高速电梯水平振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市高层和超高层建筑的不断涌现,电梯的速度在不断地提高。电梯速度的提高,使得电梯的水平振动加剧,影响了乘坐舒适性以及电梯的使用寿命。高速电梯的水平振动控制成为一项重要课题。传统的减振措施包括提高导轨精度,改变电梯尺寸以及在轿架与导靴之间安装减振弹簧等,这些被动减振的方式不需外界能源,简单易行,经济性与可靠性好,在电梯速度较低时,有满意的效果。随着电梯速度的提高,被动减振的局限性显示出来,振动主动控制技术成为解决电梯振动的一条新途径。
     针对上述情况,本文进行了电梯水平振动主动控制的研究,首先建立了电梯水平振动的数学模型,然后完成了液压主动导靴及其控制策略的设计,对液压作动器的保压性能及控制策略进行了仿真验证和台架试验,最后对电梯轿厢位姿的鲁棒镇定控制进行了研究。
     进行电梯水平振动控制研究和实时仿真时需要建立电梯水平振动的动力学模型,所建模型的可靠与否将直接关系到系统响应分析与控制的有效性。基于刚体动力学理论,把电梯轿厢的运动分解为平动和绕质心的转动,根据牛顿运动定律和欧拉方程给出了电梯轿厢水平振动的动力学模型,把导轮简化为质量-弹簧-阻尼结构,在MATLAB/Simulink环境中建立了电梯水平振动的仿真模型,以实测导轨激励为输入对模型进行了仿真验证,仿真所得轿厢水平振动的加速度响应及其功率谱密度与实测结果吻合程度较高,表明所建模型是正确的,能够满足仿真精度要求及后继研究的需要。导致电梯水平振动的因素有多种,其中导轨的不平度是产生电梯水平振动的主要因素之一,对于运行速度低于5 m/s的电梯,水平振动主要来源于此。而导靴在电梯轿厢的运行过程中可以衰减由导轨不平度引起的水平振动,保证电梯的平顺行驶,提供良好的乘坐舒适性。因此,研究新型的电梯主动导靴,实现高速电梯的水平振动主动控制,具有重要的意义。按照这个思路,在被动导靴的基础上,设计了液压作动器,开发了一种新型的液压主动导靴,针对液压系统的非线性、时变等特性,分别进行了液压主动导靴的逻辑门限值控制研究和模糊控制研究,并且以导轨激励作为前馈输入变量,对模糊控制进行了预瞄补偿。利用MATLAB/Simulink的工具箱和函数库编制了仿真软件,对液压主动导靴的保压性能以及控制策略进行了仿真试验,仿真结果证明了液压主动导靴的有效性和模糊预瞄控制策略的优越性,同时说明只要保证液压作动器的保压性能,即可保证电梯水平振动在允许的范围之内,从而保证电梯的乘坐舒适性。
     在理论分析和仿真试验的基础上,设计了液压主动导靴的试验台架。从导轨激励模拟装置、液压系统以及单片机控制系统三个方面叙述了试验台架的结构和工作原理,利用该模拟试验台架进行了液压系统动态特性试验以及电梯水平振动主动控制模拟试验,试验中对比和优化了控制策略。试验结果证明了液压系统具有良好的响应快速性和稳定性,验证了液压装置及其控制策略的性能,试验结果与仿真结果基本一致。
     电梯轿厢的位姿系统具有非线性、变参数、受不确定性外扰的作用等特点。为了进一步提高电梯,尤其是超高速电梯的水平振动的控制效果,本文最后进行了电梯轿厢位姿的镇定控制律设计。结合电梯水平振动模型,首先利用微分几何的方法实现了电梯轿厢姿态系统的反馈线性化。为了消除参数不确定性及外扰作用的影响,应用Lyapunov方法分别针对轿厢的平动和转动设计了位置鲁棒控制器和姿态鲁棒控制器。其中,应用位移、速度和加速度反馈和Lyapunov方法设计了位置控制律;利用极点配置的方法和Lyapunov方法设计了姿态控制律。最后在MATLAB/Simulink环境下对鲁棒主动控制率进行了仿真验证。仿真结果证明了在系统参数发生变化及存在外部干扰的情况下,鲁棒镇定控制律能够实现电梯轿厢位姿的有效控制,使电梯的水平振动明显降低,从而为更好地实现高速电梯水平振动的减振提供了一条良好的途径。
     国内经济以及建筑业的迅速发展决定了国内市场对高速以及超高速电梯的大量需求;本文对高速电梯水平振动主动控制的研究,对我国电梯业的发展,尤其是高速以及超高速电梯的发展具有重要的意义。
With the development of high and super-high buildings, elevator speed is now improving faster and faster, which results in serious horizontal vibrations. These vibrations can reduce the passengers’ride comfort and even the elevator’s service life. Suppression method of horizontal vibrations is therefore required for high-speed elevators. The conventional horizontal vibration reduction techniques include improving the guide rails’quality and using passive guide roller system with stiff spring. These passive suppression methods need no power supply and have the advantages of simple structure、low price and high reliability and can work well when the elevator speed is low. But they cannot do with the increasing elevator speed. Active vibration reduction techniques can flexibly cope with the new situations and have good effects and have been used widely. Accordingly, studies on the active suppression method of horizontal vibrations for high-speed elevators have been advanced.
