低热值煤层气与煤矸石CFB混烧特性数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年排放约占当年煤炭产量的百分之十以上的煤矸石,目前已累计堆积达数十亿吨。煤矸石长期堆存,污染大气、地面水源或下渗损害地下水质,占用大量土地。中国煤层气可采资源量约10万亿立方米,累计探明煤层气地质储量1023亿立方米,可采储量约470亿立方米,目前我国每年由煤炭生产而释放大量煤层气,其中被利用的仅占很少部分。对煤矸石与煤层气进行高效混烧能源化利用,可以节约资源,减少温室气体排放。
     采用流化床技术利用低、劣质燃料是国内外研究的热点。目前国内外对不同相态的燃料在循环流化床中的混烧还很少进行系统研究,因此在深入研究煤矸石热解与燃烧特性的基础之上,进行煤层气与煤矸石CFB内多相流动与混烧特性的数值模拟与试验研究,弄清不同相态的燃料在CFB内的流动、传热及燃烧特性,可以为研究和开发煤层气与煤矸石CFB混烧技术奠定坚实的理论基础。
     论文使用热分析天平,在不同气氛下进行煤矸石的热解与燃烧特性实验,获得了煤矸石的着火点、活化能等特性参数。首次建立了适应低热值煤层气高效燃烧的燃烧器物理模型与数学模型,通过数值模拟,优化了燃烧器结构,并通过实验验证了数值模拟的结果。以现有的45t CFB锅炉为基础,首次建立不同相态燃料在CFB锅炉内混烧的物理模型与数学模型,对煤层气与煤矸石CFB混烧进行数值模拟,深入分析了混烧的流场、温度场以及CO2及CH4的浓度变化,获得了高效燃烧的最佳工况。在数值模拟的基础上,首次对某煤矿45t CFB锅炉进行了煤层气混烧的改造,对锅炉进行了冷态试验、热态试验,测试了不同混烧比时的炉膛沿高度方向的温度变化,以及炉膛出口处CH_4的浓度,并测试了锅炉热效率。研究结果为开发煤层气与煤矸石CFB混烧技术奠定了坚实的理论基础。
     煤矸石的热解与燃烧动力学特性研究表明:煤矸石中挥发分含量越高,越容易发生热解;热解终温增加,煤矸石的热解失重率增大;样品粒径越大,热解特征温度越高,热解失重率降低;升温速率增加, DTG峰值增大,失重率降低;煤矸石高灰分的特点导致了其燃尽性能很差,不易燃尽;煤矸石综合燃烧性与挥发分含量关系密切,挥发分越高,综合燃烧性能越好。
     低甲烷浓度煤层气燃烧器数值模拟研究表明:部分预混式燃烧器燃烧效率最高,扩散式燃烧器燃烧效率最低,完全预混式燃烧器介于两者之间。部分预混式燃烧器射流刚性最好,燃烧温度相对较高。总体来看,部分预混式燃烧器配渐扩口,且扩散角为6.88°时能获得相对高的燃烧效率。
     低浓度煤层气燃烧器冷态与热态试验表明:完全预混式燃烧器燃气侧流动阻力最大,扩散式燃烧器最小。完全预混式燃烧器,部分预混式燃烧器,扩散式燃烧器在不同热负荷下均能稳定燃烧,不回火、不脱火,具有较宽的负荷调节能力。部分预混式燃烧器燃烧时火焰刚性好,燃烧温度最高,高温段距离长,火焰宽度最小,火焰扩散角最小。扩散式燃烧器火焰长度最长,火焰宽度最大,火焰扩散角最大。完全预混式燃烧器的火焰长度最短。
     低浓度煤层气燃烧器冷态与热态试验表明:扩散式燃烧器压力损失最小,完全预混式燃烧器压力损失最大。部分预混式燃烧器火焰温度最高,火焰刚性好,完全预混式燃烧器的火焰长度最短扩散式燃烧器火焰最长,宽度最大。通过实验结果与模拟结果的比对,可看出两者结果吻合较好,部分预混式燃烧器综合性能最优。
     低热值煤层气与煤矸石CFB混合燃烧数值模拟研究表明:混烧比为10:0时,炉膛内速度整体分布比较均匀,随着煤层气混烧比例的增加,流场偏斜加剧,煤矸石与煤层气混烧比达到6:4时,偏斜程度最大。当燃料全部为煤矸石时,燃烧器内温度分布比较均匀。喷入煤层气,导致燃烧器内流场发生偏斜,从而造成局部高温。随混烧比的增加,在距布风板高度5 m左右出现CH_4的浓度峰值,随炉膛高度的增大,CH4浓度明显下降。综合模拟结果,混烧比不宜大于8:2,一、二次风比益选用6:4。
     煤层气与煤矸石循环流化床混烧试验研究表明:布风板阻力随一次风量增大而增大,布风板阻力特性曲线基本上近似为一条二次曲线。随着流化风量的增加,曲线有明显的压力变化拐点,该拐点对应的风量为即临界流化风量。由热态试验数据可知,密相区温度较高,稀相区温度较低,稀相区温度变化较小,温度较为均匀,这有利于在密相区未燃尽的颗粒在稀相区继续燃烧。随着煤层气混烧比的增加,锅炉的效率增加,从混烧比为10:0时的82.6%增长到混烧比为8:2时的84.1%。
     本文通过对煤层气及煤矸石在CFB内混烧特性的深入研究,为进一步研究、开发相关技术打下了坚实的基础,在资源综合利用与环境保护方面有着十分广阔的工程应用前景。
China's annual heavily emissions gangue, which is about ten percent of coal production, has aggregated piled up billions of tons at present. Long-term stockpiling of coal gangue needs amounts of land and leads to air and water pollution. Coal bed methane(CBM) resources in China is about 10 trillion cubic meter, of which proved reserves is 102.3 billion cubic meter and recoverable reserves is 470 billion cubic meter. Now, only a small part of CBM is used. Therefore, the efficient utilization of coal gangue and CBM is able to save resources and reduce greenhouse gas emission.
