高静温超声速预混气爆震起爆与发展过程机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从化学反应动力学分析出发,通过理论分析、数值计算及实验手段,系统深入地研究了高静温预混超声速气流中爆震的直接起爆与发展过程及初温对其的影响。
     采用敏感性分析方法,结合三种反应器所得的实验数据,对几种常用的氢氧详细反应模型进行验证,发现Connaire与Balakrishnam反应模型能在较大的工况范围内得到较合理的结果。建立了基于敏感性分析和准稳态假设的复杂反应模型简化方法,得到了一组适用于氢氧爆震自适应化学数值模拟的反应模型。
     基于爆震简化理论和ZND模型对爆震参数和结构的分析表明:当来流混合物初温升高时,CJ爆震波传播马赫数与压升比明显下降;由于波后温度略升而压升明显下降,因此来流初温对爆震结构的影响关系复杂。通过分析爆震结构中诱导区长度和放热区组分消耗对反应的敏感性,采用元素跟踪法研究了诱导区与反应区中的关键组分,得到了爆震发展过程中的关键反应和重要组分。
     采用自适应化学数值方法分别模拟了二维等直管道中爆震的发展过程和斜爆震的起爆及发展过程。研究表明:在等直管道内的爆震发展过程中,横波在爆震三波点的演化和发展过程中起重要作用;来流静温升高导致横波和三波点的强度下降,爆震波面发展趋于一维平面波结构,并使得自持爆震发展过程中更容易发生熄灭。在斜爆震的起爆及发展过程中,来流静温升高导致起爆点前移,三波点附近的爆震波角度变化趋于平缓。
     研制了连续式高焓预混超声速加热器,通过对其混合过程的数值模拟和着火延迟分析及实验研究,验证了该加热器既保证了混合均匀又解决了预着火问题。采用高速纹影技术研究了斜激波诱导燃烧与爆震发展的动态过程,分析了斜激波角度、混合物当量比及其他因素对其的影响与作用机制。结果表明高静温预混气流中爆震波的平均传播速度比CJ爆震速度低。起爆过程中,燃烧与流动的相互作用使得斜激波角度略增,导致波后温度和压力略有上升;当波后的气流处于起爆临界状态并出现较大扰动时,由于激波与燃烧的正反馈作用将发生迅速起爆。发展过程中,由于脱体爆震波本身的不稳定性及其与边界层的耦合振荡作用,导致爆震波角度与起爆三波点位置发生振荡;当可燃混合物的活性增大时,出现爆震波三波点向上游突跃的现象。对于低活性的来流混合物,即使强度较大的斜激波也较难起爆或维持爆震状态;随着来流活性的增加,爆震发展过程中出现了起爆-熄灭-再起爆的现象;随来流活性的进一步提高,脱体爆震波能持续发展。
Starting from an analysis of chemical reaction mechanism and by means of theoretical analysis, numerical simulation and experimental studies, this dissertation systematically and thoroughly studies the direct initiation and development of detonation in high temperature premixed supersonic flow as well as the effect of initial temperature on detonation.
     By adopting the sensitivity analytical method, several popular hydrogen/oxygen detailed reaction models are verified by reference to the experimental data obtained from three kinds of reactor. It is found that relatively reasonable results can be obtained from the Connaire and Balakrishnam reaction models under a wider range of experimental conditions. Methods for simplifying complex reaction models are put forward on the basis of sensitivity analysis and quasi-steady state assumptions, and a set of reaction models suitable for the numerical simulation of hydrogen/oxygen detonation by using the adaptive chemical method are established.
     On the basis of detonation theory and analysis of the parameters and structure of detonation according to ZND model, it can be found that when the initial temperature of the mixture rises, the velocity of CJ detonation wave and pressure rise ratio will drop drastically. Since the temperature after the wave rises only slightly while the pressure rise ratio drops greatly, it can be seen that the influence of initial temperature of the mixture on the structure of detonation is a complex one. By analyzing the sensitivity of induction segment length in detonation structure and species consumption in heat release segment to reactions, and by studying the crucial species in induction segment and heat-released segment through element-tracking method, the key reactions and important species in detonation development are identified.
