farahani, S. Rezapour. Fuzzy AHP to determine the relative weights ofevaluation criteria and Fuzzy TOPSIS to rank the alternatives[J]. Applied softcomputing,2010,10:520-528.
    [47]高庆华,马宗晋,张业成等.自然灾害评估[M].北京:气象出版社,2006.
    [48]黄崇福.自然灾害风险评估理论与实践[M].北京:科学出版社,2005.
    [49]吕宁华.工程项目投资风险现状分析与评价[J].基建优化,2006,27(2):78-81.
    [50] D.I. Gough, W.I. Gough. Load-induced earthquakes at lake Kriba-II[J]. GeophysicalJournal of the royal astronomical society,1970,21(1):79-101.
    [51]刘远征,马瑾,姜彤.库水渗流与荷载对水库地震形成的影响分析[J].地震地质,2010,32(4):570-585.
    [52]沈崇刚,陈厚群,张楚汉等.新丰江水库地震及其对大坝的影响[J].中国科学.1974,2:184-205.
    [53] G.Y. Gong, Y.D. Xie. Research on th diffusion of pore fluid and in-situ hydraulicdiffusivity in th epicentral region of Xinfengjiang reservoir earthquakes[J]. ActaSeismologica Sinica,1992,5(2):381-388.
    [54] Y.Z. Ding, J.X. Pan, A.Y. Xiao. Tectonic environment of reservoir inducedearthquake in the Xinfengjiang reservoir area[J], Seismology and geology,1983,5(3):63-74.
    [55] M.Y. Wang, M.Y Yang. Mechanism of the reservoir impounding earthquakes atXinfengjiang and a preliminary endeavor to discuss their cause[J]. Journal ofGeophysics Science,1976,19(1):1-17.
    [56]高士钧,甘家思,王清云等.清江隔河岩水库诱发地震的条件与地震活动特征[J].地壳形变与地震,2001,21(3):93-100.
    [57]沈继方,万军伟,徐曙光等.碳酸盐岩区大型水库蓄水对岩溶水环境的影响——以隔河岩水库为例[J].中国岩溶,1997,16(4):397-402.
    [58]张秋文,王乘,李安然,张国安.水利水电工程及其周缘地区诱发地震危险性小区划研究[J].岩石力学与工程学报,2004,23(17):2925-2931.
    [59]王清云,高士钧.隔河岩水库诱发地震的环境条件[J].地壳形变与地震,1998,18(3):74-79.
    [60]易立新,车用太,王广才.水库诱发地震研究的历史、现状与发展趋势[J].华南地震,2003,23(1):28-37.
    [61]李愿军,黄国良.对水库诱发地震的两点认识[J].震灾防御技术.2008,3(1):61-71.
    [62] R.A. Harris. Introduction to special section: stress triggers, stress shadows, andimplication for seismic hazard[J]. Journal of Geophysical Research: Solid Earth,1998,103(B10):24347-24358.
    [63] S.D. Davis, P.A. Nyffenegger, C. Frohlich. The9April1993earthquake insouth-central Texas: Was it induced by fluid withdrawal[J]. Bulletin of theSeismological Society ofAmerica,1995,85(6):1888-1895.
    [64]乔慧珍,张永久,任月霞等.龙潭水库诱发地震震源参数分析[J].四川地震,2011,4:16-20.
    [65] L. Chen, P. Talwani. Mechhanism of initial seismicity following impoundment at theMonticello reservoir[J]. Bulletin of the Seismological Society of America,2001,91(6):1581-1594.
    [66]王清云,高士钧.丹江口水库诱发地震研究[J].大地测量与地球动力学.2003,23(1):103-106.
    [67] M.L. Bell, A. Nur. Strength changes due to reservoir-induced pore pressure andstresses and application to Lake Oroville[J]. Journal of Geophysical Research,1978,83(B9):4469-4483.
    [68] K. Rajendran, N. Thulasiraman, K. Sreekumari. Microearthquake activity near theIdukki Reservoir, south India: A rare example of renewed triggered seismicity[J].Engineering Geology,2013,153:45-52.
    [69]叶友权,王遹琪,张艺峰等.厦门莲花水库诱发地震可能性分析[J].工程地球物理学报,2010,7(5):644-648.
    [70] W. Hua, Z.L. Chen. Reservoir-induced seismicity in the longtan reservoir,southwestern China[J], Journal of Seismology.2013,17(2):667-681.
    [71]吴绍祖,陈光,孛仁等.福建古田水口库区ML4.8震群分析与水库诱发地震探讨[J].地震研究,2010,23(1):25-30.
    [72]黄振伟,黄海蛟,丁淑平等.丹江口水利枢纽大坝加高工程水库诱发地震初步分析[J].资源环境与工程,2011,25(5):391-395.
    [73]陈厚群,徐泽平,李敏.关于高坝大库与水库地震的问题[J].水力发电学报.2009,28(5):1-7.
    [74]秦四清.水库诱发地震机制新理论的探索-断层带弱化与岩体软化效应诱震理论[J].工程地质学报.1995,(3):35-44.
    [75]王晓初,郑佳,王晓辉.水库诱发地震的诱发机制[J].黑龙江水利科技.2005,33(6):43-44.
    [76]颜定玉,李亚林,张专等.岩石水压致裂和诱发地震的定量研究[J].2005,21(12):193-206.