     It is hot topic at China and abroad that using fluidized bed to utilize low-grade fuel. In present, there are few systematic researchs on the co-combustion with different phases of the fuel in circulating fluidized bed. So that, based on the in-depth study of pyrolysis and combustion characteristics of coal gangue , the simulation and experimental research of multi-fluid flow and co-combustion characteristics of CBM and coal gangue were done. The study of different phases fuel in CFB the flow,heat transfer and combustion characteristics lays a solid theoretical foundation for further developing the CBM and coal gangue CFB firing technology.
     The experiments of the pyrolysis and combustion of coal gangue in different atmospheres were done by thermal analyser. The ignition of coal gangue, activation energy and other parameters were obtained. Physical and math models of burner adapting low calorific thermal value CBM combustion were built for the first time. The burner has been optimum designed by numerical simulation methods and the results were verified by experimentation. The physical and mathematical models which described the mixing burning of different phases fuel in CFB were established based on the subsistent 45t CFB for the first time. Numerical simulations were done for mixing burning of CBM and coal gangue. Flow field, temperature and concentration changes of CO2 and CH_4 were analyzed in depth. The best work condition was obtained.The renovation of a 45t CFB for mixing burning of CBM was carried out based on the results of numerical simulations for the first time. The cold and hot tests of the boiler were done. The variation laws of temperature in vertical direction, the concentration of CH_4 at the outlet of the furnace and boiler efficiency were test. The results have established the theory bases for the development of technology of mixing burning of coal bed methane and coal gangue in CFB.
     The pyrolysis and combustion of coal gangue kinetics characteristics study shows that the higher the volatile content in coal gangue, the more prone to thermal decomposition; final pyrolysis temperature increased, the pyrolysis of coal gangue weight loss rate increases; Larger sample size,the higher characteristic temperature pyrolysis, pyrolysis mass loss rate decreased; heating rate increases, DTG peak increased, weight loss reduced;the characteristics of high ash coal gangue lead to poor performance of its burn; combustion of coal gangue comprehensive close relationship with the volatile content, the higher the volatile, integrated combustion performance is better.
     Numerical simulation study on low-calorific value coal bed methane burner indicates that burning efficiency of part-premixed burner is highest, burning efficiency of diffusion burner is lowest, premixed burner is in between part-premixed burner and diffusion burner. Partially premixed burner has good jet rigid, combustion temperature is relatively high, in general, part of the premixed burner with gradually expanding, and the diffusion angle of 6.88°has a relatively high combustion efficiency.
     Low concentrations of methane burner cold and hot test showed that: diffusion burner pressure loss is minimum, fully premixed burner pressure loss is very bigt. Partially premixed burner flame temperature is maximum, fully premixed burner flame length is the shortest, diffusion burner flame length is longest. Comparing experimental results with the simulation results, we can see a good agreement between both, partially premixed burner has the best overall performance.
     Low calorific value coal methane and coal gangue CFB combustion simulation results show that when the ratio of coal gangue and coal bed methane is 10:0, the overall speed of the combustion chamber is relatively evenly distributed, with the increasing of coal bed methane, flow deflection increase, when the co-combustion ratio is 6:4, the degree of flow deflection is the highest. When all the fuel is coal gangue, the overall temperature of the combustion chamber is relatively evenly distributed. When the coal bed methane is injected, flow field deflection occurs, resulting in local high temperature. With the increasing of coal methane, the peak of the concentration of CH_4 occurs when the height away from the air distribution plate 5m,With the height increasing of the combustion chamber, CH_4 concentration significantly reduced. Comprehensive simulation results show that the ratio of coal gangue and coal bed methane is improper when more than 8:2, a beneficial use of primary and secondary air ratio 6:4.
