大豆疫霉MAP kinase PsSAK1信号途径及MYB转录因子基因家族的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆疫霉(Phytophthora sojae)是一种重要的植物病原菌,所引起的大豆根腐病,每年给世界各大豆主产区造成高达数百亿美元的经济损失。所以有效地控制大豆疫霉病的发生和扩展成为研究者的主要任务。然而,由于疫霉菌隶属于茸鞭生物界卵菌门,在进化上与真菌相差很远,进化上的差异也使疫霉菌拥有一套与其他真菌不同的致病机制,多数杀菌剂对植物疫病无效。疫霉菌遗传转化困难,对疫霉菌与植物互作机理的研究进展缓慢。近年,随着大豆疫霉全基因组测序的完成和遗传转化系统的逐步建立,大豆疫霉菌已经成为研究卵菌分子遗传的模式种,同时也为从基因水平上理解疫霉菌致病分子机制提供了一个新的平台。本研究充分发挥生物信息学技术优势,通过对致病相关MAP kinase PsSAKl沉默突变体DGE表达谱进行分析,迅速筛选到一批受PsSAK1调控的候选基因,结合大豆疫霉的稳定转化和生物学研究手段,确定了PsMYB1转录因子的功能以及和PsSAK1的关系,为进一步认识大豆疫病的分子致病机理和开发该病害的防治措施提供了理论和实践意义。
     研究大豆疫霉的生长发育及致病过程中的相关基因对解释病害发生流行和病害控制有重要理论与实践价值。在前期工作中,我们借助PEG介导的原生质体转化方法,确定了2个MAPKs在大豆疫霉生长发育及致病过程中的重要作用。我们试图进一步探求其作用机制,而研究MAPK途径的关键是找到它的下游调控基因。因此,我们利用DGE表达谱分析技术对大豆疫霉PsSAK1、PsMPKl沉默突变体不同阶段进行转录组分析,结果发现,应答外界刺激的MAPK PsSAKl的沉默,导致转录因子、蛋白激酶、结构蛋白以及致病相关因子编码基因表达水平发生显著变化。其中转录因子的转录水平变化明显。另外,负责调控细胞壁完整性途径的PsMPK1的功能缺失,导致细胞壁相关蛋白编码基因、PsNLP1的基因表达水平显著变化。结合我们的表型结果显示突变体的游动孢子在与寄主植物互作过程中,诱导寄主细胞死亡,阻止病原菌的扩展,我们推测,PsMPK1的功能缺失,造成细胞壁受损,导致在与寄主互作过程中重要致病因子外漏,诱导寄主坏死反应,是沉默突变体致病力丧失的重要成因。
     在PsSAKl沉默突变体DGE表达谱显著下调的转录因子编码基因中,我们鉴定了一个R2R3型MYB转录因子编码基因-PsMYB1,该基因全长1542bp,含有3个内含子,其编码的蛋白含513个氨基酸。qRT-PCR的结果显示PsMYB1的转录水平在孢子囊形成阶段,休止孢萌发,以及侵染早期上调表达,而在游动孢子阶段几乎消失。PsMYB1的沉默突变体菌丝生长速率以及有性生殖无差别;然而,在孢子囊的发育,游动孢子的正常形成以及成功释放,侵染寄主大豆等方面表现出严重的功能缺失。该基因的沉默导致>50%的孢子囊不能正常释放游动孢子,转而直接萌发,这直接造成游动孢子的产量极显著的下降。而且,游动孢子表现出休止提前,萌发率降低,接种大豆黄化苗下胚轴后致病力下降。究其原因,我们发现,PsMYB1的功能缺失导致部分孢子囊内原生质体不能正常割裂,细胞核排布异常。结合PsSAK1的沉默突变体在以上各个阶段的表现型,阐明了受PsSAK1调控的PsMYB1负责调控大豆疫霉包括孢子囊细胞质的割裂,细胞核的排布,以及游动孢子释放及萌发等一系列致病相关生物学过程。
     对已克隆的PsMYB1的同源物的研究发现大豆疫霉可能具有庞大的MYB基因家族。通过对大豆疫霉基因组数据库、真菌转录因子数据库(FTFD),蛋白功能域结构分析软件(SMART)的生物信息学注释,结合手动修正基因模型,我们预测到大豆疫霉中含有68个MYB转录因子。其中包含47个R1型(PsMYB-like1-1~PsMYB-like1-47),9个R2R3型(PsMYB-like2-1-PsMYB-like2-9),10个R1R2R3型(PsMYB-like3~1~PsMYB-like3-10),还有2个蛋白分别含有4或5个Myb功能域(PsMYB-like4-1, PsMYB-like5-1).利用DGE表达谱分析技术对这68个MYB基因在大豆疫霉菌5个不同无性发育阶段及5个侵染阶段的高通量表达分析,发现所有基因的表达量至少在一个阶段能被检测到。同时,我们对相同转录模式的基因进行归类,共分为7类。并结合68个Myb家族候选成员在两个MAPKs的沉默突变体,三个DGE表达谱中的各自差异表达水平,分析其在大豆疫霉致病相关生物学过程中扮演的角色。