     The detonation development and the oblique detonation initiation and development in planar constant area duct are respectively simulated by using adaptive chemical numerical method. The research demonstrates that in detonation developmental in planar constant area duct, the traverse wave plays an important role in the evolution and development of detonation three wave point. The elevation of the mixture temperature will reduce the strength of traverse wave and three wave point, cause the structure of detonation to change into a 1D planar one, and make it more likely for detonation failure to occur in the development of self-sustained detonation. In the initiation and developmental process of oblique detonation, the elevated temperature of mixture will cause the onset location to move forward, and the change of detonation wave angle near the three wave point tends to become mild.
     A continuous high-enthalpy premixed supersonic combustor is designed. Through numerical simulation of its combination process and combustion delay analysis and experiment, it is proved that this combustor can not only ensure an effective combination process but also solve the pre-ignition problem. By adopting the high speed schlieren technique, the dynamic processes of the shock-induced combustion and detonation development are studied, and the influence of shock angle, mixture stoichiometric ratio and other factors on these processes as well as the underlying mechanism are analyzed. The result shows that the average propagation speed of detonation wave in high-temperature premixed flow is lower than that of CJ detonation. During the initiation, the interaction between combustion and flow slightly increases the shock angle, causing the temperature and pressure after the wave to rise slightly. When the flow after the wave is on the verge of detonation onset and large disturbance occurs, detonation will take place rapidly because of the interaction of shock and combustion. During the development, because of the instability of detached detonation itself and its coupled oscillation with the boundary, the detonation angle and the position of initiation location three wave point will oscillate; when the reaction mixture activity of combustible mixture increases, the three wave point of detonation will move abruptly upward. For the mixture of low mixture mobility, it is even hard for oblique detonation with relative large force to initiate the detonation and keep the status; with the increase of mixture mobility, the phenomenon of onset followed by detonation failure and then followed by onset again will occur in the detonation developmental process; and with the further increase of mixture mobility, the detached detonation will be able to keep developing.
引文
[1] Kailasanath, K. Review of propulsion applications of detonation waves [J]. AIAA Journal, 2000, 38(9): 1698-1708
    [2] Sislian, J. P., Martens, R. P., Schwartzentruber, T. E., and Parent, B. Numerical simulation of a real shcramjet flowfield [J]. Journal of Propulsion and Power 2006, 22(5): 1039-1048
    [3] Alexander, D. C., Sislian, J. P., and Parent, B. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets [J]. AIAA Journal, 2006, 44(10): 2145-2155
    [4] Schwartzentruber, T. E., Sislian, J. P., and Parent, B. Suppression of premature ignition in the premixed inlet flow of a shcramjet [J]. Journal of Propulsion and Power, 2005, 21(1): 87-94
    [5] Sislian, J. P. and Parent, B. Hypervelocity fuel/air mixing in a shcramjet inlet [J]. Journal of Propulsion and Power, 2004, 20(2): 263-272