     We carry on the study of active control of horizontal vibrations for high-speed elevator in this dissertation. First the mathematical model of the horizontal vibrations for elevator is given, then a new type of active guide roller system based on hydraulic actuator is designed, and the control strategy is developed to control the hydraulic actuator. Computer simulations and experimental tests are performed to verify the effectiveness of the hydraulic device and its control strategy. Last, the robust stabilized control of the position and attitude of the elevator cage is researched.
     Considering the real-time simulation and the convenience of the control research about the horizontal vibrations, a dynamic model about the elevator horizontal vibrations should be presented. Precision of the model would have strong effect on the effectiveness of the response analysis and the efficiency of the controller to be developed. The space dynamic model of the elevator cage is developed based on the theory of rigid body dynamics. The motion of the elevator cage is resolved into translation and rotation round the mass center of the cage. Motion equations of the cage are given according to Newton’s second law of motion and Euler equations. The guide rollers are modeled as mass-spring-damper units. Simulation model of the horizontal vibrations of elevator is developed in MATLAB/Simulink environment and simulations are executed using the measured guide rail unevenness data. Simulation results of the horizontal acceleration and the power spectral density are identified with the testing results, which verify the correctness and the accuracy of the model. This model can be used for future simulation analysis and the control research.
     There are many reasons contributing to the horizontal vibrations of elevators. These horizontal vibrations are mainly generated by the irregularity of the guide rails, especially for the elevators traveling at the velocity below 5 m/s. As the three rollers of the guide system can weaken the horizontal vibrations from the irregularity of the guide rails and provide good ride comfort, developing a new type of active guide roller system with good ability of vibration isolation is very important. So a new type of active guide roller system based on hydraulic actuator is proposed in this dissertation. First the structure and the working principle of the hydraulic active guide roller system are analyzed. The mathematical model of the system is given. Then the logical thresh-hold controller and the fuzzy logic controller with preview compensation are designed, respectively. Simulation software is developed utilizing the toolbox and the function of MATLAB/Simulink. Computer simulations are performed to verify the effectiveness of the hydraulic device and the superiority of the fuzzy logic controller with preview compensation. Simulation results also give the conclusion that as long as the the oil pressure of the hydraulic cylinder be kept the objective value with permitted error range, the horizontal vibrations of the elevator would be kept within the permitted range and ensure the passengers’ride comfort.
     Then test rig is designed based on the working principle of the hydraulic active guide roller system and the simulation results. The test rig is made up of a guide rail simulator, a hydraulic station and a single-chip-microcomputer based control system. Hydraulic dynamic characteristic examination and the active control experiments are executed using the test rig. Optimization and comparison of different control methods are also given. Experimental results show that the hydraulic system can respond rapidly and stably, and can confine the oil pressure in the permitted range. Of all the control methods, the fuzzy logic controller with preview compensation has the best performance. The experimental results are consistent with simulation results.