     鉴于PsMYB1在大豆疫霉菌生长发育以及致病相关生物学过程中的重要作用,我们假设MYB基因家族中的其他同族基因在致病过程中同样扮演重要角色。为了验证这一假说,我们结合大豆疫霉5个无性发育阶段和5个侵染阶段的转录量分析,沉默突变体的DGE表达谱分析,以及双链RNA(dsRNA)介导的基因沉默对MYB家族候选基因进行高通量筛选。我们鉴定了在侵染阶段上调表达的4个基因分别是:PsMYB-like2-2(Ps127211),PsMYB-like1-7(Ps131312),PsMYB-like1-39(Ps141522), PsMYB-like3-6(Ps133941).而在三个突变体不同阶段的DGE转录谱中,4个基因均表现出在某一阶段由于MAPK的沉默导致发生显著的基因水平的变化。其中,我们发现了一个R1型Myb转录因子PsMYB-like1-39(Ps141522),与游动孢子的释放过程密切相关,但不影响大豆疫霉的致病力。
     本文从致病相关MAPK PsSAK1的功能缺失突变体转录组数据入手,寻找由于该基因的沉默而导致转录量下降的候选基因,从中成功鉴定了PsMYB1转录因子在大豆疫霉致病相关发育阶段的作用。根据这一重要线索,结合生物信息学分析和快速高效的双链RNA (dsRNA)介导的基因沉默技术,完成了4个不同类型Myb转录因子的功能验证。
Phytophthora sojae is a soil-borne plant pathogen that causes stem and rot rot of soybean, which are different to control. Each year in the most soybean-growing regions of the world, millions of dollars are lost. Therefore, slowing the assault of P. sojae pathogens has been being the primary task of researchers. However, Phytophthora is a genus of Chromalveolata of Eukaryota. The genetic distance between omycetes and fungal is so large that most fungicides show no control effect to plant diseases caused by Phytophthora spp. Therefore, Phytophthora spp. form the pathogenic mechanism which is different with these phytopathogenic fungi. Recently, after the draft genome sequences of P. sojae were reported, P. sojae has been developed as a model species for the Phytophthora spp..In this thesis, bioinformatics approaches as well as gene silencing for functional study provided an effect method to identify the downstream regulated gene of PsSAK1. Based on the analysis of PsSAK1-silenced line DGE (3'-tag digital gene expression) profiling, we identified a number of candidates that may be regulated by PsSAK1. And with the P. sojae gene silencing technique, we confirmed the biological function of PsMYB1, which is regulated by PsSAKl. The significance of this paper is that we found PsMYB1transcription factor functions downstream of MAP kinase PsSAKl and is required for zoospore development and P. sojae virulence. According to our current knowledge, this would be the first report on the downstream mechanism of MAPKs in plant pathogenic Oomycete.