     The experimental studies of coal bed methane and coal gangue co-combustion in Circulating fluidized bed show that air flow resistance of the air distribution plate increases with air volume increasing. The resistance characteristic curve of the air distribution plate is basically similar to a quadratic curve. With the increasing flow of air, an inflection point can be seen on the the pressure curve clearly, and the inflection point corresponds to the critical flow air volumeo f the air. It can be conclused from the thermal test data of high temperature in dense region, low and unifom temperature in dilute phase region that unburned particles in dense area can continue combustion in dilute phase region. With the increasing of the ratio of methane co-combution from 10:0 to 6:4, boiler efficiency increase from 82.6% to 84.1%.
     The study of the co-combustion characteristics of the coal bed methane and coal gangue in CFB is useful for further research and development relative technology. It has a very broad application prospect in comprehensive utilization of resources and environmental protection.
引文
[1]牛泰山,宋瑞谭.煤矸石综合利用与煤炭企业可持续发展战略[J].煤,2000,(5):17.
    [2]国家经贸委、科技部联合发布煤矸石综合利用技术政策要点[J].洁净煤技术,2000,(1):56.
    [3] PRAMOD C.THAKUR , HAROLD G.LITTLE. GLOBAL COALBED METHANE RECOVERY AND USE [J]. Energy Convers, 1996,37(6-8):789-794,1996.
    [4]文忠和,卢清兰.煤矸石热活化性能研究[J].环境污染与防治,2008,9(30):26-30.
    [5]姜殿臣,赵守国,张文莉.依兰煤矸石气化及其综合作用[J].煤矿环境保护,2002,16(1):62-63.
    [6]张世诚.加快推进煤矸石资源化综合利用的步伐[J].煤炭技术,2009,1(28):191-192.
    [7]楼波,石建伟.流化床锅炉掺混煤矸石燃烧中的问题分析[J].电站系统工程, 2009,5(29):21-22.
    [8]胡维淳.煤矿发展煤矸石发相关问题研究[J].中国能源,Jun.2004,26(6):20-23.
    [9]赵树珍,李荫重,杜铭华.煤矸石综合利用电厂现状与发展[J].煤炭经济研究, 2002.10.10-13
    [10]裴晓东,张人伟,刑文华等.煤矸石的综合利用技术探讨[J].煤矿安全,2008-2009:99-101.
    [11]关杰,李英顺.煤矸石综合利用现状及前景[J].环境与可持续发展,2008(1):34-35.
    [12]刘柏谦,徐有宁.循环流化床锅炉混烧煤泥、煤矸石的研究分析[J].煤炭加工与综合利用,2005(2):38-40.
    [13]孟薇.煤矸石的综合利用[J].应用能源技术,2007, (12):12-14.
    [14] Folgueras,M.Belén,María Díaz, R.,Xiberta, Jorge.Sulphur retention during co-combustion of coal and sewage sludge[J] Fuel ,2004,83(10):1315-1322.
    [15]宋智晨. 2010-2015年中国煤层气产业投资分析及前景预测报告.中投顾问,北京, 2009.
    [16] Fang, M.; Yang, L.; Chen, G.; Shi, Z.; Luo, Z.; Cen, K. Experimental study on rice husk combustion in a circulating fluidized bed[J]. Fuel Processing Technology Aug.2004, 85(11): 1273- 1282.
    [17]叶吉文,沈国栋,路露等.我国煤层气产业发展的战略思考[J].视点,2009,10(下):255-263.
    [18]刘柏谦,徐有宁.煤矸石在流化床燃烧器中着火特性的试验研究[J].东北电力学院学报, 1996 ,16(1):33-37.
    [19]刘柏谦.煤矸石在流化床着火特性研究和百叶迷宫煤矸石循环流化床锅炉设计[J].燃烧科学与技术,2003,19(5):419-421.
    [20]刘柏谦.煤在流化床中着火过程和流化床锅炉启动过程研究[D]杭州:浙江大学,l994.
    [21] S.De,A..K.Lal and P. K.Nag. An experiment investigation on pressure drop and collection efficiency of simple plate-type impact separator[J]. Power Technology , 1999 , 106(3):192-198.
    [22]周伯俞,陈政彬,聂永根等.煤矸石合成燃料在锅炉上应用的研究[J].煤炭加工与综合利用,1994(1):24-28.
    [23]谢峻林,何峰,袁润章.分解炉内煤的燃尽特性研究[J].武汉理工大学学报,2001,23(7):11-14.
    [24]杨建国.煤粉燃烧稳定性指数的建立[J].燃烧科学与技术,2000,19(4):215-219.
    [25]董德恩.煤矸石热值检测及燃烧特性分析.清净煤技术,2006,12(l):56-57.
    [26]宋新南,李伟.多燃料混合燃烧的燃烧学参数计算方法[J].工业炉,第22卷第3期2000,22(3):49-52.
    [27]王春波,李永华,陈鸿伟.混煤燃烧特性研究[J].中国电机工程学报,2005,25(18):97-103.