     Taking account of the characteristics of nonlinearity、parameter uncertainties and external disturbances of the elevator cage, the position and attitude stabilization of the elevator cage is performed so that the horizontal vibrations of elevator can be attenuated more effectively in any case. Input/output feedback linearization approach is used to realize the linearization of the attitude model first, and robust controller is designed using Lyapunov method. To simplify the controller design, the position controller and the attitude controller are designed based on the translation model and the rotation model, respectively. Placement、velocity and acceleration feedback and the Lyapunov method are used to design the position controller, pole placement and Lyapunov method are used to design the attitude controller. Simulation is performed in MATLAB/Simulink environment. The results demonstrate the effectiveness of the proposed controller, the position and attitude of the elevator cage are stabled successfully and the horizontal vibrations of the elevator can be reduced effectively in the presence of the parameter uncertainties and the external disturbances. This work supplies an efficient way to future research for better effect of horizontal vibrations control.
     The rapidly developing economy and architecture industries decide the great requirements of high-speed and super high-speed elevators in domestic market. The study on active control of horizontal vibrations for high-speed elevator in this dissertation could provide a helpful reference for the development of high-speed and super high-speed elevator and is very important for local elevator industries.
引文
[1] Tadashi Munakata, Hideya Kohara. The world’s fastest elevator. Elevator World, 2003, 51(09): 97~101.
    [2] 罗柳青, 张伟, 伍庆武. 电梯结构及安全使用读本. 长沙: 中南大学出版社, 2004.
    [3] 周志翔. 超高速电梯发展中存在的问题与研究方向. 控制工程, 2003, 10(增刊): 1~4,32.
    [4] Yokota S., Sugiyama Y., Matsukura Y.. Vibration analyses for lifts. Elevator World, 1986, 34(3): 62~63, 65~67.
    [5] 杨小锋. 超高速电梯气动特性及其优化的数值模拟研究[硕士学位论文]. 北京: 北京航空航天大学, 2001.
    [6] Koji Okada, Nobuhiro Nishimura. Noise and vibration reduction techniques for 750m/min elevators. Mitsubishi Electric Advance, 1994, 3: 2~4.
    [7] ISO 2631—2 人体全身振动的评价 mechanical vibration and shock—evaluation of human exposure to whole-body vibration.
    [8] 朱昌明. 电梯振动的舒适性评价方法. 建筑机械化, 1988, (6): 29~32.
    [9] 刘佩武, 朱显昌, 李秧耕. 电梯的使用与维修. 北京: 机械工业出版社, 1994.
    [10] 朱昌明. 电梯与自动扶梯. 上海: 上海交通大学出版社, 1995.
    [11] Mikko Sissala, Tapio Heimola, Matti Otala. Optimization of lift car vibration behavior by modal analysis. Elevator World, 1985, 33( 6): 39~43.
    [12] 李立京. 电梯轿厢水平振动模型. 起重运输机械, 2002, (5): 3~5.
    [13] Mikko Sissala et al.. Performance Criteria: Measurement of noise and vibration. Elevator World Educational Package and Reference Library, 1990, 3(1): 24~26.
    [14] 傅武军, 朱昌明. 高速电梯水平振动建模及动态响应分析. 机械设计与研究, 2003, 19(6): 65~67.
    [15] 曾晓东. 电梯导靴引起的振动. 起重运输机械, 1997, (12): 7~12.
    [16] So A.T.P., Chow T.T., Shen G.X., Yang H.W.. An aerodynamic mathematical model for super-high-speed elevators. Elevator Technology, 1996, (7): 204~203.
    [17] Yang H.W., So A.T.P.. A 2-dimensional aerodynamic model for super-high-speed elevators. International Journal of Elevator Engineering, 1998, (2): 19~32.
    [18] 杨小锋. 超高速电梯气动特性及其优化的数值模拟研究[硕士学位论文]. 北京: 北京航空航天大学, 2001.
    [19] Zhu W.D., Teppo L.J.. Design and analysis of a scaled model of a high-rise, high-speed elevator. Journal of Sound and Vibration, 2003, (264): 707~731.
    [20] Masuda Takahiro, Imamura Toshiro, Iwata Shigem.. Study on dynamiccharacteristics of elevator traveling cables using simulation analysis. I Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1994, 60(579): 3808~3815.