     Identifing the genes related in growth, development and pathogenicity of Phytophthora sojae is the effective method to explain the mechanism of infection processes and control the plant disease. In previous study, we identified two MAPKs that were important in growth, development and infection processes by researching the phenotype of the silencing lines of MAPK. A challenging step in further understanding the MAPK pathway is the identification of downstream genes that are regulated by MAPK and related to pathogenicity. Thus, in this study, the3'-tag digital gene expression (DGE) profiling method were applied to sequence the global transcriptional sequence of PsMAPK-silenced mutants during different stages. The results showed that, The differentially expressed genes encode potential transcription factors, especially Myb, bZIP, zinc finger; potential cellular regulators, such as protein kinases; regulators of RNA synthesis; structural proteins, including putative glycoside hydrolases and proteins involved in cell wall biogenesis; and pathogenic factors, including proteins responsing to stress,and elicitin. Loss of PsSAK1lead to higher rate of TFs was detected. Meanwile, the malfunction of cell-wall integrity MAPK PsMPK1, resulted in the expression level of some elicition proteins and Avh proteins down-regulated. Based on the result of PsMPK1-silenced line could not suppress the HR of host, We therefore hypothesized that loss of PsMPKl, P. sojae could not response to various signals of infection processes, nor regulate elicition proteins or Avh proteins coding genes expression, and at least part of this response is functionally important for virulence of P. sojae.
     PsSAK1, a mitogen-activated protein (MAP) kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1remains unclear. In this study, the3'-tag digital gene expression (DGE) profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and1.5h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down) in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1decreased due to PsSAKl silencing. The transcriptional level of PsMYB1increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1results in three phenotypes:a) no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b) direct germination of sporangia, and c) afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1transcription factor functions downstream of MAP kinase PsSAK1and is required for zoospore development of P. sojae.
     Researching for the orthologs of PsMYB1have provided evidence for P. sojae may have a Myb superfamily. Using bioinformatics, annotation of the P. sojae genome database, Fungal Transcription Factor Database (FTFD), SMART (http://smart.embl-heidelberg.de), and manual evaluation of gene models,68Myb TFs with variable numbers of Myb DNA-binding domains were predicted. Most (47) of the proteins have a single Myb domain(PsMYB-like1-1~PsMYB-like1-47), whereas the remaining9(PsMYB-like2-1~PsMYB-like2-9),10(PsMYB-like3-1~PsMYB-like3-10),1(PsMYB-like4-1), and1(PsMYB-like5-1) proteins have two, three, four, and five Myb domains, respectively. The transcriptome of Myb family in P. sojae was profiled at10different developmental and infection stages based on a DGE protocol. Nearly all of the genes were detected in at least one stage. The Myb family was further clustered by distance threshold of0.85into seven groups based on their transcript patterns. Comparing the differential expression level of each in the three libraries of two MAPKs-silenced lines, we hypothesized that the Myb family may play key roles in the infection processes.
     PsMYB1plays an important role in the processes of growth, development and pathogenicity of P. sojae. Therefore, we hypothesized that the other candidates may be play key roles in the infection processes. To test this hypothesis, the transcript patterns in5asexual stages and5infection stages of genes, the expression level of genes in DGE profil of silenced-lines were analysed and double-stranded RNA mediated gene silencing were used in this chapter to identify the biological function of4candidates of Myb family. They were PsMYB-like2-2(Ps127211), PsMYB-like1-7(Ps131312), PsMYB-like1-39(Ps141522), and PsMYB-like3-6(Ps133941), which were all up-regulated in the infection stages. And the expression level of all showed markedly change at least in one library of three silenced-lines DGE profils. Among the4genes, we found one R1Myb transcription factor PsMYB-like1-39(Ps141522), is related to the release of zoospore from the vacuole at the beginning of sporangium releasing, and loss of this gene could not affect the pathogenicity of P. sojae.
