新型动态膜预涂剂的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(membrane bioreactor,MBR)是将膜分离与生物工艺有机结合的一种新型技术,随着研究和开发的深入,该技术已经显示出较好的发展前景。但是,膜污染是MBR技术广泛推广的“瓶颈”。借助膜污染机理发展的预涂动态膜技术是膜表面物理改性的一种方法:将预涂剂吸附在基膜表面或者内部孔道,使基膜与污染物质不直接接触,从而有效延缓膜污染,并保护基膜、延长其使用寿命。因此,具有抗污染特性的新型预涂剂研究值得期待,有望利用预涂动态膜技术在一定程度上解决MBR工艺中的膜污染问题。
     本试验用乳液聚合法制备交联聚乙烯醇(Polyvinyl alcohol,PVA)微球,通过聚乙烯醇(PVA)与戊二醛(glutaraldehyde,GA)的乳化交联试验制备PVA微球粉末,并考察了W/O型乳状液内相的浓度、内外相体积比、乳化剂的性质和含量对形成稳定乳状液的影响。结果表明:
     (1)当乳状液内相PVA水溶液浓度为2.7%、内外相体积比为40:60、乳化剂司盘-80的浓度为1.30g/dL时,转速7000r/min,乳化10min条件下,乳状液的稳定性好。经过交联反应后形成的微球单分散性好、亲水性强、电负性高。
     (2)在乳化剂足量的前提下,提高乳化转速,制备的微球粒径减小;随着理论交联度的增大,微球粒径有变小的趋势,微球与水的接触角变大,而对Zeta电位影响不大。
     (3)微球表面有大量的羟基基团,由于缩醛反应进行的程度不完全,微球表面有残余醛基。
     为了进一步提高微球的抗污染特性,用NaBH_4还原残余醛基、将羧基接枝在微球表面。运用此两种方法对微球进行改性,并考察改性后微球的抗污染能力等。结果表明:
     (1)NaBH_4和PVA微球以无水乙醇溶液为反应介质,冰水浴连续搅拌发生还原反应。改性的PVA微球,其表面羟基数目提高23.2%。
     (2)丁二酸和PVA微球以乙腈溶液为反应介质,加热回流连续搅拌9h,脂化反应达到平衡。改性的PVA微球,电负性增强,对牛血清蛋白的吸附大大减少。
The membrane bioreactor (MBR) is a new technology combined the wastewater biological treatment with the membrane separation technique, it showes great potential application in the wastewater treatment field. However, membrane fouling is a problem restricting the wild application of this process. Precoated dynamic membrane technology is used to modify membrane properties, which based on the membrane fouling mechanism: precoating regents were adsorbed on the surface or inner channels of membrane, so it can not been direct contact with fouling materials and its serving life was prolonged. Thus, it is necessary to prepare a novel precoating regent with anti-fouling characteristics to settle the problem of membrane fouling.
     In this thesis, cross-linked polyvinyl alcohol microspheres were prepared via an emulsion polymerization that PVA cross linked with glutaraldehyde which was extracted by anhydrous aether. Effects of concentration of PVA solution, the volume ratio of aqueous phase to oil phase, the selection of surface active agent (SAA) and its concentration on the stabilization of emulsion were studied. The results showed that:
     (1) When the concentration of PVA solution was 2.7%, the volume ratio of PVA solution/n-heptane was 40:60 and the concentration of span-80 was 1.30g/dL, the stirring speed 7000r/min with 10min, the emulsion was stabilized. Glutaraldehyde as a cross linker was dropped into the emulsion. After 3h cross-linked reaction in the condition of 50℃water bath heating and continuous stir, monodisperse PVA microspheres which contented our needs were prepared. The size of microspheres was 1850±100nm. The Zeta potential in the rage of -44mV--41mV , and the contact angle of PVA microspheres with distilled water was 16°-19°.
     (2) The size of microspheres diminished with the stirring speed increasing under the condition of enough span-80. It became smaller with the accretion of an aimed cross-linking degree which has little affection on surface charge. The contact angle of PVA microspheres with distilled water showed that these microspheres were hydrophilic.