    [28]张晓杰,聂其红,孙少增等.混煤着火过程试验研究[J].电站系统工程,1999,15 (6):41-44.
    [29]刘豪,邱建荣,董学文等.生物质与煤混烧的燃烧特性研究[J].热能动力工程, 2002,17:451-454.
    [30]喻秋梅,庞亚军,陈宏国等.煤燃烧试验中着火点确定方法的探讨[J].华北电力技术,2001(7):9-10.
    [31]张全国,刘圣勇,黄秀花等.煤矸石成型燃烧特性的实验研究[J].矿产综合利用,1994,6:44-48.
    [32]张全国,马孝琴.煤矸石燃烧过程中的动力学特性研究[J].农业工程学报,1997,2:155-159.
    [33]杨金良.煤的着火及燃烧特性的判别[J].湖南电力技术,1994,3:7-9.
    [34]刘志超.热重-差热分析方法研究煤粉的燃烧特性[J].山东电力技术,1998(6):28-31.
    [35]邹学权,王新红,武建军等.用热重-差热-红外光谱技术研究煤粉的燃烧特性[J].煤炭转化,2003,26(1):71-73.
    [36] Cypres R, Mingels W, Lardinois J P, Laudet A, Masson H. Feasibility Study of the Hydropyrolysis of Coal[J]. Commission of the European Communities, EUR 14110, Luxembourg, 1992.
    [37] Chen H K, LiB Q, Zhang B J. Decomposition of Pyrite and the Interaction of Pyrite with Coal Organic Matrix in Pyrolysis and Hydropyrolysis[J]. Fuel, 2000, 79(13): 1627-1631.
    [38] Egiebor N.O, Gray M.R. Evidence for Methane Reactivity During Coal Pyrolysis and Liquefaction[J]. Fuel, 1990, 69(10): 1276-1282.
    [39] Breakman Danheux C,Fontana A,Van Hoegaerden M. Fuel, 1992, 71 (1): 251.
    [40] Yuan-Yao Lia, Tsuyoshi Nomurab, Akiyoshi Sakoda b,et al. Motoyuki Suzuki. Fabricationof carbon coated ceramic membranes by pyrolysis of methane using a modified chemical vapor deposition apparatus [J].Journal of Membrane Science, 2002(1-2).
    [41] Hunter N R, Prabawono D, Gesser H D. The carbon dioxide reforming of methane in a thermal diffusion column reactor (TDCR) and a pyrolysis reactor (PR) [J]. Catalysis Today, 1998(3).
    [42] Attar A. Chemistry, Thermodynamics and Kinetics of Reactions of Sulphur in Coal-gas. Reactions: A Review [J]. Fuel,1978, 57(4) : 201-212.
    [43] Sugawara T, Katsuyasu E,Synchrotron J et al. XANES Analysis of Sulfur Form Change During Pyrolysis of Coal [J]. Fuel, 2001, 80(8) : 955~957.
    [44]罗鸣,张建民,高梅杉.煤与天然气的高温共热解研究[J].煤炭科学技术,2006,34(5):56-60.
    [45]景晓霞,常丽萍,谢克昌.反应气氛对煤热解过程中NH3释放的影响[J].煤炭转化,. 2005,28(1):14-16.
    [46]高梅杉,张建民,罗鸣等.褐煤在甲烷气氛下热解特性及硫析出规律研究[J].煤炭转化,2005,28(4):7-10.
    [47]张建民,高梅杉,罗鸣.煤在还原性气氛下热解硫的析出机理研究进展[J].洁净煤技术,2005,11(1):34-38.
    [48]王锦平,张德祥,高晋生.煤中氯在不同气氛下的热解析出[J].煤炭转化,2003,26(2):29-32.
    [49]范晓雷,张薇,周志杰.热解压力及气氛对神府煤焦气化反应活性的影响[J].燃料化学学报,2005,33(5):530-533.
    [50]卢平,徐生荣,祝秀明,等.再燃烧条件下煤粉热解过程中C、H、N释放特性.热能[J].动力工程,2005,20(3):284-287.
    [51]廖洪强,孙成功,李保庆.焦炉气气氛下煤加氢热解研究进展[J].煤炭转化,1997,20(2):38-43.
    [52]廖洪强,孙成功,李保庆,等.富氢气氛下煤热解特性的研究[J].燃料化学学报, 1998,26(2):268-272.
    [53]廖洪强,李保庆,张碧江,等.煤焦炉气共热解特性研究IV[1].甲烷和一氧化碳对热解的影响[J].燃料化学学报,1998,26(1):13-17.
    [54]李保庆,廖洪强,张碧江.煤—合成气共热解特性的研究[J].煤化工,1999,3:22-25.
    [55] K. Annamalaia, B. Thiena, J. Sweeten. Co-firing of coal and cattle feedlot biomass (FB) fuels. Part II. Performance resultsfrom 30 kWt (100,000) BTU/laboratory scale boiler burner[J]. Fuel ,2003(82):1183–1193.