引文
1. Ah Fong AM, Judelson HS (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50:487-494
    2. Barr DJ (1981) The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems 14:359-370
    3. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RH, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JD, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549-1551
    4. Bircher U, Hohl HR (1997) Environmental signalling during induction of appressorium formation in Phytophthora. Mycological Research 101:395-402
    5. Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56:638-648
    6. Blume B, Nurnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425-1440
    7. Cahill DM, Cope M, Hardham AR (1996) Thrust reversal by tubular mastigonemes:Immunological evidence for a role of mastigonemes in forward motion of zoospores of Phytophthora cinnamomi. Protoplasma 194:18-28
    8. Cvitanich C, Judelson HS (2003) A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2: 465-473
    9. Deacon J The Microbial World:Fungal zoospores. http://wwwbiologyedacuk/archive/jdeacon /microbes/zoosporehtm
    10. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan HQ, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li WX, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986
    11. Emmett RW PD (1975) Appressoria Annual Review of Phytopathology 13:147-163.
    12. Enkerli K, Hahn MG, Mims CW (1997) Ultrastructure of compatible and incompatible interactions of soybean roots infected with the plant pathogenic oomycete Phytophthora sojae. Can J Bot 75: 1493-1508
    13. Erwin DC (2005) Phytophthora Diseases Worldwide.562 p.
    14. Erwin DC, S.Bartnicki-Garcia, Tsao PH (1985) Phytophora. The AmericanPhytopathological Society:392 p.
    15. Fabritius AL, Cvitanich C, Judelson HS (2002) Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45:1057-1066
    16. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J32:375-390
    17. Govers F, Gijzen M (2006) Phytophthora genomics:the plant destroyers'genome decoded. Mol Plant Microbe Interact 19:1295-1301
    18. Gow NAR (2004) New angles in mycology:studies in directional growth and directional motility. Mycological Research 108:5-13
    19. Griffith JM, Davis,A.J., and Grant, B.R. (1992) Target sites of fungicides to control oomycetes.: 328 p.
    20. Hardham AR (2007) Cell biology of plant-oomycete interactions. Cell Microbiol 9:31-39
    21. Hardham AR GF (1990) Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell
    22. Biology International Reports 14,:947-956.
    23. Hardham AR, Mitchell HJ (1998) Use of molecular cytology to study the structure and biology of phytopathogenic and mycorrhizal fungi. Fungal Genet Biol 24:252-284
    24. Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signaling for Growth Orientation and Cell-Differentiation by Surface-Topography in Uromyces. Science 235:1659-1662
    25. Hua C, Zheng X, Wang Y (2009) G protein alpha subunit may help zoospore to find the infection site and influence the expression of RGS protein. Commun Integr Biol 2:91-93
    26. J.A.Lucas RCS, D.S.Shaw, Louise R.Cooke (1991) Phytophthora.447 p.
    27. Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F (2006) Ancient origin of elicitin gene clusters in Phytophthora genomes. Molecular Biology and Evolution 23:338-351
    28. Judelson HS, Ah-Fong AM, Aux G, Avrova AO, Bruce C, Cakir C, da Cunha L, Grenville-Briggs L, Latijnhouwers M, Ligterink W, Meijer HJ, Roberts S, Thurber CS, Whisson SC, Birch PR, Govers F, Kamoun S, van West P, Windass J (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433-447
    29. Judelson HS, Narayan RD, Ah-Fong AM, Kim KS (2009) Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages. Mol Genet Genomics 281:193-206
    30. Kiefer B, Riemann M, Buche C, Kassemeyer HH, Nick P (2002) The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta 215:387-393
    31. Kim KS, Judelson HS (2003) Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2:1376-1385
    32. Kong P, Tyler BM, Richardson PA, Lee BW, Zhou ZS, Hong C (2010) Zoospore interspecific signaling promotes plant infection by Phytophthora. BMC Microbiol 10:313
    33. Kovats K, Binder A, Hohl HR (1991) Cytology of Induced Systemic Resistance of Tomato to Phytophthora-Infestans. Planta 183:491-496
    34. Latijnhouwers M, Govers F (2003) A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977
    35. Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RH, Johnson J, Krajaejun T, Lin H, Meijer HJ, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73
    36. Links MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE, Uzuhashi S, Borhan MH (2011) De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. Bmc Genomics 12