     (3) The FTIR results suggested that hydroxy groups were great intensity with 100% of aimed cross-linking degrees and aldehyde group were residualed on the PVA microspheres.
     In order to further promote its anti-fouling characteristic, NaBH_4 was used to deoxidize aldehyde groups and the amber acid was grafted on the surface of PVA microspheres. The test methods and the characteristics of the modified PVA microspheres were investigated. The results showed that:
     (1) NaBH_4 was dissolved in anhydrous ethanol, and then reacted with PVA microspheres in ice-water bath for 3h. The mole ration of NaBH_4 and aldehyde group was 10:1. After reaction, PVA mirospheres modified by NaBH_4 were prepared. The number of hydroxy groups on the surface is improved from 2.11×10~(20)/g to 2.60×10~(20)/g.
     (2) Amber acid was dissolved in acetonitrile, and then reacted with PVA microspheres in the condition of heating reflux. The mole ration of Amber acid and hydroxy group was 10:1. The reaction reached equilibrium after 9h. PVA mirospheres modified by amber acid have a good anti-fouling characteristic to BSA.
引文
[1] 刘锐,黄霞,刘若鹏等.膜—生物反应器和传统活性污泥工艺的比较[J].环境科学.2001,22(3):20-24.
    [2] 郑祥,刘俊新.膜生物反应器的技术经济分析[J].给水排水.2002,28(3):105-109.
    [3] 吴自强,刘志宏,曹刚.膜生物反应器处理废水技术研究的进展[J].工业水处理.2001,21(6):1-3
    [4] Kimura S. Japan's aqua Renaissance' 90 project [J]. Water Science and Technology. 1991, 23(7-9): 1573-1582.
    [5] Stephenson T, Judd S, Jefferson B, et al. Membrane Bioreactor for Wastewater Treatment[M]. 北京:化学出版社, 2003.
    [6] Marutani M, Nishida T. Wastewater reuse system using MF and RO units [A]. China-Japan international symposium on membrane hybrid system applied to water treatment proceedings[C]. Tianjin: NanKai University, 1999: 48-60.
    [7] 顾平,周丹,杨造燕.应用膜生物反应器处理生活废水的研究[J].中国给水排水.1998,14(5):6-8.
    [8] 刑传宏,钱易.无机膜生物反应器处理生活废水试验研究[J].环境科学.1997,18(3):1-4.
    [9] 李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活废水的特性[J].环境科学.1999,20(2):53-56.
    [10] 樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究[J].环境科学学报.1997,17(1):68-74.
    [11] 邹连沛,王宝贞,迟军等.膜生物反应器处理污水性能的研究[J].哈尔滨建筑大学学报.2001,34(2):57-60.
    [12] 张捍民,张兴文,杨凤林等.宾馆污水及蒸汽冷凝水的再生回用工程[J].中国给水排水.2003,(2):72—74.
    [13] 包文骏,汪诚文.膜法处理石化废水探索研究[J].当代化工.2007,36(2):148-151.
    [14] 夏世斌.高含盐石化废水生化处理的研究进展[J].中国水运(学术版).2006,6(7):93-94.
    [15] 胡保安,连立国,陈卓等.MBR和UF深度处理石化废水的比较研究[J].中国给水排水.2006,22(15):80-82.
    [16] 黄学政,段耀广,黄廷林等.用中空纤维膜生物反应器处理高浓度有机废水[J].化工环保.2005,25(6):462-465.
    [17] 潘碌亭,罗华飞,张选军等.UASB—水解酸化—接触氧化—MBR工艺处理高浓度聚酯废水[J].给水排水.2006。32(11):57-59.
    [18] 王琳,任南琪,吴忆宁等.一体式UASB—MBR反应器处理高浓有机废水[J].中国给水排水.2006,22(15):33—36.
    [19] 张忠波,汪诚文,陈吕军等.膜生物反应器处理食品废水的工程应用[J].给水排水.2004,30(7):42—45.
    [20] 何义亮,吴志超,李春杰等.厌氧膜生物反应器处理高浓度食品废水的应用[J].环境科学.1999,20(6):53-55.