    [21] Zhu W.D., Xu G.Y.. Vibration of elevator cables with small bending stiffness. Journal of Sound and Vibration, 2003, (263): 679~699.
    [22] Zhu W. D., Ni J.. Energetics and stability of translating media with an arbitrarily varying length. Journal of Vibration and Acoustics, 2000, (122): 295~304.
    [23] Zhang Yuhong. Modification of residual vibrations in elevators with time-varying cable lengths. In Proceedings of the American Control Conference, Anchorage, AK, United States 2002, 4962~4966.
    [24] Yamazaki Yoshiaki, Tomisawa Masao. Developing a device for measuring and regulating the rope tension of elevators. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1997, 63(612): 2687~2692.
    [25] Terumichi Yoshiaki, Yoshizawa Masatsugu, Fukawa Youji et al.. Lateral oscillation of a moving elevator rope and cab in high-rise building. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1993, 59(559): 686~693.
    [26] Terumichi Yoshiaki, Yoshizawa Masatsugu, Fukawa Youji et al.. Vibrations of moving elevator rope and cab in a high-rise building (Vertical vibration of a cab in consideration of longitudinal vibration of a hoist rope). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1994, 60(573): 1487~1494.
    [27] Chi R.M., Shu H.T.. Longitudinal vibration of a hoist rope coupled with the vertical vibration of an elevator car. Journal of Sound and Vibration, 1991, 148(1): 154~159.
    [28] Tejszerska D.. Computer analysis of vibrations of hoisting system. Computer Assisted Mechanics and Engineering Sciences, 1997, 4(2): 179~188.
    [29] 张长友, 朱昌明, 傅武军. 垂直提升系统中钢丝绳的非线性横向振动研究. 上海交通大学学报, 2004, 38(2): 286~290.
    [30] 李立京. 电梯综合测试系统与故障诊断技术的研究[博士学位论文]. 天津: 天津大学, 2002.
    [31] Harrison J.C.. An experimental methods for appraisal and comparision of vibration in high-rise elevator cars. Elevator World, 1998, 46(6): 81~85.
    [32] 木村武雄, 木村利雄. 电梯. 中国建筑工业出版社,1979.
    [33] 金卫清, 张惠侨. 电梯机械系统动态特性的建模分析. 机械设计与研究, 1999, (3): 53~55.
    [34] 于德介, 喻进辉. 高速电梯机械系统动力学模型的建立与修正. 振动与冲击, 1997, 16(1): 11~14, 23.
    [35] Chi R.M., Shu H.T.. Longitudinal vibration of a hoist rope coupled with the vertical vibration of an elevator car. Journal of Sound and Vibration, 1991, 148(1): 154~159.
    [36] 张聚, 杨庆华, 王颖玉, 等. 高速电梯机械振动的时域最优主动控制. 浙江工业大学学报, 2000, 28(1): 78~83.
    [37] 张聚, 杨庆华, 王颖玉, 等. 电梯机械振动的频域最优主动控制. 浙江工业大学学报, 2000, 28(3): 230~235.
    [38] 于德介, 喻进辉, 陈炳炎, 等. 高速电梯机械系统 KED 分析与动态性能优化. 应用力学学报, 1998, 15(2): 100~105.
    [39] Jun Koo Kang, Seung Ki Sul. Vertical-vibration control of elevator using estimated car acceleration feedback compensation. IEEE Transactions On Industrial Electronics, 2000, 47(1): 91~99.
    [40] Jun Koo Kang, Seung Ki SUI. Application of nonlinear observers for elevator vibration control. In Proceedings of the 1997 IEEE Industry Applications Conference 32nd IAS Annual Meeting, New Orleans, LA, USA, 1997, 2, 5~9.
    [41] 张志谊, 华宏星. 高速电梯振动控制的理论与试验研究. 振动与冲击, 2002, 21(2): 68~71, 100.
    [42] 廖小波, 傅武军, 朱昌明. 电梯水平振动主动控制实验系统及仿真. 机械设计与制造, 2005, (1): 63~65.
