多变量预测函数控制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模型预测控制(MPC)是一类计算机控制算法,它通过预测系统未来的行为,对目标函数进行滚动优化和模型误差补偿,得到系统当前及未来时刻的控制量。其结合了工业生产的实际要求,具有控制效果好,鲁棒性强等优点。而预测函数控制(PFC)是在模型预测控制原理的基础上提出的,并且将控制规律进行了结构化设计。该控制算法认为控制输入是事先选定的基函数的线性组合,因此具有控制规律明确,在线计算量小,动态跟踪效果好等优点。本文在前人研究工作的基础上,从实际出发,对预测函数控制的若干问题进行了较为深入的研究,其中包括:
     (1)综述了模型预测控制技术和预测函数控制技术的基本原理、发展现状,以及其商业化软件产品。
     (2)针对2输入/2输出一阶加纯滞后系统,提出了一种多变量预测函数控制算法。通过滚动优化目标函数,得到控制量的显式解析表达式。采用内模原理分析了该多变量预测函数控制系统的稳定性和鲁棒性。最后通过计算机仿真和物理实验,证明了该控制算法的有效性。
     (3)针对3输入/3输出一阶加纯滞后系统,提出了一种多变量预测函数控制算法,并将该算法推广到n输入/m输出系统。采用Smith预估思想,推导得到控制量的显式解析表达式。最后针对Shell公司的重油催化裂化分馏塔装置,进行计算机仿真,并与单变量预测函数控制效果进行比较。比较结果表明,该多变量预测函数控制算法具有较好的控制品质。
     (4)通过机理分析,建立了塑料熔化过程料筒温度对象的数学模型结构,采用带遗忘因子的递推最小二乘辨识技术在线辨识模型参数。利用该模型,设计了以预测函数控制算法为核心的先进控制系统。应用结果表明,该先进控制系统比模糊控制系统具有更好的控制效果。
     最后是全文的总结和展望。
Model predictive control (MPC) refers to a class of computer control algorithms. At eachcontrol interval an MPC algorithm predicts the future response of a process, and attemptsto optimize future process behavior by computing a sequence of future manipulatedvariables. Because this kind of control algorithm has taken into consideration of theindustrial requirements, the control system under MPC has good performance and strongrobustness. Predictive functional control (PFC) is a branch of the MPC family. The maindistinguishing feature of the PFC algorithm over other MPC algorithms is the constructionof the manipulated variables. Usually, the manipulated variables can be represented as asum of pre-determined basis functions, which achieves computational simplicity and goodperformance of tracking set-point without steady-state error. Some problems of predictivefunctional control are researched in this thesis, and the main research works are as follows:
     (1) An overview of MPC and PFC technology is given.
     (2) A multivariable predictive functional control algorithm based on a two-inputs/two-outputs system with the transfer function model is presented in this section. A simpleand explicit solution of manipulated variables of the control system can be obtained byoptimizing the objective function. The stability and robustness analysis of this kind ofmultivariable predictive functional control algorithm is given. Finally, simulations andexperiment of the system applying this control algorithm are provided, showing that thepresented algorithm is feasible.
     (3) A multivariable predictive functional control algorithm, on the basis of a three-inputs/three-outputs system with the transfer function model is presented, which has beenpromoted into the n-inputs/m-outputs system. The explicit solution of manipulatedvariables is obtained by using the idea of Smith predictor. In the end, some simulationexamples are presented by using Shell Oil's heavy-oil fractionator model. The result ofcomparing with single-variable predictive functional control is shown in the simulation,which displays that this multivariable predictive functional control algorithm has goodcontrol performance.
     (4) Based on the mechanism of plastic melting, the energy conservation mathematicalmodel is proposed. The parameters of this model are obtained by identification online,which ensures the robustness and disturbance rejection. An advanced control system has been established which based on the model and the predictive functional control algorithm.The good result of experiment is shown in the last part, approving the validity of thecontroller.
     The last part is summary and perspective.
引文
[1] 席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [2] 刘豹.现代控制理论[M].北京:机械工业出版社,1983.
    [3] Richalet J, Rault A, Testud J L, Papon J, Model Predictive Heuristic Control: Applications to Industrial Processes [J]. Automatica, 1978, 14(5): 413-428.