    [56] H. Spliethoff , K.R.G. Hein. Effect of co-combustion of biomass on emissions in pulverizedfuel furnaces[J]. Fuel Processing Technology ,1998,(54): 189–205.
    [57]于世航.煤层气的燃烧技术与设备[J].中国煤层气,2005,2(2):44-46.
    [58]黄盛初,朱超.我国煤层气利用技术现状与前景[J].中国煤炭,1998,24(5):25-28.
    [59]李宝玉,刘子龙.阳泉矿区煤层气的特点与利用.矿业安全与环保,2003 ,30(1):1-3.
    [60]赵钦新,惠世恩,燃油燃气锅炉[M].西安交通大学出版社,2000:214~215.
    [61]周长敬,宋鑫,姜波.大力推广节能型燃烧器—努力降低锅炉燃料消耗[J].中国能源,2000(7):36-37.
    [62]吴道洪.大力推广高效节能、低污染燃烧器[J].能源研究与利用,2000(2):36-37.
    [63]李超.新型低压抵热值煤气燃烧器研制[J].冶金动力,2003(5):1-2.
    [64]时坚.超低压天然气燃烧器的探讨及应用[J].天津冶金,1994(2):39-42.
    [65]李连春. H-TMG-75(S)燃烧器设计[J].一重技术,1996(1):101-102.
    [66]孙瑜珉.兰州炼油厂移地锅炉瓦斯燃烧器的设计[J].热能动力工程,1996(11):69-71.
    [67]王怀彬,邢志东.油田加热炉天然气燃烧器研究[J].哈尔滨工业大学学报,1996(1):133-136.
    [68]罗哲,王家兴.高速气体燃烧器的研制[J].导弹与航天运载技术,2000(3):48-52.
    [69] A.VAN.DER.DRIFT,S.L.TJENG.J.J.BECKERS and J BEESTEHEERDE Int.J.Hydrogen Energy Vol.21,No.6:445-449,1996.
    [70] G.W.Koroll.R.K.Kumar and E.M.Bowles , Burning velocities of hydrogen-air mixture. Combust.Flame.94:330-340(1993).
    [71] M..B.M.Visser and .B. Levinsky,Premixed conbustion in gas fired equipmernt,16.Deutscher Flammentag,VDI Berichte 1090,Claustal,Germany,14-15 September:139-146(1993).
    [72] J. Beesteherde,G..J.J. Beckers,P.R. Visser,S.L.Tjeng and A.van der Drift,Low NOX ceramic foam buner for domestic and industrial utilization.International gas research conference,Gas Research institution.Vol.Ⅳ,16-19 November,Orlando,Florida,U.S.A. PP.286-295(1992).
    [73]段希利,王宗明,王丽娟等.多股射流瓦斯燃烧器湍流扩散火焰尺度的实验研究[J].热能动力工程,2004,19(2):144-147.
    [74]伍成波,刘成全,梁小平.亚高速燃烧器研制[J].工业炉,1995(2):9-13.
    [75]曾庆广,白卫东,张昀.旋流燃烧器的燃烧稳定性冷态实验研究[J].东北电力技术,1998(8):1-7.
    [76]何立明,张建邦.燃烧器配风对W型火焰锅炉炉内空气动力场影响的实验研究[J].应用力学学报,2002,19(1):18-22.
    [77]岑可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利电力出版社,1987:25~30.
    [78]程勇,汪军.旋流燃烧室内湍流流动的PIV实验研究[J].上海理工大学学报, Vol.26 No.5 2004,26(5):454-456.
    [79] Koutmos J,Mcguirk J J.Isothermal flow in a gas turbine combustor—a benchmark experimental study[J].Experiment in Fluids,1989,(7):344~354.
    [80] Anand M S,Takahashi F,Vangsness M D,et al,An experimental and computational study of swirling hydrogen jet diffusion flame[J].Journal of Engineering for Gas Turbines and Power,1997,119:305~314.
    [81]刘伟,严传俊,王宏基,等.旋流燃烧室的实验研究和数值计算[A].教育部高等学校工程热物理学科协调组.工程热物理论文集[C].北京:科学出版社,1988.
    [82]普勇,张健,周力行.旋流燃烧室内湍流燃烧的PDA实验研究[J],工程热物理学报,2002,23(3):341-347.
    [83]王宗明,段希利,孙涛等.旋流稳焰瓦斯燃烧器湍流扩散火焰的数值模拟[J],石油大学学报,2003,27(5):70-72.
    [84]仇性启,王宗明.重整炉瓦斯燃烧器火焰长度数值研究[J].石油化工设备,2001,30(1):10-12.
    [85]范维澄,万跃鹏,流动及燃烧的模型与计算[M].合肥:中国科技大学出版社.1992.