    [43] 傅武军, 廖小波, 朱昌明. 基于 ADAMS 的电梯横向振动频域分析及参数优化. 系统仿真学报, 2005, 17(6): 1500~1504.
    [44] 李醒飞, 张晨阳, 李立京. 电梯导轨对轿厢振动的影响. 中国机械工程, 2005, 16(2): 115~122.
    [45] 郭丽峰. 电梯导轨不平顺度测量、建模及轿厢水平振动特性的研究[博士学位论文]. 天津: 天津大学, 2005.
    [46] Mitsui N., Nara T.. Analysis of lateral quaking of high- speed elevators. Hitachi Rev, 1971, 20(8): 342, 8.
    [47] 桧垣润一, 山崎芳昭. 电梯减振装置. 中国: 01143615.8., 2005.
    [48] Otis elevator co.(US). Elevator horizontal suspensions and controls. European paten: CA2072240, 1993.
    [49] Hoon Wee, Yoon Young Kim, Haeil Jung et al.. Nonlinear rate-dependent stick-slip phenomena: modeling and parameter estimation. International Journal of Solids and Structures, 2001, 38(8): 1415~1431.
    [50] 朱昌明, 王印辉, 庄显会. 电梯的抗震计算分析. 工程抗震, 2000, (3): 33~38.
    [51] Inaba H., Shigeta M., Ando T., et al.. Attitude control system of a super-high speed elevator car based on magnetic guides. In Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation, Bologna, Italy, 1994, 2: 1028~1033.
    [52] Mutoh Nobuyoshi et al.. Horizontal vibration suppression method suitable forsuper-high-speed elevators. Electrical Engineering in Japan, 1999, 129(1): 59~73.
    [53] Rijanto E., Muramatsu T., Tagawa Y.. Control of elevator having parametric vibration using LPV control method: simulation study in the case of constant vertical velocity. In Proceedings of the 1999 IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), Kohala Coast, HI, USA, 1999, 1:527~532.
    [54] Kenji Utsunomiya, Ken-Ichi Okamoto. Active roller guide system for high-speed elevators. Elevator World, 2002, 50(4): 86~93.
    [55] Randall K. Roberts, Timothy M. Remmers, Clement A. Skalski. Elevator Active Guidance System having a Coordinated Controller. US5652414, 1997-07-29.
    [56] Yamazaki Yoshiaki, Tomisawa Masao, Okada Kouji.. Vibration control of super-high-speed elevators (3rd Report, A field test of car traveling). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61(581): 15~21.
    [57] Yamazaki Yoshiaki., Tomisawa Masao., Okada Kouji.. Vibration control of super-high-speed elevators (car vibration control method based on computer simulation and experiment using a full-size car model). JSME International Journal, Series C, 1997, 40(1): 74~81.
    [58] Kiyoshi Funai. The development of active vibration damper for super high-speed elevators. Lift report., 2004, (5): 22~37.
    [59] Rajamani, et al. Elevator active guidance system having a model-based multi-input multi-output controller. USA: 5866861, 1999-02-02.
    [60] Traktovenko et al. Elevator cab guidance assembly. USA: 5117946, 1992-06-02.
    [61] A. Hamdy, et al. Apparatus and method for the damping of oscillations in an elevator car. USA: 5896949, 1999-04-27.
    [62] 廖小波. 高速电梯水平振动实验系统设计及主动控制仿真研究[硕士学位论文]. 上海: 上海交通大学, 2005.
    [63] 顾仲权, 马扣根. 振动主动控制. 北京: 国防工业出版社, 1997.
    [64] 唐永杰, 胡选利, 张升陛. 振动主动控制中检测器和作动器的最优配置. 西安交通大学学报, 1995, 29(7): 21~28.
    [65] 李海斌, 毕世华, 方远, 等. 振动主动控制技术现状及发展. 振动与冲击, 1998, 17(3): 38~43.
    [66] 胡海岩. 振动半主动控制技术的进展. 振动、测试与诊断, 2001, 21(4): 235~244.
    [67] Wang X.G., Sun J.C.. Active sensing and control of vibration of circular saws-a comparison of optimal and variable structure control. In 2001 American Control Conference, Arlington, VA, 2001, 6:4294 ~4299.