    [6] Fusina, G. Numerical investigation of oblique detonation waves for shcramjet combustor [D]. University of Toronto, 2003
    [7] Parent, B., Sislian, J. P., and Schumacher, J. Numerical investigation of the turbulent mixing performance of a cantilevered ramp Injector [J]. AIAA Journal, 2002, 40(8): 1559-1566
    [8] Sislian, J. P., Dudebout, R., Schumacher, J., Islam, M., and Redford, T. Incomplete mixing and off-design effects on shock-induced combustion ramjet performance [J]. Journal of Propulsion and Power, 2000, 16(1): 41-48
    [9] Sislian, J. P., Schumacher, J. A Comparative Study of Hypersonic Fuel/Air Mixing Enhancement by Ramp and Cantilevered Ramp Injectors [R]. AIAA Paper 1999-4873. 1999
    [10] Dudebout, R. and Sislian, J. P. Numerical simulation of hypersonic shock-induced combustion ramjet flowfields [R]. AIAA Paper, 1994-3098 1994: ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, 30th, Indianapolis, IN, June 27-29, 1994
    [11] Pratt, D. T., Humphrey, J. W., and Glenn, D. E. Morphology of standing oblique detonation waves [J]. J. Propulsion, 1991, 7(5): 837-845
    [12] Fusina, G., Sislian, J. P., and Parent, B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves [J]. AIAA Journal 2005, 43(7): 1591-1604
    [13] Dudebout, R., Sislian, J. P., and Oppitz, R. Numerical simulation of hypersonic shock-induced combustion ramjets [J]. Journal of Propulsion and Power 1998, 14(6): 869-879
    [14] Carrier, G. F., Fendell, F. E., and Fink, S. F. Nonintrusive stabilization of a conicaldetonation wave for supersonic combustion [J]. Combustion and flame, 1995, 103: 281-295
    [15] Ashford, S. A., Emanuel, G. Oblique detonation wave engine performance prediction [J]. Journal of Propulsion and Power, 1996, 12(2): 322-327
    [16] Ostrander, M.J., Hyde, J.C., Young, M.F., Kissinger, R.D. . Standing oblique detonation wave engine performance [R]. AIAA Paper, 1987-2002. 1987
    [17]袁生学,赵伟,黄志澄.驻定斜爆轰波的初步实验观察[J].空气动力学学报, 2000, 18(4): 473-477
    [18]袁生学,黄志澄.自持斜爆轰的特性和实验观察[J].宇航学报, 1995, 16(2): 90-92
    [19]崔东明,范宝春.用于推进的驻定斜爆轰的基本特征[J].宇航学报, 1999, 20(2): 48-54
    [20] J. P. Sislian, H. Schirmer; R. Dudebout, J. Schumacher Propulsive Performance of Hypersonic Oblique Detonation Wave and Shock-Induced Combustion Ramjets [J]. Journal of Propulsion and Power, 2001 17(3): 599-604
    [21] Avrashkov, V., Baramovsky, S., Levin, V. Gasdynamic features of supersonic kerosene combustion in a model combustion chamber [R]. AIAA Paper, 1990-5268
    [22] Carrier, G., Fendell, F., McGregor, R., Cook, S., and Vazirani, M. Laser-initiated conical detonation wave for supersonic combustion [J]. Journal of Propulsion and Power, 1992, 8(2): 472-480
    [23] Lee, J. H. S. Initiation of gaseous detonation [J]. Annual Review of Physical Chemistry, 1977, 28: 75-104
    [24] Strehlow, R. A. The nature of transverse waves in detonations [J]. Astronautica Acta, 1969 14: 539–548
    [25] Ciccarelli, G., Boccio, J. L., Ginsberg, T., and Tagawa, H. The Influence of initial temperature on flame acceleration and deflagration- to- detonation transition [J]. 26th Symp. Int. on Combustion, 1996: 2973-2979
    [26] Munipalli, R., Shankarf, V. A Pulsed Detonation Based Multimode Engine Concept [R]. AIAA Paper, 2001-1786. 2001
    [27] Eidelman, S. Pulse Detonation Engine: A Status Review and Technology Development Road Map [R]. AIAA Paper 1997-2704. 1997
    [28] Knowlen, C., Bruckner, A. P., Basic and applied studies of the ram accelerator as a high performance launcher. 2001.