    [21] 封莉,张立秋,吕炳南等.淹没式MBR处理啤酒废水的净化效能研究[J].水处理技术,2005,31(5):46-51.
    [22] 张立秋,封莉,张晓菲等.淹没式MBR处理啤酒废水的试验研究[J].中国给水排水.2004,20(5): 59-61.
    [23] 吴春笃,简小捷.MBR工艺处理印染废水的现状与展望[J].印染.2007,(1):45-47.
    [24] 张国平,徐宏凯,李士安等.高含盐印染废水的处理回用[J].净水技术.2006,25(2):59-61.
    [25] 仝攀瑞,朱振亚,王琼瑶等.MBR处理印染废水的膜污染及清洗研究[J].中国给水排水.2006,22(5):106-108.
    [26] 洪俊明,洪华生,熊小京等.A/O膜生物反应器组合工艺处理活性染料废水的实验研究[J].厦门大学学报(自然科学版).2005,44(3):441-444.
    [27] Devies W J, Le M S, Heath C R. Intensified activated sludge process with submerged microfiltration [J]. Water Science and Technology. 1998, 38(4-5): 421-428.
    [28] 扬州澄露工程有限公司.膜生物反应器在污水处理中的应用[J].中国水污染防治技术装备论文集.2002,8:246-249.
    [29] 李祥峰,戴长虹,孙海生.陶瓷膜材料在水处理领域的应用[J].过滤与分离.2006,22(1):8-10.
    [30] 吴翠明,徐铜文,杨伟华.无机—有机复合膜应用的研究进展[J].膜科学与技术.2003,23(2):52—56.
    [31] 徐志成,邓新华,孙元等.PE非织物亲水性改型的研究[J].天津工业大学学报.2007,26(3):51-53.
    [32] 郭红霞,王平,陈翠仙等.超高分子量聚乙烯微孔膜的亲水性研究(Ⅰ)臭氧活化接枝反应及其表征[J].膜科学与技术.2006,26(1):7-10.
    [33] 万红,孙诗兵,田英良等.定形相变材料的表面亲水改性研究.化学建材[J].2005,21(4):49-51.
    [34] 孙剑,黄健,王晓琳.聚乙烯二醇树脂在聚乙烯膜材料表面的自组装及亲水改性[J].南京工业大学学报.2007,29(2):1-5.
    [35] 张颖,任南琪,陈志强.膜生物反应器在日本的应用现状[J].中国给水排水.2002,18(2):91-92.
    [36] Wada H. The technique of water recycle [M]. Tokyo Chijinn Shokan Co. Ltd ,1998.
    [37] Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations [J]. Separation and Purification Technology. 2000,18 (2): 119-130.
    [38] Defrance L, Jaffrin MY, Fupta B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling [J]. Bioresource Technology, 2000, 73: 105-112.
    [39] Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process [J]. Water Science and Technology. 1996, 34 (9): 165-172.
    [40] Wisniewski C, Grasmick A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138: 403-411.
    [41] 李明波,金奇庭.膜生物反应器中膜污染问题讨论[J].四川环境.2004,23(3):13—17.
    [42] Pearce G. Introduction to membranes: Fouling control. Filtration & Separation. 2007, 44 (6): 30~32.
    [43] 郑成.膜的污染及其防治[J].膜科学与技术.1991,17(2):5-14.
    [44] 郑祥,樊耀波.膜生物反应器运行条件的优化及膜污染的控制[J].给水排水.2001,27(4):41-44.
    [45] 林红军,陆晓峰,段伟等.膜生物反应器中膜过滤特性及膜污染机理的研究[J].环境科学.2006,27(12):2511-2517.
    [46] 孟凡刚,张捍民,于连生等.活性污泥性质对短期膜污染影响的解析研究[J].环境科学.2006,27(7):1348-1352.
    [47] Le-Clech P, Jefferson B, Judd SJ. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor [J]. Journal of Membrance Science, 2003, 218 (1-2): 117-129.
    [48] Li RH , Barbari TA. Performance of poly (vinly alcohol) thin-gel composite ultrafiltration membranes [J]. Journal of Membrance Science. 1995, 105:71-78.