    [68] 朱晓锦, 陶宝祺. 基于自寻最优控制方法实现结构振动主动控制. 振动、测试与诊断, 1999, 19(1): 15~19.
    [69] 刘豹. 现代控制理论. 北京: 机械工业出版社, 1996.
    [70] 孙朝晖. 自适应机构振动主动控制技术及试验. 振动与冲击, 18(1): 18~26.
    [71] 彭福军, 马扣根, 顾仲权. 自适应前馈振动主动控制的参数选择与稳定性. 振动工程学报, 1997, l(2): 176~182.
    [72] 马宝山. 自适应 LMS 算法在汽车悬架振动主动控制中的仿真研究. 噪声与振动控制, 2003, 23(3): 3~6.
    [73] Hino M., Iwai Z., Mizumoto I., et al.. Active vibration control of a multi-degree-of-freedom structure by the use of decentralized simple adaptive control. In Proceedings of the 1995 IEEE Conference on Control Applications, Albany, NY, USA, 1995: 1067~1072.
    [74] Agarwala R., Ozcelik S., Faruqi M.. Active vibration control of a multi-degree-of-freedom structure by the use of direct model reference adaptive control. In 2000 American Control Conference, Chicago, IL, USA, 2000, 5:3580~3584.
    [75] 谢新民. 自适应控制系统. 北京: 清华大学出版社, 2002.
    [76] 李奕阳. 振动系统的一种鲁棒主动控制设计. 控制理论与应用, 1999, 16(2): 173~178.
    [77] Sadri A. M., Wynne R. J., Wright J. R.. Robust strategies for active vibration control of strain actuated plate like structures. In Proceedings of the 1998 International Conference on Control Control, Swansea, UK, 1998, 1(455): 213~218.
    [78] 诸静. 智能预测控制及应用. 杭州: 浙江大学出版社, 2002.
    [79] 王树青. 先进控制技术及应用. 北京: 化学工业出版社, 2001.
    [80] 席裕庚. 预测控制. 北京: 国防工业出版社, 1993.
    [81] Li Pengfei, Liu Hongzhao. Active predictive control applied to suppress dynamic vibration responses of elastic linkage mechanisms with piezoelectric actuators and sensors. In Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis, Manchester, UK, 2004, 1: 553~557.
    [82] Zhang Chunliang, Mei Deqing, Chen Zichen. Fuzzy generalized predictive control of microvibration for a micro-manufacturing platform. In Proceedings of the American Control Conference, Denver, CO, United States, 2003, 5: 3690~3695.
    [83] 李治国. 基于预测控制和频率成型性能指标的主动悬架控制策略研究. 汽车工程, 2002, 24(05): 426~429, 450.
    [84] 王勇. 灰色预测反馈控制在汽轮机调节系统中的仿真研究. 汽轮机技术, 2004, 46(2): 104~106.
    [85] 吴成富, 冯乐, 隋丹, 等. 模型预测算法在飞机自动着陆控制系统中的应用. 西北工业大学学报, 2004, 22(2): 140~143.
    [86] 许超, 陈治纲, 邵惠鹤. 预测控制技术及应用发展综述. 化工自动化及仪表, 2002, 29(3): 1~10.
    [87] 孙承顺, 包继华, 张建武, 等. 用神经网络对柴油机振动主动控制的试验研究. 上海交通大学学报, 2003, 37(5): 781~784.
    [88] 袁树清, 赵玉成, 张陵, 等. 一种基于神经网络的振动主动控制方法. 机械科学与技术, 1998, 17(4): 585~588.
    [89] 周亚军, 赵德有, 马骏. 基于人工神经网络的海洋平台振动主动控制. 船舶力学, 2003, 7(5): 65~69.
    [90] DiDomenico E.. Neural network output feedback training for optimal vibration suppression. Neural Networks. In Proceedings of the 1994 IEEE International Conference on Neural Networks, Orlando, FL, USA, 1994, 4: 2556~2561.
    [91] Aldawod M., Naghdy F., Samali B., et al.. Active control of wind excited structures using fuzzy logic. In Proceedings of the 1999 IEEE International Fuzzy Systems Conference, FUZZ-IEEE'99, Seoul, South Korea, 1999, 1:72~77.