    [29] Voitsekhovskii, B. V. Stationary detonation [J]. Doklady Akademii Nauk UzSSR, 1959, 129(6): 1254-1256
    [30] Gross, R. A. and Chinitz, W. A study of supersonic combustion [J]. Journal of the Aero/Space Sciences, 1960, 27(7): 517-524
    [31] Gross, R. A. Research of supersonic combustion [J]. ARS Journal, 1960, 29(1): 63-72
    [32] Voitsekhovskii, B. V. Stationary spin detonation [J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, May-June(3): 157-164
    [33] Tse, S. D., Zhu, D. L., and Law, C. K. Morphology and burning rates of expanding spherical flames in H2/O2/Inert mixtures up to 60 atmospheres [J]. Prceedings of the Combustion Institute, 2000, 28: 1703-1800
    [34] Liang, Z. and Bauwens, L. Detonations structure with a chain-branching model yielding three explosion limits [R]. AIAA Paper, 2005-3968. 2005
    [35] Strehlow, R. A. and Fernandes, F. D. . Transverse waves in detonations [J]. Combustion and Flame 1965, 9(2): 109-119
    [36] Damkohler, F. Parameter for prediction and classification of unsteady combustions around hypersonic projectiles [R]. AIAA Paper, 96-3137. 1996
    [37] Gamezo, V. N., Desbordes, D., and Oran, E. S. Formation and evolution of two-dimensional cellular detonations [J]. Combustion and Flame 1999, 116(1-2): 154-165
    [38] Kamiyama, Y., and Matsuo, A. Flow features of shock-induced combustion around cylindrical projectiles [J]. 28th Symposium (International) on Combustion, 2000, 28: 671-677
    [39] Sichel, M., Tonello, N. A., Oran, E. S., Jones, D. A. A two-step kinetics model for numerical simulation of explosions and detonations in H2-O2 mixtures [J]. Proceedings of. the Royal Society London A, 2002, 458(2017): 49-82
    [40] NG, H. D. and Lee, J. H. S. Direct initiation of detonation with a multi-step reaction scheme [J]. Journal of Fluid Mechanics, 2003, 476: 179-211
    [41] Rubins, P. M. and Barer, R. C. Review of shock-induced supersonic combustion research and hypersonic applications [J]. J.P.P., 1994, 10(5): 593~601
    [42] Powers, J. M. and Gonthier, K. A. Reaction zone structure of weak underdriven oblique detonations [R]. AIAA Paper, 1992-347 1992: Aerospace Sciences Meeting and Exhibit, 30th, Reno, NV, Jan 6-9, 1992
    [43] Deiterding, R. Parallel adaptive simulation of multi-dimensional detonation structures [D]. Techn. Univ. Cottbus 2003
    [44] Oran, E. S., Weber Jr., J. W., Stefaniw, E. I., Lefebvre, M. H., and Anderson Jr., J. D. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model [J]. Combustion and Flame, 1998, 113(1-2): 147-163
    [45] Browne, S., Liang, Z., and Shepherd, J. E. Detailed and simplified chemical reaction mechanisms for detonation simulation [R]. Western States Section of the combustion Institute, 2005. 2005. Stanford University
    [46] Togashi, F., L?hner, R., and Tsuboi, N. Numerical simulation of H2/air detonation using detailed reaction models [R]. AIAA Paper, 2006-954. 2006: 44th AIAAAerospace Sciences Meeting and Exhibit, 9 - 12 January 2006, Reno, Nevada
    [47]王丁喜---重复不能用.脉冲爆震发动机进气道内流场和爆震燃烧的数值研究[D].西北工业大学, 2005
    [48] Powers, J. M. and Paolucci, S. . Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry [J]. AIAA JOURNAL, 2005, 43(5): 1088-1099
    [49] Hu, X. Y., Zhang, D. L., Khoo, B. C., and Jiang, Z. The structure and evolution of a two-dimensional H2/O2/Ar cellular detonation [J]. Shock Wave, 2005, 14(1): 37-44
    [50] Deiterding, R. and Bader, G. High-resolution simulation of detonations with detailed chemistry [M]. Analysis and Numerics for Conservation Laws Vol. pages 69-91, Springer, Berlin, 2005
    [51] Macho, In K. Kremer and V. Detonation simulation with the AMROC framework [M]. Beitr?ge zum Heinz-Billing-Preis 2003, Gesellschaft für Wiss. Datenverarbeitung, G?ttingen. 2004: 63-77
    [52] Hu, X. Y., Khoo, B. C. , Zhang, D. L. and Jiang, Z., . The cellular structure of a two-dimensional H2/O2/Ar detonation wave [J]. Combustion Theory and Modeling, 2004, 8(2): 339-359
    [53] Lehr, H. F. Experiments on shock induced combustion [J]. Astron. Acta., 1972, 17(4): 589-597
    [54] Clutter, J K, Mikolaitis, D. W., Shyy, W. Effect of reaction mechanism in shock-induced combustion simulations [R]. AIAA Paper, 98-0274. 1998
    [55] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W. et al. GRI-Mech homepage, Gas Research Institute, Chicago, www.me.berkeley.edu/gri_mech/. [J]. 1999
    [56] Rogers, R. C., Chinitz, W. Using a global hydrogen-air combustion model in turbulent reacting flow calculations [J]. AIAA Journal, 1983, 21(4): 586-592
    [57] Moretti, G. A new technique for the numerical analysis of nonequilibrium flows [J]. AIAA Journal, 1965, 3(2): 223-229
    [58] Evans, J. S., Schexnayder, C. J. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames [J]. AIAA Journal, 1980, 18(2): 188-193
    [59] Connaire, M. O., Curran, H J., Simmie, J. M., Pitz, W. J. and Westbrook, C.K. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603-622
    [60] Bittker, D. A., Scullin, V. J., Chemical kinetics computer program for static and flow reactions. 1972.