    [86]江华,毛羽,吴德飞等.结构变化对气体燃烧器性能影响的数值模拟[J].石油大学学报,2004,28(6):94-98.
    [87]吴德飞,毛羽,江华等.复杂结构气体燃烧器三维流场和燃烧状况数值模拟[J].石油大学学报,2003,27(2):93-97.
    [88]冯良,洪鎏.低氮氧化物燃气燃烧器的CFD研究[J].上海煤气,2004(5):1-6.
    [89] P.J.COELHO and N.PETERS, Numerical Simulation of a Mild Combustion Burner. Combustion and Flame.124:503-518(2001).
    [90] Barths,H.,Peters,N.,Mack,A.,Pfitzner,M.,and Smiljanovski,V.,Twenty-Seventh Symposium(Int.)on Combustion,The Combustion Institute,Pitts-burgh,PA,1998,pp.1841-1847.
    [91] Peters N Prog.Energy Combust. Sci,10:319-339(1984).
    [92] Peters,N.,Twenty-First Symposium(Int.)on Combustion Institute,Pittsburgh,PA,1986:1231-1250.
    [93]仇性启,赵保忠,毛羽等.瓦斯燃烧器回流区数值模拟研究[J].石油大学学报,2001,25(3):74-76.
    [94]刘柏谦,徐有宁.煤矸石在流化床燃烧器中着火特性的试验研究[J].东北电力学院学报,1996,16(1):33-37.
    [95]刘柏谦.煤矸石在流化床着火特性研究和百叶迷宫煤矸石循环流化床锅炉设计[J].燃烧科学与技术,2003, 9(5):19-21.
    [96]刘相谦.煤在流化床中着火过程和流化床锅炉启动过程研究:[博士学位论文]杭州:浙江大学,l994.
    [97] De S,Lal A K,Nag P K. An experiment investigation on pressure drop and collection efficiency of simple plate-type impact separator. Power Technology,1999(106):132-137.
    [98]李先奇,戴金星.塔里木盆地天然气中N2含量特征及成因分析,天然气地质研究新进展[M].北京:石油工业出版社,1997:114-122.
    [99]李小彦,王强,杜新峰等.我国煤层气成分变化及时空分布特征[J].煤田地质与勘探,2002,30(6):67-71.
    [100]池涌,严建华,蒋旭光等.洗煤泥煤矸石流化床混燃过程研究[J].煤炭学报, 2001,26(2):38-41.
    [101]岑可法,杨家林,黄国权等.洗煤泥煤矸石流化床混烧技术工业应用研究[J].动力工程, 1999,19(1):1-5.
    [102]李静.洗煤泥与煤矸石流化床混烧技术的应用[J].科学试验,No.3 2003,( 3):35-36.
    [103]池涌,严建华,蒋旭光等.洗煤泥煤矸石流化床混烧过程基础研究与工业应用[J].洁净煤技术,2002,8(1):38-41.
    [104] Suksankraisorn,K,Patumsawad, S,Vallikul,P,Fungtammasan, B, Accary, A. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed[J]. Energy Conversion and Management,2004,45(6):947-962
    [105] Folgueras,M.Belén,María Díaz,R.,Xiberta,Jorge.Sulphur retention during co-combustion of coal and sewage sludge[J]. Fuel,2004,83(10):1315-1322.
    [106] Spliethoff,H.. Comparison of two co-combustion concepts for sewage sludge and powdered coal firing systems [J]. Fuel and Energy Abstracts Vol.38, Iss.4, Jul, 1997, pp. 250
    [107] Hoffmann,V. Co-combustion of sewage sludge and other wastes in power plants[J] .Fuel and Energy Abstracts, 1997,38(6): 420.
    [108] Fang, M.; Yang, L.; Chen, G.; Shi, Z.; Luo, Z.; Cen, K. Experimental study on rice husk combustion in a circulating fluidized bed[J]. Fuel Processing Technology ,2004,85(11)1273-1282
    [109] Hartge, E.-U.; Luecke, K.; Werther, J. The role of mixing in the performance of CFB reactors[J] .Chemical Engineering Science,1999, 54(22): 5393-5407.
    [110]张子栋,吴文渊.气固双燃料流化床锅炉[J].节能技术,1994,(2):12-14.
    [111]马晓茜.黄文迪.低热值煤气燃烧技术的应用与分析[J].冶金能源,1994,13(5):34-35.
    [112]庄正宁,曹子栋,唐桂华等. 50MW高压锅炉全燃高炉煤气的研究.热能动力工程,2001(16):271-274.
    [113]任建新.低热值高炉煤气在发电设备中的应用[J].上海电力学院学报,2001,17(2):1-4.
    [114]裴振林,刘定平.高炉煤气与贫煤在电站锅炉中的混烧实践[J].湖北电力,Vol.26,No.3 Jun.2002.
    [115]裴振林,刘定平.自备电厂2号锅炉前屏过热器爆管原因分析[J].武钢技术,1999,221(3):52-54.