    [92] 王加春, 董申. 基于主动空气轴承作动器的模糊主动振动控制研究. 高技术通讯, 2001, 11(3): 73~74, 72.
    [93] 屈文忠, 常新龙. 自适应模糊控制方法在主动悬挂系统中的应用研究. 机械科学与技术, 2001, 20(3): 390~391, 394.
    [94] 王存堂. 基于前馈模糊自学习控制的强迫周期振动主动控制. 中国机械工程, 1998, 9(8): 43~47.
    [95] 郑水英. 自学习技术在转子振动主动控制中的应用. 中国机械工程, 1995, 6(5): 42~44.
    [96] 孙清, 张陵, 史庆轩, 等. 结构振动的滑模变结构半主动控制. 计算力学学报, 2003, 20(5): 546~552.
    [97] Hossain M. A., Tokhi M. O., Chipperfield A. J., et al.. Adaptive active vibration control using genetic algorithms. In Proceedings of the 1st IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications GALESIA '95, Sheffield, Eng., 1995, (414): 175~180.
    [98] 邱仁辉. 浅论新型控制策略及其在机械工程中的应用. 森林工程, 2002, 18(4): 22~24.
    [99] 洪嘉振. 计算多体系统动力学. 北京: 高等教育出版社, 1998.
    [100] 史信芳, 陈影, 毛宗源. 电梯技术—原理·维修·管理. 北京: 电子工业出版社, 1994.
    [101] 吉向东. 汽车动力总成液压悬置系统的隔振性能研究[硕士学位论文]. 镇江: 江苏大学, 2005.
    [102] 黄中华. 高速开关阀控汽车液压主动悬架系统模糊控制研究[硕士学位论文]. 长沙: 中南大学, 2002.
    [103] 胡俊, 顾仲权, 马扣根. 直升机结构响应主动控制试验研究. 振动工程学报, 2002, 15(2): 125~129.
    [104] 陈勇, 韩忠浩. 汽车液力减振器阻力特性的研究评述. 辽宁工学院学报, 2001,21(1): 8~11.
    [105] 张利平. 液压传动系统及设计. 北京: 化学工业出版社, 2005.
    [106] 杨红明.汽车防抱死制动系统(ABS)控制算法的分析与设计[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2004.
    [107] 程军. 汽车防抱死制动系统的理论与实践. 北京: 北京理工大学出版社, 1999.
    [108] 刘地. 逻辑门限值控制在汽车防抱制动系统中的应用. 汽车研究与开发, 2002, (4): 44~46.
    [109] 李君. 车辆 ABS 控制系统快速开发研究[博士学位论文]. 上海: 上海交通大学, 2002.
    [110] 李人厚. 智能控制理论和方法. 西安: 西安电子科技大学出版社, 1999.
    [111] 章卫国, 杨向忠. 模糊控制理论与应用. 西安: 西北工业大学出版社, 2000.
    [112] 土古武士, 江上正. 最新自动控制技术—数字预见控制. 北京: 北京科学技术出版社, 1994.
    [113] 张晓梅, 王占林. 机器人预见控制方法的研究. 北京航空航天大学学报, 1996, 22(1): 21~26.
    [114] 吴海, 于锡纯, 徐心和. 基于轮廓最优预见的机床进给伺服控制研究.中国机械工程. 1998, 9(9): 22~24.
    [115] 沈炯, 金林, 陈来九.火电单元机组负荷最优预见控制系统仿真研究. 中国电机工程学报, 1999, 19(3): 14~17, 54.
    [116] 高振海, 管欣, 李谦, 等. 基于预瞄跟随理论的驾驶员跟随汽车目标速度的控制模型. 吉林大学学报, 2002, 32(1): 1~5.
    [117] 龙永新, 叶秀清, 顾伟康. ALV 路径跟踪预瞄控制. 工程设计, 1998, (4): 47~50.
    [118] 喻凡, 郭孔辉. 结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究. 汽车工程, 1999, 21(2): 72~80.