    37. Meijer HJ, van de Vondervoort PJ, Yin QY, de Koster CG, Klis FM, Govers F, de Groot PW (2006) Identification of cell wall-associated proteins from Phytophthora ramorum. Mol Plant Microbe Interact 19:1348-1358
    38. Mitchell RT, Deacon JW (1986) Chemotropism of Germ-Tubes from Zoospore Cysts of Pythium Spp. Transactions of the British Mycological Society 86:233-237
    39. Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiology 117:1171-1178
    40. Paktitis S, Grant B, Lawrie A (1986) Surface Changes in Phytophthora-Palmivora Zoospores Following Induced-Differentiation. Protoplasma 135:119-129
    41. Park G, Xue C, Zheng L, Lam S, Xu JR (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:183-192
    42. Prakob W, Judelson HS (2007) Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44:726-739
    43. R.Hardham A (2001) The cell biology behind Phytophthora pathogenicity. Australasian Plant Pathology,30,:91-98
    44. Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4:159-170
    45. Soylu EM, Soylu S (2003) Light and electron microscopy of the compatible interaction between Arabidopsis and the downy mildew pathogen Peronospora parasitica. J Phytopathol 151:300-306
    46. Soylu S (2004) Ultrastructural characterisation of the host-pathogen interface in white blister-infected Arabidopsis leaves. Mycopathologia 158:457-464
    47. Soylu S, Keshavarzi M, Brown I, Mansfield JW (2003) Ultrastructural characterisation of interactions between Arabidopsis thaliana and Albugo candida. Physiological and Molecular Plant Pathology 63:201-211
    48. Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J33:775-792
    49. Tani S, Yatzkan E, Judelson HS (2004) Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17:330-337
    50. Torto-Alalibo TA, Tripathy S, Smith BM, Arredondo FD, Zhou L, Li H, Chibucos MC, Qutob D, Gijzen M, Mao C, Sobral BW, Waugh ME, Mitchell TK, Dean RA, Tyler BM (2007) Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact 20:781-793
    51. Tyler BM (2002) Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137-167
    52. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral B W, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261-1266
    53. Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. JMol Evol 45:619-630
    54. Walker CA, Koppe M, Grenville-Briggs LJ, Avrova AO, Homer NR, McKinnon AD, Whisson SC, Birch PR, van West P (2008) A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45:954-962
    55. Wang Y, Dou D, Wang X, Li A, Sheng Y, Hua C, Cheng B, Chen X, Zheng X (2009) The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microb Pathog 47:78-86
    56. Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng X (2010) GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. Eukaryot Cell 9:242-250
    57. Wenwu Ye XW, Kai Tao, Yuping Lu, Tingting Dai, Suomeng Dong, Daolong Dou, Mark Gijzen,and Yuanchao Wang (2011) Digital Gene Expression Profiling of the Phytophthora sojae Transcriptome.MPMI 24:1530-1539
    58. Widmer TL, Graham JH, Mitchell DJ (1998) Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P-palmivora. Phytopathology 88:389-395
    59. Xu JR, Peng YL, Dickman MB, Sharon A (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337-366
    60. Zhao W, Dong S, Ye W, Hua C, Meijer HJ, Dou X, Govers F, Wang Y (2010) Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6. Fungal Genet Biol
    61.郑小波(1997)疫霉菌及其研究技术.中国农业出版社
    1. Kazuya Ichimura et al (2002) Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci 7:301-308
    2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63-78
    3. Beug H vKA, Doderlein G, Conscience JF, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation, cell 18:375-390
    4. Bilaud T, Koering CE, BinetBrasselet E, Ancelin K, Pollice A, Gasser SM, Gilson E (1996) The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Research 24:1294-1303
    5. Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56:638-648
    6. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryotic Cell 3:1525-1532
    7. Burack WR, Shaw AS (2000) Signal transduction:hanging on a scaffold. Curr Opin Cell Biol 12: 211-216
    8. Caffrey DR, O'Neill LAJ, Shields DC (1999) The evolution of the MAP kinase pathways: Coduplication of interacting proteins leads to new signaling cascades. Journal of Molecular Evolution 49:567-582
    9. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311-1340
    10. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu BE, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449-2476
    11. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiology 132:1961-1972