    [77]胡平,胡毓良,陈献程,杨清源.气爆型水库诱发地震的分析[J].地震地质.1989,(01):115-124.
    [78]滕广青,毛英爽.国外数据挖掘应用研究与发展分析[J].统计研究.2005,12:10-15.
    [79] U.M. Fayyad, P.S. Gregory, P. Smyth. Advances in Knowledge Discovery and DataMining[M]. MIT Press,1996.
    [80]韩家炜,坎伯.数据挖掘:概念与技术[M].机械工业出版社,2001:12-19.
    [81]朱玉全,杨鹤标,孙蕾.数据挖掘技术[M].东南大学出版社,2006:50-80.
    [82] S.C. Wesley, T. Lu. Mining association rules procedure to support on-linerecommendation by customers and products fragmentation[J]. Expert systems withapplications,2001,20(4):325-335.
    [83] R. Agrawal, T. Imielinski, R. Shrikant. Mining Association Rules between Sets ofItems in Large Databases[C]. In Proceedings of ACM SIGMOD Conference onManagement of Data,1993, pp.207–216.
    [84] R. Agrawal, and R. Srikant, Fast algorithms for mining association rules[C]. In Proc.of the20th VLDB Conference,1994, pp.487–499.
    [85] K. Branko, L. Nada, J. Viktor. Apriori-SD: adapting association rule learning tosubgroup discovery[J]. Advances in Intelligent DataAnalysis,2003,2810:230-241.
    [86] J. Viktor, L. Nada. Classification Rule Learning with APRIORI-C[J], Progress inArtificial Intelligence lecture notes in computer science,2001,2258:44-51.
    [87]彭仪普,熊拥军.关联规则挖掘AprioriTID算法优化研究[J].计算机工程,2006,32(5):55-59.
    [88]孙燕.基于关联规则分析的鄂西北山区坡面土壤侵蚀评价模型与预测方法研究[D].华中科技大学,2010.
    [89]杨保安,张科静.多目标决策分析理论、方法与应用研究[M].上海:东华大学出版社,2008.
    [90] L. A. Zadeh, Fuzzy sets[J]. Information and Control,1965,8(3):338-353.
    [91] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets andSystem,1978,1(1):3-28.
    [92] Thomas L. Satty, The Analytic Hierarchy Process [M], McGraw-Hill, New York,1980.
    [93]朱建军.层次分析法的若干问题研究及应用[D].东北大学图书馆,2005.
    [94]张吉军.模糊层次分析法[J].模糊系统与数学,2000,14(2):80-88.
    [95] I. Millet, W.C. Wedley, Modelling risk and uncertainty with the analytic hierarchyprocess[J]. Journal of Multi-criteria Decision Analysis,2002,11:97-107.
    [96] S.Tesfamariam, R.Sadip., Risk-based environmental decision-making using fuzzyanalytic hierarchy process[J]. Stochastic Environmental Research and RiskAssessment,2006,21:35-50.
    [97] D.Y. Chang. Application of the extent analysis method on fuzzy AHP[J]. EuropeanJournal of Operational Research,1996,95(3):649-655.
    [98]马文涛,徐长朋,李海鸥等.长江三峡水库诱发地震加密观测及地震成因初步分析[J].地震地质,2010,32(4):552-563.
    [99] W. Hua, S.H. Zheng, C.Q. Yan. Attenuation, site effects and source parameters in theThree Gorges Reservoir area, China[J]. Bulletin of the Seismological Society ofAmerica,2013,103(1):371-382.
    [100]孟庆筱,冯光钰,梅启双等.三峡库首区非构造性水库地震的烈度衰减[J].西北地震学报,2011,33:434-437.
    [101]华卫,陈章立,郑斯华等.三峡水库地区震源参数特征研究[J].地震地质,2010,32(4):533-542.
    [102]H.S. Wang. Surface vertical displacements and level plane changes in the frontreservoir area caused by filling the Three Gorges Reservoir[J]. Journal ofGeophysical research,2000,105(86):13211-13220.
    [103]马宗晋,张秋文,李安然,张国安.基于数字流域的水利水电工程诱发地震定量预测与评估[J].水电能源科学.2001.19(3):8-11.
    [104]Q.W. Zhang, M. Zhong, Using Multi-level Fuzzy Comprehensive Evaluation toAssess Reservoir Induced Seismic Risk[J]. Journal of Computer,2011,6(8):1670-1676.
    [105]L.A. Zedeh. Knowledge representation in fuzzy logic[J]. Knowledge and dataengineering,1989,1(1):89-100.
    [106]李德毅,刘常昱,杜鹢.不确定性人工智能[J].软件学报,2004,15(11):1583-1594.
    [107]李海林,郭崇慧.基于云模型的时间序列分段聚合近似算法[J].控制与决策,2011,26(11):1525-1529
    [108]刘常昱,李德毅.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239.
    [109]王洪利,冯玉强.基于云模型标度判断矩阵的改进层次分析法[J].中国管理科学,2005,13:32-37.
    [110]江迎.基于云模型和GIS/RS的坝堤溃决风险分析及灾害损失评估研究[D].华中科技大学博士论文,2012.
    [111]卫贵武.对方案有偏好的不确定语言多属性决策方法[J].模糊系统与数学,2008,4(22):106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700