    [49] Van Den Berg G B, Smolders C A. Flux decline in ultrafiltration processes [J]. Desalination, 1990, 77: 101-103.
    [50] Gekas V, Hallstrom B. Macrofiltration membranes, cross-flow transport mechanism and fouling studies [J]. Desalination. 1990, 77 (1-3): 195-218.
    [51] Brink LES, Romijn DJ. Reducing the protein fouling of polysulfone surfaces and polysulfone ultrafiltration membranes: optimization of the type of presorbed layer [J]. Desalination. 1990, 78: 209-233.
    [52] Liew MKH, Fane AG, Rogers P. Hydraulic resistance and fouling of microfilters by Candida utilis in fermentation broth [J]. Biotechnology and Bioengineering. 1995, 48(2): 108-117.
    [53] Hernandez Rojas ME, Van KaamR, Schetrite S, et al. Role and variations of supernatant compounds in submerged membrane bioreactor fouling [J]. Desalination, 2005, 179(1-3): 95-107.
    [54] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. Journal of Membrane Science, 2003, 216(1-2): 217-227.
    [55] Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J]. Water Science and Technology. 1996, 34(9): 165-172.
    [56] 李娜,刘忠洲,续曙光.耐污染膜—聚乙烯醇膜的研究进展[J].膜科学与技术.1999,19(3):1-7.
    [57] Wilen BM, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Research. 2003,37: 2127-2139.
    [58] Sutherland I W. Exopolysaccharides in biofilm flocs and related structures [J]. Water Science and Technology. 2001, 43: 77-86.
    [59] Shimizu Y, Rokudai M, Tohya S, et al.Filtration characteristics of charged alumina membranes for methanogenic wastes [J]. Journal of Chemical Engineering of Japan. 1989, 22: 635-644.
    [60] 汪洪生,陆雍森.国外膜技术进展及其在水处理中的应用[J].膜科学与技术.1999,19(4):17-22.
    [61] Jonsson AS, Bengt Jonsson. Colloidal fouling during ultrafiltration [J]. Separation Science and Technology. 1996, 31(19): 2611-2620.
    [62] Jonsson AS. Concentration polarization and fouling during ultrafiltration of colloidal suspensions and hydrophobic solutes [J]. Separation Science and Technology. 1995,30(2): 301-312.
    [63] Kurihara M , Himeshima Y. The major developments of the evolving reverse osmosis membranes and ultrafiltration membranes. Polymer Journal, 1991, 23(5): 513-520.
    [64] Chang IS, Bag SO, Lee CH. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge [J]. Process Biochemistry. 2001, 36: 855-860.
    [65] Zhou Jing, Meng Sheng, Guo Zhang, et al.Phosphorylcholine-modified poly(ethylene-co-vinyl alcohol) microporous membranes with improved protein-adsorption-resistance property, Journal of Membrane Science, 2007, 305 (1-2): 279-286.
    [66] 许晓鹏,郑领英.聚砜超滤膜的表面改性[J].水处理技术.1993,19(6):330-335.
    [67] 吴玉亭,施亚钧.辐照接枝丙烯酸改性聚砜超滤膜[J].水处理技术.1995,21(1):21-25.
    [68] 詹劲,郭志刚,王保国等.利用低温等离子体进行聚砜膜的表面改性[J].化工学报.2004,55(5):747-751.
    [69] 吴秋林,吴照和.PVA-PE复合亲水分相膜的研制[J].膜科学与技术.1995,(4):29-32.
    [70] Chetri P, Islam N, DassNN. Development of a novel catalyst for solution of poly(vinyl alcohol) in nonaqueous medium. Journal of Polymer Science Part A: Polymer Chemistry [J]. 1996,34: 1613-1615.
    [71] Li RH, Barbari TA. Characterization and mechanical support of asymmetric hydrogel membranes based on the interfacial cross-linking of poly(vinyl alcohol) with toluene diisocyanate [J]. Journal of Membrane Science. 1996,111: 115-122.
    [72] 姜云鹏,王榕树.纳米二氧化硅—聚乙烯醇复合超滤膜的制备与表征[J].化学工程.2003,3l(2):38-42.