    [61] Oran, E. S., Young, T. R. Application of time-dependent numerical methods to thedescription of reactive shocks [J]. Proceedings of the 17th International Symposium on Combustion, The Combustion Institute Pittsburgh, PA,, 1978, 17: 43-54
    [62] Burks, T. L., Oran, E. S., A computational study of the chemical kinetics of hydrogen combustion. 1981.
    [63] Oran, E. S., Young, T. R., Boris, J. P., and Cohen, A. Weak and strong ignition. I. Numerical simulations of shock tube experiments [J]. Combustion and Flame 1982, 48: 135-148
    [64] Westbrook, C. K. Chemical kinetics of hydrocarbon oxidation in gaseous detonations [J]. Combustion and Flame, 1982, 46(3): 191-210
    [65] Miller, J. A., Bowman, C. T. Mechanism and Modeling of Nitrogen Chemistry in Combustion [J]. Prog. Energy Combust. Sci., 1989, 15(4): 287-338
    [66] Drummond, J. P. , Two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer. 1988.
    [67] Jachimowski, C. J., An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. 1988.
    [68] Ali, M., Fujiwara, T., Leblanc, J. E. Influence of main flow inlet configuration on mixing and flameholding in transverse injection into supersonic airstream [J]. International Journal of Engineering Science, 2000, 38, Number , July , pp. (11): 1161-1180
    [69] Toshimitsu, K., Matsuo, A., Kamel, M. R., Morris, C. I., and Hanson, R. K. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows [J]. Journal of Propulsion and Power, 2000, 16(1): 16-21
    [70] Yungster, S., Radhakrishnan, K. A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability [J]. Shock Waves, 1996, 5(5): 293-303
    [71] Choi, J. Y., Jeung, I. S. and Yoon, Y. Validation of CFD algorithms for unsteady shock-induced combustion [R]. AIAA Paper, 98-3217. 1998
    [72] Oldenborg, R., Hypersonic combustion kinetics: status report of the rate constant committee, NASP high-speed propulsion technology team. 1990.