    [119] 朱浩, 刘少军, 黄中华, 等. 列车车辆垂向主动悬挂的最优预见控制研究. 机械科学与技术, 2005, 24(5): 510~514.
    [120] Javad Marzbanrad, Goodarz Ahmadi, Yousef Hojjat,et al.. Optimal active control of vehicle suspension system including time delay and preview for rough roads. Journal of Vibration and Control, 2002, 8(7): 967~991.
    [121] Hironao Yamada, Takayoshi Muto, Yoshikazu Suematsu. Preview control of hydraulic active suspension with high-speed on/off valve. Transactions of the Japan Society of Mechanical Engineers, 2002, 68(11): 3217~3223.
    [122] Dave Crolla, 喻凡. 车辆动力学及其控制. 北京: 人民交通出版社, 2004.
    [123] KENJI U, KENICHI O, TAKASHI Y. Elevator vibration reducing device: USA, 20040020725A1. 2004-02-05.
    [124] Li Q., Yoshimura T., Hino J.. Active suspension with preview of large-sized buses using fuzzy reasoning. International Journal of Vehicle Design, 1998, 19(2): 187~19821(1): 8~11.
    [105] 张利平. 液压传动系统及设计. 北京: 化学工业出版社, 2005.
    [106] 杨红明.汽车防抱死制动系统(ABS)控制算法的分析与设计[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2004.
    [107] 程军. 汽车防抱死制动系统的理论与实践. 北京: 北京理工大学出版社, 1999.
    [108] 刘地. 逻辑门限值控制在汽车防抱制动系统中的应用. 汽车研究与开发, 2002, (4): 44~46.
    [109] 李君. 车辆 ABS 控制系统快速开发研究[博士学位论文]. 上海: 上海交通大学, 2002.
    [110] 李人厚. 智能控制理论和方法. 西安: 西安电子科技大学出版社, 1999.
    [111] 章卫国, 杨向忠. 模糊控制理论与应用. 西安: 西北工业大学出版社, 2000.
    [112] 土古武士, 江上正. 最新自动控制技术—数字预见控制. 北京: 北京科学技术出版社, 1994.
    [113] 张晓梅, 王占林. 机器人预见控制方法的研究. 北京航空航天大学学报, 1996, 22(1): 21~26.
    [114] 吴海, 于锡纯, 徐心和. 基于轮廓最优预见的机床进给伺服控制研究.中国机械工程. 1998, 9(9): 22~24.
    [115] 沈炯, 金林, 陈来九.火电单元机组负荷最优预见控制系统仿真研究. 中国电机工程学报, 1999, 19(3): 14~17, 54.
    [116] 高振海, 管欣, 李谦, 等. 基于预瞄跟随理论的驾驶员跟随汽车目标速度的控制模型. 吉林大学学报, 2002, 32(1): 1~5.
    [117] 龙永新, 叶秀清, 顾伟康. ALV 路径跟踪预瞄控制. 工程设计, 1998, (4): 47~50.
    [118] 喻凡, 郭孔辉. 结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究. 汽车工程, 1999, 21(2): 72~80.
    [119] 朱浩, 刘少军, 黄中华, 等. 列车车辆垂向主动悬挂的最优预见控制研究. 机械科学与技术, 2005, 24(5): 510~514.
    [120] Javad Marzbanrad, Goodarz Ahmadi, Yousef Hojjat,et al.. Optimal active control of vehicle suspension system including time delay and preview for rough roads. Journal of Vibration and Control, 2002, 8(7): 967~991.
    [121] Hironao Yamada, Takayoshi Muto, Yoshikazu Suematsu. Preview control of hydraulic active suspension with high-speed on/off valve. Transactions of the Japan Society of Mechanical Engineers, 2002, 68(11): 3217~3223.
    [122] Dave Crolla, 喻凡. 车辆动力学及其控制. 北京: 人民交通出版社, 2004.
    [123] KENJI U, KENICHI O, TAKASHI Y. Elevator vibration reducing device: USA, 20040020725A1. 2004-02-05.
    [124] Li Q., Yoshimura T., Hino J.. Active suspension with preview of large-sized buses using fuzzy reasoning. International Journal of Vehicle Design, 1998, 19(2): 187~198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700