    [4] 王树青等.先进控制技术及应用[M].北京:化学工业出版社,2001.
    [5] Seki H, Ogawa M, Ooyama S, Akamatsu K, etc. Industrial application of a nonlinear model predictive control to polymerization reactors [J]. Control Engineering Practice, 2001, 9(8): 819-828.
    [6] Havlena V, Findejs J. Application of model predictive control to advanced combustion control [J]. Control Engineering Practice, 2005, 13(6): 671-680.
    [7] Kim Y H, Kwon W H. An application of min-max generalized predictive control to sintering processes [J]. Control Engineering Practice, 1998, 6(8): 999-1007.
    [8] Shang H, Forbes J F, Guay M. Computationally efficient model predictive control for convection dominated parabolic systems [J]. Journal of Process Control, 2007, 17(4): 379-386.
    [9] Kawohl M, Heine T, King R. A new approach for robust model predictive control of biological production processes [J]. Chemical Engineering Science, In Press, Corrected Proof, Available online 24 January 2007.
    [10] Na M G, Upadhyaya B R. Application of model predictive control strategy based on fuzzy identification to an SP-100 space reactor [J]. Annals of Nuclear Energy, 2006, 33(17-18):1467-1478.
    [11] Qin S J, Badgwell T A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11 (7): 733-764.
    [12] Shaikh N I, Prabhu V. Model predictive controller for cryogenic tunnel freezers [J]. Journal of Food Engineering, 2007, 80(2): 711-718.
    [13] Sandoz D J, Desforges M J, Lennox B, Goulding P R. Algorithms for industrial model predictive control [J]. Computing & Control Engineering Journal, 2000, 11(3): 125-134.
    [14] Sandoz D J, Lennox B, Goulding P R, etc.. Innovation in industrial model predictive control [J]. Computing & Control Engineering Journal, 1999, 10(5): 189-197.
    [15] Nagy Z K, Mahn B, Franke R, Allgower F. Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor [J]. Control Engineering Practice, 2007, 15(7): 839-850.
    [16] Bleris L G, Kothare M V. Real-time implementation of model predictive control [A]. American Control Conference [C], 2005, 6: 4166-4171.
    [17] 席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475.
    [18] Alpbaz M, Karacan S, Cabbar Y, Hapoglu H. Application of model predictive control and dynamic analysis to a pilot distillation column and experimental verification [J]. Chemical Engineering Journal, 2002, 88(1-3): 163-174.
    [19] Rouhani R, Mehra R K. Model algorithmic control (MAC); basic theoretical properties [J]. Automatica, 1982, 18(4): 401-414.
    [20] Culter C R, Ramaker B L. Dynamic matrix control-a computer control algorithm [A]. Proceedings of the American Control Conference [C], San Francisco, WP5-B, 1980.
    [21] Clarke D W, Mohtadi C, Tuffs, P S. Generalized predictive control-part 1. basic algorithm [J]. Automatica, 1987, 23(2): 137-148.
    [22] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-part 2. extensions and interpretations [J]. Automatica, 1987, 23(2): 149-160.
    [23] Garcia C E, Morari M. Internal model control, 1.—a unifying review and some new results [J]. IEC Process, 1982, 21(2): 308-323.
    [24] Kuntze H B, Jacubasch A, Richalet J, Arber C. On the predictive functional control of an elastic industrial robot [A]. Proc. 25th CDC [C], Athens, Greece, 1986:1877-1881
    [25] Dougherty D, Cooper D. A practical multiple model adaptive strategy for multivariable model predictive control [J]. Control Engineering Practice, 2003, 11 (6): 649-664.
    [26] Jing O, Rhinehart R R. Grouped neural network model-predictive control [J]. Control Engineering Practice, 2003,11 (7): 723-732.
    [27] Fukushima H, Kim T H, Sugie T. Adaptive model predictive control for a class of constrained linear systems based on the comparison model [J]. Automatica, 2007, 43(2): 301-308.
    [28] 祁昶,陈跃华,黄天戍.模糊自适应预测控制在电厂主汽温控制中的应用[J].电力自动化设备,2005,25(5):15-19.
    [29] Eliasi H, Davilu H, Menhaj M B. Adaptive fuzzy model based predictive control of nuclear steam generators [J]. Nuclear Engineering and Design, 2007, 237(6): 668-676.