    [116]杨轶,陈刚.煤粉和高炉煤气混烧锅炉燃烧问题的分析及改造[J].电站系统工程, 2003,19(2):36-38.
    [117]刘定平,陈红艳.低热值高炉煤气与煤粉混烧技术的探讨[J].锅炉技术, 2003,34(6):44-48.
    [118]刘定平. SC-DF燃烧器节油稳燃机理及应用[J].武钢技术,2002,237(1):47-45.
    [119]雷正香.火炬气的回收利用[J].石油化工,1996,25(2):102-105.
    [120]张兰波.火炬气回收装置改造及运行状况分析[J].石化技术与应用,2000,18(6):156-157.
    [121]柴沁虎,丁艳军,张德华等.掺烧火炬气的燃煤锅炉热力特性研究[J].中国电力, 2003,36(4):17-20.
    [122] Holdfond,Mark R. Evaluation of methods available for reducing solution gas flaring in Alberla[M]. Proceeding of the Air & Waste Management Association’s Annual Meeting & Exhibition,1998.
    [123] Flaring Venting and other losses of natural gas in North African Countries annually 1975 to 1995[M]. Energy Exploration & Exploitation,1997,15(12):171.
    [124] Milanesi Ines flare gas recovery, International Journal of Hydrocarbon Engineering,1999,4(6):79-80.
    [125] Rames C. Panda , Jesko Zank, Holger Martin . Experimental investigation of droplet deposition on a single particle[J]. Chemical Engineering Journal ,2001,83: 1–5.
    [126] F.F. Hill,J. Zank .Flue gas desulphurization by spray dry absorption[J]. Chemical Engineering and Processing, 2000, 39: 45–52.
    [127] Fabrizio Scala, Michele D’Ascenzo, Amedeo Lancia. Modeling flue gas desulfurization by spray-dry absorption[J]. Separation and Purification Technology , 2004, 34: 143–153.
    [128] Jui-Chen Lin , James W. Gentry. Modeling of Particle Formation by Spray Drying Process[J]. Z Aerosol Sci. 1997,28: 477-478.
    [129] Ireneusz Zbicinski., Agnieszka Delag, Czeslaw Strumillo. Advanced experimental analysis of drying kinetics in spray drying[J]. Chemical Engineering Journal, 2002, 86: 207–216.
    [130] Rames C. Panda , Jesko Zank , Holger Martin. Modeling the droplet deposition behavior on a single particle in fluidized bed spray granulation process[J]. Powder Technology, 2001,115: 51–57.
    [131] M. Kadja,G. Bergeles. Modelling of slurry droplet drying[J]. Applied Thermal Engineering , 2003, 23: 829–844.
    [132] K.L. Christensen, G.P. Pedersen, H.G. Kristensen. Preparation of redispersible dry emulsions by spray drying[J]. International Journal of Pharmaceutics, 2001, 212: 187–194.
    [133] T.A.G. Langrish, D.F. Fletcher. Spray drying of food ingredients and applications of CFD in spray drying[J]. Chemical Engineering and Processing , 2001, 40: 345–354.
    [134] Jens Stein., Matthias Kind, Ernst-Ulrich Schlünder. The influence of HCl on SO2 absorption in the spray dry scrubbing process[J]. Chemical Engineering Journal ,2002, 86: 17–23.
    [135] Yuanjing Zheng, S?ren Kiil, Jan E. Johnsson. Use of spray dry absorption product in wet flue gas desulphurization plants: pilot-scale experiments[J]. Fuel ,2002, 81:1899–1905.
    [136]刘大有.二相流体动力学(Two-Phase Fluid Dynamics)[M].北京:高等教育出版社, 1993:30-102.
    [137]洪若瑜.内循环和外循环流化床中超细粉流态化的研究.中国科学院化工冶金研究所,博士学位论文,北京,1996.
    [138]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社, 1994:153-200.
    [139] Ge W, Li J. in Circulating Fluidized Bed Technology V(eds. Kwauk M, Li J), Science Press,Beijing, 1996: 260-266.
    [140]刘大有.现代力学与科技进步[M].北京:清华大学出版社, 1997: 622-625.
    [141] Li J, Kwauk M. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method, Beijing, Metallurgical Industry Press,1994.
    [142] Xu G, Zhang Y,Selected Papers of Engineering Chemistry and Metallurgy, Science Press,Beijing,1994:115-128.
    [143]查普曼(Chapmann S),考林(Cowling T G).非均匀气体的数学理论(The Mathematical Theoryof Non-Uniform Gases)[M].北京:科学出版社, 1990: 160-226.
    [144] Zhang Jian, S Nieh. Simulation of the Strongly Swirling Gas-Particle Turbulent Flow by Stochastic Trajectory Model[J]. Chinese Science Abstracts Series A,1995,14(2):15.
    [145] Zhou L X, Chen T. Simulation of swirling gas–particle flows using USM and k–ε–kp two-phase turbulence models[J]. Powder Technology, 2001,114(1-3):1-11.