    12. Choi J, Kim Y, Kim S, Park J, Lee YH (2009) MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol 46:243-254
    13. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo:a sequence logo generator. Genome Res 14:1188-1190
    14. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279-290
    15. Ehrenkaufer GM, Hackney JA, Singh U (2009) A developmentally regulated Myb domain protein regulates expression of a subset of stage-specific genes in Entamoeba histolytica. Cell Microbiol 11: 898-910
    16. Elion EA (2001) The Ste5p scaffold. Journal of Cell Science 114:3967-3978
    17. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199-206
    18. Ferrell JE, Jr. (1996) Tripping the switch fantastic:how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460-466
    19. Gonda TJ, Gough NM, Dunn AR, Deblaquiere J (1985) Nucleotide-Sequence of Cdna Clones of the Murine Myb Protooncogene. Embo Journal 4:2003-2008
    20. Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e 1001302
    21. Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R, Zhang Z, Wang Y, Zheng X (2010) The basic leucine zipper transcription factor Moatfl mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:1053-1068
    22. H.C. H (1996) bZip proteins. Protein Profile 3:1-72
    23. Hardin SC, Wolniak SM (1998) Molecular cloning and characterization of maize ZmMEKl, a protein kinase with a catalytic domain homologous to mitogen-and stress-activated protein kinase kinases. Planta 206:577-584
    24. Harris K, Lamson RE, Nelson B, Hughes TR, Marton MJ, Roberts CJ, Boone C, Pryciak PM (2001) Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Current Biology 11:1815-1824
    25. Harrison SC (1991) A Structural Taxonomy of DNA-Binding Domains. Nature 353:715-719
    26. Herschbach BM, Johnson AD (1993) Transcriptional Repression in Eukaryotes. Annu Rev Cell Biol 9:479-509
    27. Inouye C, Dhillon N, Durfee T, Zambryski PC, Thorner J (1997) Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae:Application of a differential interaction trap assay for examining protein-protein interactions. Genetics 147:479-492
    28. Ito M (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118:61-69
    29. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577-585
    30. Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6:1200-1209
    31. Kornberg TB (1993) Understanding the Homeodomain. Journal of Biological Chemistry 268: 26813-26816
    32. Latchman DS (1996) Inhibitory transcription factors. Int J Biochem Cell B 28:965-974
    33. LATCHMAN DS (1997) NTRODUCTORY OVERVIEW Transcription Factors:An Overview Int JBiochem Cell Biol 29:1305-1312
    34. Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X (2010) PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. Mol Plant Microbe Interact 23:1022-1031
    35. Littlewood TD, Evan GI (1995) Transcription Factors.2. Helix-Loop-Helix. Protein Profile 2: 621-702
    36. Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgsl regulates multiple Galpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26: 690-700
    37. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406
    38. Liu S, Dean RA (1997) G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075-1086
    39. MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators:The zinc cluster proteins. Microbiol Mol Biol R 70:583-+
    40. Madhani MASaHD (2004) PRINCIPLES OF MAP KINASE SIGNALING SPECIFICITY [NSACCHAROMYCES CEREVISIAE. Annu Rev Genet 38:725-748
    41. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling:transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185
    42. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal 38: 982-993
    43. Mitchell PJ, Tjian R (1989) Transcriptional Regulation in Mammalian-Cells by Sequence-Specific DNA-Binding Proteins. Science 245:371-378
    44. Moriwaki A, Kihara J, Mori C, Arase S (2007) A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol Res 162: 108-114
    45. Nateri AS, Riera-Sans L, Da Costa C, Behrens A (2004) The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374-1378
    46. Nikolov DB, Burley SK (1997) RNA polymerase II transcription initiation:A structural view. P Natl Acad Sci USA 94:15-22
    47. Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231-243
    48. O'Rourke SM, Herskowitz I (1998) The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Gene Dev 12:2874-2886
    49. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH (2007) Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. JBiol Chem 282:6716-6725
    50. Otsuka H, Van Haastert PJ (1998) A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression. Genes Dev 12:1738-1748