    [30] Peng H, Yang Z J, Gui W, Wu M, etc.. Nonlinear system modeling and robust predictive control based on RBF-ARX model [J]. Engineering Applications of Artificial Intelligence, 2007, 20(1): 1-9.
    [31] Lu C H, Tsai C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes [J]. Journal of Process Control, 2007, 17(1): 83-92.
    [32] Pannocchia G, Rawlings J B, Wright S J. Fast, large-scale model predictive control by partial enumeration [J]. Automatica, 2007, 43(5): 852-860.
    [33] Seferlis P, Giannelos N F. A two-layered optimization-based control strategy for multi-echelon supply chain networks [J]. Computers and Chemical Engineering, 2004, 28(5): 799-809.
    [34] Wang W, Rivera D E, Kempf K G. Model predictive control strategies for supply chain management in semiconductor manufacturing [J]. International Journal of Production Economics, 2007, 107(1): 56-77.
    [35] Blasco X, Martinez M, Herrero J M, etc.. Model-based predictive control of greenhouse climate for reducing energy and water consumption [J]. Computers and Electronics in Agriculture, 2007, 55(1): 49-70.
    [36] Jin Xiaoming, Rong Gang, Wang Shuqing. Advanced process control and its application to industrial distillation chain [A]. Proceeding of the 5th World Congress on Intelligent Control and Automation [C], 2004, 4: 3400-3404.
    [37] 张达,施俊林,刘炳杰等.先进控制技术在重油催化裂化装置的应用[J].炼油技术与工程,2006,36(3):25-30.
    [38] 高昆,张树吉,金晓明.先进控制技术在纯碱装置轻灰煅烧过程中的应用[J].数字石油和化工,2007,281(4):57-59.
    [39] Richalet J, Doss S A A, Arber C, Kuntze H B, Jacubasch A, Schill W. Predictive Functional Control: Applications to Fast and Accurate Robots [A]. In: Isermann R. ed. Automatic Control Tenth Triennial World Congress of IFAC V.4 [C], Oxford: Pergamon Press, 1988: 251-258.
    [40] McDonnell M, Ata-Doss S A. Predictive Functional Control of Multivariable Systems with More Outputs than Inputs [A]. Proc. 28th CDC [C], Tampa, FL, USA, 1989: 1591-1596.
    [41] Ata-Doss S A, Fiani P, Richalet J. Handling Input and State Constraints in Predictive Functional Control [A]. Proc. 30th CDC [C], Brighton, UK, 1991: 985-990.
    [42] Lepetic M, Skrjanc I, Chiacchiarini H G, Matko D. Predictive functional control based on fuzzy model: magnetic suspension system case study [J]. Engineering Applications of Artificial Intelligence, 2003 (16): 425-430.
    [43] 张泉灵.预测函数控制及应用研究[D] 杭州:浙江大学,1999.
    [44] 张泉灵,王树青.基于Hamerstein模型的非线性预测函数控制[J].浙江大学学报(工学版),2002,36(2):119-122.
    [45] 潘红华.预测控制技术及其应用研究[D].杭州:浙江大学,2000.
    [46] Zhang B, Wang X Y, Tang Y C, Zhang W D. Predictive Functional Control and Stability Analysis of MIMO Bilinear Systems [A]. Proceedings of the 2006 American Control Conference [C], Minneapolis, Minnesota, USA, 2006: 4857-4858.
    [47] Zhang B, Wang X Y, Tang Y C, Zhang W D. Robust stability conditions of the predictive functional control algorithm for MIMO systems [A], Proceedings of the 2006 American Control Conference [C], Minneapolis, Minnesota, USA, 2006: 177-182.
    [48] 张智焕,谢磊,张泉灵,王树青.基于非线性(Wiener)模型自适应预测函数控制[J].计算技术与自动化,2003,22(2):15-17.
    [49] Fulget N. Predictive Control under Constraints of the Manipulator Robot SEPRO 450 [Plastics Industry], Revue Generale de l'Electricite, 1993:51-60.
    [50] Vivas A, Poignet P. Predictive functional control of a parallel robot [J]. Control Engineering Practice, 2005, 13(7): 863-874.