    [146] Lahey Jr Richard T, Drew Donald A. The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model[J]. Nuclear Engineering and Design, 2001, 204(1-3): 29-44.
    [147] Zhang Jian, Nieh Sen. Swirling,reacting, turbulent gas-particle flow in a vortexcombustor[J]. Powder Technology, 2000,112(1-2):70-78.
    [148] Cao Jianfa, Ahmadi Goodarz. Gas–particle two-phase turbulent flow in horizontal and inclined ducts[J]. International Journal of Engineering Science, 2000,38(17):1961-1981.
    [149] Shang Zhi, Yang Ruichang, Fukuda Kenji. Experiment and simulation using diffusion flux model for gas-particle two-phase flow in a suspension bed[J]. Chemical Engineering Science, 2004,59(7):1505-1514.
    [150] Zhou L X, Xu Y, Fan L S. Simulation of swirling gas–particle flows using an improved second-order moment two-phase turbulence model[J]. Powder Technology, 2001, 116(2-3): 178-189.
    [151] Yu Zheng, Xiaotao Wan,Zhen Qian, et al. Numerical simulation of the gas–particle turbulent flow in riser reactor based on k––kp– p– two-fluid model[J]. Chemical Engineering Science, 2001,56(24): 6813-6822 .
    [152] Spalding D.B., Mathematical Models of Continuous Combustion, Plenum Press,1986.
    [153] Rogers C.B., Eaton J.K., The Behavior of Solid Particles in a Vertical Turbulent Boundar Layer in Air, Int. J. Multiphase Flow, 1990,18(5):819~834.
    [154] Adrian R.J., Yao C.S., Power Spectra of Fluid Velocities Measured by Laser Doppler Velocimetry, Expts. Fluids,1987,5: 17~28.
    [155]徐跃年.煤热解的反应动力学研究[J].热能动力工程,1995.5,10(3):154-157.
    [156]邱宽嵘.煤的热解动力特性研究[J].中国矿业大学学报,1994.9,23(3):43-46.
    [157] Mustafa Versan Kok,Esber Ozbas. Effect of particle size on coal pyrolysis.Journal of Aanlytical and Applied Pyrolysis,1998,45:103-110.
    [158] A.Arenillas,F.Rubiera et al.Thermal behaviour during the pyrolysis of low rank perhydrous coals. Journal of Aanlytical and Applied Pyrolysis,2003,68-69:371-385.
    [159] Quanrun Liu,Haoquan Hu et al.Effect of inorganic matter on reactivity and kinetics of coal pyrolysis.Fuel,2004,83:713-718.
    [160]姜秀民,刘德昌.油页岩燃烧性能德热分析研究[J].中国电机工程学报,2001.8,21(8):55-59.
    [161]张全国,马孝琴.煤矸石燃烧过程中的动力学特性研究[J]农业工程学报,1997,11(3):155-159.
    [162] M.J.G Alonso,A.G.Borrego.et al. Influence of pyrolysis temperature on char optical texture and reactivity.Journal of Analytical and Applied Pyrolysis,2001,58-59:887-909.
    [163] Jerzy Tomeczek,Henryk Palugniok.Kinetics of mineral matter transformation during coal combustion.Fuel,2002,81:1251-1258.
    [164] Hao Liu, Jian-rong Qiu, Hao Wu et al. Direct modification of solid residues duringco-firing of coal sludge and coal.Fuel,2003,(82):2323-2329.
    [165] Li-Ming Zhang, Zhi-Cheng Tan,Shu-Dong Wang, Di-Yong Wu. Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive. Thermochimica Acta,1997,(299):13-17.
    [166]候栋歧,冯金梅.陈春元等.混煤煤粉着火和燃尽性能的试验研究[J].电站系统工程,1995,11(2):30-34.
    [167] X.Li, G.Matuschek. et al. Investigation of Pyrolysis of Chinese Coals Using Thermal Analysis/Mass Spectrometry[J]. Journal of Thermal and Calorimetry,2003.71:601-612.
    [168]郭嘉,曾汉才.混煤热解特性及热解机理的热重法研究[J].锅炉技术,1994:5-7.
    [169]聂其红,孙绍增.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76.
    [170]路春美,王立真.用热重法确定煤的着火温度与可燃性指数[J].山东电力技术,1994,(2):68-71.
    [171] Shen Boxiong,Liu Dechang,Lu Jidong. Study on ignition and combustion of petroleum coke,Petroleum processing and petrochemicals.2000,31(10):60-64.
    [172]牛奔.煤矸石热解和燃烧动力学特性及与煤层气循环流化床混烧试验研究(工学硕士学位论文).重庆大学硕士论文.2005,10.
    [173]罗渝东.低热值煤层气燃烧器的数值模拟与实验研究(工学硕士学位论文).重庆大学硕士论文.2006,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700