    51. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822-2835
    52. Park SH, Zarrinpar A, Lim WA (2003) Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299:1061-1064
    53. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J27:2214-2221
    54. Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8: 523-534
    55. Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of myb-like proteins. Plant J 20:641-652
    56. Sabbagh W, Jr., Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683-691
    57. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiology 136:2734-2746
    58. Schumacher J, de Larrinoa IF, Tudzynski B (2008) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell 7:584-601
    59. Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAKl, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell 6:211-221
    60. Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Bioph Res Co 250:161-170
    61. Sun CH, Palm D, McArthur AG, Svard SG, Gillin FD (2002) A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol 46:971-984
    62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
    63. Uhlik MT, Abell AN, Cuevas BD, Nakamura K, Johnson GL (2004) Wiring diagrams of MAPK regulation by MEKK1,2, and 3. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 82:658-663
    64. Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol 4:347-359
    65. Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619-630
    66. Wang Y, Dou D, Wang X, Li A, Sheng Y, Hua C, Cheng B, Chen X, Zheng X (2009) The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microb Pathog 47:78-86
    67. Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, Xu JR (2011) A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24:118-128
    68. Wieser J, Adams TH (1995) flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev 9:491-502
    69. Xiang Q, Judelson HS (2010) Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 453:1-8
    70. Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137-152
    71. Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113:395-404
    72. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701-1714
    1. Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56:638-648
    2. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryotic Cell 3:1525-1532
    3. Ferrell JE, Jr. (1996) Tripping the switch fantastic:how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460-466
    4. Judelson HS, Ah-Fong AM (2010) The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genomics 11:700
    5. Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X (2010) PsSAKl, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. Mol Plant Microbe Interact 23:1022-1031
    6. Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgsl regulates multiple Galpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26: 690-700
    7. Liu S, Dean RA (1997) G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075-1086
    8. Moriwaki A, Kihara J, Mori C, Arase S (2007) A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol Res 162: 108-114
    9. Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231-243
    10. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822-2835
    11. Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569-3572
    12. Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAKl, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell 6:211-221
    13. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261-1266
    14. Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAPI gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol 4:347-359
    15. Wenwu Ye Xiaoli Wang, Kai Tao, Yuping Lu, Tingting Dai, Suomeng Dong, Daolong Dou, Mark Gijzen,and Yuanchao Wang (2011) Digital Gene Expression Profiling of the Phytophthora sojae Transcriptome. MPMI24:1530-1539
    16. Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. Bmc Genomics 11
    17. Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137-152
    18. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701-1714
    1. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong SM, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang YC, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, Tyler BM (2010) Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science 330:1549-1551
    2. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea.Eukaryotic Cell 3:1525-1532
    3. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961-1972
    4. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279-290
    5. Dou D, Kale SD, Wang X, Chen Y, Wang Q, Jiang RH, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avrl b. Plant Cell 20:1118-1133