    [51] Compas J M, Decarreau P, Lanquetin G., Estival J L, Fulget N, Martin R, Richalet J. Industrial Applications of Predictive Functional Control to Rolling Mill, Fast Robot, River Dam[A]. Proc. 3rd IEEE Conference on Control Applications [C], Glasgow, UK, 1994:1643-1655.
    [52] Estival J L, Huguel A. Predictive Thickness Control for Aluminium Cold Rolling Mills [A]. Revue Generale de l'Electricite [C], 1993:32-39.
    [53] Cuadrado D S, Nicodeme P, Coic A. Application of Global Identification and Predictive Functional Control to a Tracking Turret [A]. ECC91 European Control Conference[C], Grenoble, France, 1991: 2-5.
    [54] Cuadrado D S, Guerchet P, Abu El Ata Doss S. Computer Aided Design of Weapon System Guidance and Control with Predictive Functional Control Technique [A]. Proc. Conference of Software for Guidance and Control (AGARD-CP-503) [C], Greece, 1991: 725-735.
    [55] Richalet J. Parametric Predictive Control of Enthalpic Processes. ADERSA, 1996.
    [56] Skrjanc I, Matko D. Predictive Functional Control Based on Fuzzy Model for Heat-Exchanger Pilot Plant [A]. Proc. 14th Triennial World Congress of IFAC Q-9c-02-6 [C], Beijing China, 1999: 341-345.
    [57] 陈琦,金晓明,王树青.芳烃生产过程精馏塔的先进控制[J].信息与控制,1999,28(增刊):333-337.
    [58] 张泉灵,王树青等.异植醇生产过程计算机监控系统[J].信息与控制,1999,28(增刊):496-500.
    [59] Zhang Q L. Advanced process control system for the rectification of vinyl chloride [A]. Proceedings of the 6th World Congress on Intelligent Control and Automation [C], 2006, 2: 6368-6372.
    [60] 金晓明,张泉灵,王树青.预测函数控制在精馏塔重沸炉中的应用[J].自动化仪表,2001,22(12):19-24.
    [61] 吴建国,张培建.基于双模型预测函数控制的PVC聚合釜温度系统[J].南京理工大学学报,2005,29(4):441-445.
    [62] 张建明,谢磊,苏成利,张日东等.焦化加热炉先进控制系统[J].华东理工大学学报(自然科学版),2006,32(7):814-817.
    [63] 刘峙飞,金晓明,王树青,荣冈.双值预测函数控制[J].控制与决策,1999,14:553-556.
    [64] 苏成利.非线性模型预测控制的若干问题研究[D].杭州:浙江大学,2006.
    [65] Smith O J M. Closer control of loops with dead time [J]. Chemical Engineering Progress, 1957, 53(5): 217-219.
    [66] Wood R K, Berry M W. Terminal composition control of a binary distillation column [J]. Chemical Engineering Science, 1973, 28:1707-1717.
    [67] Chia T L, Brosilow C B. Modular multivariable control of a fractionator [J]. Hydrocarbon Processing, 1991, 293(6): 61-66.
    [68] 王建平.智能温度控制系统的实现[J].工业控制计算机,1996,3:26-29.
    [69] 张奇苗,张培仁,王康正.注塑机温度控制系统设计[J].自动化与仪表,2005,2:29-31.
    [70] 金卫国.注塑机料筒温度的模糊控制[J].机械与电子,2006,3:40-41.
    [71] 金波,沈海阔,汤进举.注塑机料筒温度模糊变系数PID控制研究[J].中国机械工程,2005,16(5):395-398.
    [72] Huang S N, Tan K K, Lee T H. Adaptive GPC control of melt temperature in injection moulding [J]. ISA Transaction, 1999, 38: 361-373.
    [73] Tsai C C, Lu C H. Multivariable Self-Tuning Temperature Control for Plastic Injection Molding Process [J]. IEEE Transactions on Industry Application, 1998, 34(2): 310-318.
    [74] Lu C H, Tsai C C. Adaptive Decoupling Predictive Temperature Control for an Extrusion Barrel in a Plastic Injection Molding Process [J]. IEEE Transactions on industry electronics, 2001, 48(5): 968-975.
    [75] 王兴天,钟道仙,罗克航等.注塑成型技术[M].化学工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700