    [73] 陈来鹏.聚乙烯醇薄膜研究进展[J].辽宁化工.2005,34(11):485—490.
    [74] 金伟,范瑾初.粉末活性炭在预涂膜过滤中的应用[J].中国给水排水.1997,13(增刊):16—19.
    [75] Li N, Liu Z Z, Xu S G. Dynamically formed Poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics[J]. Journal of Membrane Science, 2000, 169 (1): 17-28.
    [76] Cai B, Ye H, Yu L. Preparation and separation performed of a dynamically formed MnO_2 membrane [J]. Desalination, 2000, 128: 247-256.
    [77] Kryvoruchko A, Atamanenko I, Kornilovich B. A role of the clay minerals in the membrane purification process of water from Co(Ⅱ)-ions[J]. Separation and Purification Technology, 2001, 25: 487-492.
    [78] 张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究[J].环境科学报.2005,25(2):249-253.
    [79] Xu XT, Gaddis JL, Spencer HG. Dynamic formation of a self-formed membrane by nanofiltration of a high-formula-weight dye [J]. Desalination, 2000, 129:237-245.
    [80] Altman M, Semiat R, Hasson D. Removal of organic foulants from feed waters by dynamic membranes [J]. Desalination, 1999, 125:65-75.
    [81] Rumyantsev M, Shauly A, Yiantsios S G. Parameters affecting the properties of dynamic membranes formed by Zr hydroxide colloids[J]. Desalination, 2000, 131: 189-200.
    [82] Chen CC, Chiang BH. Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes [J]. Journal of Membrane Science, 1998, 143: 65-73.
    [83] Lee J, Ahn W Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor [J]. Water Reserch, 2001, 35(10): 2435-2445.
    [84] Tae-Hyun Bae, Tae-Moon Tak, Effect of TiO_2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration [J]. Journal of Membrane Science, 2005,249: 1-8.
    [85] 周迟骏,陈忠,许仁裕.经表面修饰的FeO(OH)胶粒制备动态膜及其脱色性能[J].化工进展.2005,24(7):758-762.
    [86] 孟凡刚.膜生物反应器膜污染识别、表征及行为研究:博士学位论文.大连:大连理工大学,2007.
    [87] 杨亚楠,王鹏,郑庆柱.改性高分子超滤膜的研究进展[J].离子交换与吸附,2005,20(1):87-94.
    [88] 陆扬.明胶微球的研究进展[J].明胶科学与技术,2006,26(2):57-68.
    [89] 蒋庆哲,宋昭铮,赵密福等.表面活性剂科学与应用[M].北京:中国石化出版社,2006.168-196.
    [90] Suzuki H. Determination of critical micelle concentrations of surfactant by ultraviolet absorption spectra [J]. Journal of the American Oil Chemists Society, 1970, 47(8):273-279.
    [91] 奚平,林苗.W/O/W法制备甲基膦酸二甲脂微胶囊[J].东华大学学报(自然科学版).2004,30(4):56-59.
    [92] 赵大庆,谭金权.聚乙烯醇的制备与研究[J].中国新药杂志.2005,14(2):181-184.
    [93] 黄文,顾惕人.碘光谱法测定非离子表面活性剂的临界胶束浓度[J].精细化工.1996,13(1):5-9.
    [94] 严忠,孙文东.乳液液膜分离原理及应用[M].北京:化学工业出版社,2005.
    [95] 余艺华,薛博。孙彦等.壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究[J].高分子学报,2000,3:340-344.
    [96] Moily S, Shoichet, Thomas J, et al. Convenient syntheses of carboxylic acid functionalized fluoropolymer surface [J]. Macromolecules. 1991, 24 (5): 982-986.
    [97] 方俊,王秀峰,王列松等.丁二酸改性二氧化硅胶体球的制备及其胶体晶体的组装[J].科学通报.2006,51(24):2842-2846.
    [98] 毋伟,张京玲,郭锴等.阴极电泳涂料改性超细二氧化硅的表征[J].涂料工业.2004,4(4):48-51.
    [99] 刑祺毅,徐瑞秋,周政等.基础有机化学[M].北京:高等教育出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700