    6. Erwin DC, S.Bartnicki-Garcia, Tsao PH (1985) Phytophthora. The American Phytopathological Society:392 p.
    7. Fuchs BB, Mylonakis E (2009) Our paths might cross:the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryotic Cell 8: 1616
    8. Hyde GJ, Gubler F, Hardham AR (1991) Ultrastructure of Zoosporogenesis in Phytophthora-Cinnamomi. Mycological Research 95:577-591
    9. Judelson HS, Roberts S (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687-695
    10. Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231-243
    11. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822-2835
    12. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J21:2214-2221
    13. Wenwu Ye Xiaoli Wang, Kai Tao, Yuping Lu, Tingting Dai, Suomeng Dong, Daolong Dou, Mark Gijzen,and Yuanchao Wang (2011) Digital Gene Expression Profiling of the Phytophthora sojae Transcriptome. MPMI 24:1530-1539
    14. Xiang Q, Judelson HS (2010) Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 453:1-8
    15. Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137-152
    16. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701-1714
    1. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong SM, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang YC, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, Tyler BM (2010) Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science 330:1549-1551
    2. Beug H vKA, Doderlein G, Conscience JF, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation, cell 18:375-390
    3. Ehrenkaufer GM, Hackney JA, Singh U (2009) A developmentally regulated Myb domain protein regulates expression of a subset of stage-specific genes in Entamoeba histolytica. Cell Microbiol 11: 898-910
    4. Gonda TJ, Gough NM, Dunn AR, Deblaquiere J (1985) Nucleotide-Sequence of Cdna Clones of the Murine Myb Protooncogene. Embo Journal 4:2003-2008
    5. Ito M (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118:61-69
    6. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577-585
    7. Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi:similar weaponry to attack plants. Trends Microbiol 11:462-469
    8. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH (2007) Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. JBiol Chem 282:6716-6725
    9. Otsuka H, Van Haastert PJ (1998) A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression. Genes Dev 12:1738-1748
    10. Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8: 523-534
    11. Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of myb-like proteins. Plant J20:641-652
    12. Sun CH, Palm D, McArthur AG, Svard SG, Gillin FD (2002) A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol 46:971-984
    13. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599
    14. Tyler BM (2007) Phytophthora sojae:root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8:1-8
    15. Wenwu Ye Xiaoli Wang, Kai Tao, Yuping Lu, Tingting Dai, Suomeng Dong, Daolong Dou, Mark Gijzen,and Yuanchao Wang (2011) Digital Gene Expression Profiling of the Phytophthora sojae Transcriptome.MPM/24:1530-1539
    16. Wieser J, Adams TH (1995) flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev 9:491-502
    17. Xiang Q, Judelson HS (2010) Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 453:1-8
    1. Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56:638-648
    2. Donald C. Erwin OKR (1998) Phytophthora Diseases Worldwide.562 p.
    3. Erwin DC (2005) Phytophthora Diseases Worldwide.562 p.
    4. Erwin DC, S.Bartnicki-Garcia, Tsao PH (1985) Phytophthora. The American Phytopathological Society:392 p.
    5. Gijzen M, MacGregor T, Bhattacharyya M, Buzzell R (1996) Temperature induced susceptibility to Phytophthora sojae in soybean isolines carrying different Rps genes. Physiological and Molecular Plant Pathology 48:209-215
    6. Hardham AR (2007) Cell biology of plant-oomycete interactions. Cell Microbiol 9:31-39
    7. J.A.Lucas RCS, D.S.Shaw, Louise R.Cooke (1991) Phytophthora. 447 p.
    8. Kerppola T, Curran T (1995) Transcription-Zen and the Art of Fos and Jun. Nature 373:199-200
    9. Lamb P, McKnight SL (1991) Diversity and specificity in transcriptional regulation:the benefits of heterotypic dimerization. Trends Biochem Sci 16:417-422
    10. Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X (2010) PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. Mol Plant Microbe Interact 23:1022-1031
    11. Tani S, Judelson H (2006) Activation of zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity. Eukaryot Cell 5: 745-752
    12. Tani S, Yatzkan E, Judelson HS (2004) Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17:330-337
    13. Tropp BE FD (2008) Molecular biology:genes to proteins. Sudbury, Mass:Jones & Bartlett Learning:1097 p
    14. Wang Y, Dou D, Wang X, Li A, Sheng Y, Hua C, Cheng B, Chen X, Zheng X (2009) The PsCZFl gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microb Pathog 47:78-86
    15. Xiang Q, Judelson HS (2010) Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 453:1-8
    1. Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119-1127
    2. Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T (2002) The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Molecular Plant-Microbe Interactions 15:1268-1276
    3. Kraus PR, Fox DS, Cox GM, Heitman J (2003) The Cryptococcus neoformans MAP kinase Mpkl regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Molecular Microbiology 48:1377-1387
    4. Mehrabi R, Van der Lee T, Waalwijk C, Gert HJ (2006) MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant Microbe Interact 19:389-398
    5. Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P (2002) CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpnrea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Molecular Microbiology 46:305-318
    6. Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D; Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nurnberger T (2006) Phytotoxicity and innate immune responses induced by Nepl-like proteins. Plant Cell 18:3721-3744
    7. Rui O, Hahn M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology 8:173-184
    8. 李爱宁(2009).大豆疫霉促有丝分裂原蛋白激酶PsSAK1和PsMPK1的功能分析.南京农业大学博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700