    [73] Balakrishnan, G., Williams, F.A. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames [J]. Journal of Propulsion and Power, 1994, 10(3): 434-436
    [74] Pimentel, C. A. R., Azevedo, J. L. F., Figueira, da Silva L.F., Deshaies, B. Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions [J]. J. Braz. Soc. Mech. Sci., 2002, 24(3): 149-157
    [75] Muller, M. A., Kim, T. J., YETTER, R. A., and Dryer, F. L. Flow reactor studies and kinetic modeling of the H2/O2 Reaction [J]. International Journal ofChemical Kinetics, 1999, 31(2): 113-125
    [76] Peters, N. Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames [J]. Lecture Notes in Physics, 1985, 241: 90-109
    [77] Peters, N. & Williams, F. A. The asymptotic structure of stoichiometric methane-air flames [J]. Combustion and Flame, 1987, 68(2): 185-207
    [78] Turányi, T. Sensitivity analysis of complex kinetic systems: Tools and applications [J]. Journal of Mathematical Chemistry, 1990, 5(3): 203-248
    [79] Turányi, T. Applications of Sensitivity Analysis of Combustion Chem istry [J]. Reliability Engineering and System Safety, 1997, 57: 41-48
    [80]董刚,刘宏伟,陈义良.通用甲烷层流预混火焰的半详细化学动力学机理[J].燃烧科学与技术, 2002, 8(1): 44-48
    [81]钱炜祺.用灵敏度法简化化学反应动力模型[J].空气动力学报, 2004, 22(1): 88-92
    [82]陈义良,董刚,李艺.燃料氧化反应动力学机理简化的研究进展[R].中国工程热物理学会燃烧学学术会议论文集. 2000. 2000:北京:中国工程热物理学会
    [83] Griffiths, J. F. Reduced kinetic models and their application to practical combustion systems [J]. Progress in Energy and Combustion Science, 1995, 21(1): 25-107
    [84] Turányi, T., Tomlin, A. S., and Pilling, M. J. On the Error the Quasi-Steady-State Approximation [J]. J. Phys. Chem., 1993, 97: 163~172
    [85] Lam, S. H., Goussis, D. A. The CSP Method of Simplifying Kinetics [J]. International Journal of Chemical Kinetics, 1994, 26: 461-486
    [86] Massias, A., Diamantis, D., Mastorakos, E., Goussis, D. A. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data [J]. Combustion Theory and Modelling, 1999, 3(2): 233-257
    [87] Massias, A., Diamantis, D., Mastorakos, E., Goussis, D. A. An algorithm for the construction of global reduced mechanisms with CSP data [J]. Combustion and Flame, 1999, 117(4): 685-708
    [88] Maas, U. Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space [J]. Combust and Flame, 1992, 88: 239-264
    [89] Maas, U. Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics [J]. 1997
    [90] Ortega, J.M., Najm, H.N., Ray,J., Valorani, M., Goussis, D.A., and Frenklach, M.,. Adaptive Chemistry Computations of Reacting Flow [J]. Journal of Physics: Conference Series 2007, 78
    [91] Eckett, A.C. Numerical and analytical studies of the dynamics of gaseousdetonations [D]. California Institute of Technology, 2001
    [92] Chen, J. Y. A general procedure for constructing reduced reaction mechanisms with given independent relations [J]. Combustion Science and Technology, 1988, 57(1-3): 89-94
    [93] Montgomery, C. J., Swensen, D. A.,. Harding, T. V. and M. J. Bockelie. Automated creation and testing of reduced chemical kinetic mechanisms [R]. AIAA Paper, 2001-3418. 2001: AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 37th, Salt Lake City, UT, July 8-11, 2001
    [94] Montgomery, C. J., Cremer, M. A., Chen, J. Y., Westbrook, C. K., Maurice, L. Q. Reduced chemical kinetic mechanisms for hydrocarbon fuels [J]. Journal of Propulsion and Power, 2002, 18(1): 192-198
    [95] Montgomery, C. J., Zhao, W. CFD Simulations of a 3-D Scramjet Flameholder Using Reduced Chemical Kinetic Mechanisms [R]. AIAA Paper, 2004-3874. 2004
    [96] Massias, A., Goussis, D. A., CSP-STEP Version 3.0: A fortran program for automatically producing global reduced chemical kinetic mechanisms of prescribed size. 1999.
    [97]钱炜祺,杨顺华,肖保国,乐嘉陵.用准稳态方法建立碳氢燃料点火燃烧的简化化学反应动力学模型[J].空气动力学学报, 2007, 25(1)
    [98]钱炜祺,杨顺华,肖保国,乐嘉陵.碳氢燃料点火燃烧的简化化学动力学模型[J].力学学报, 2007, 39(1): 37-44
    [99] XXX.基于敏感性分析和准稳态假设简化详细反应机理[J].国防科技大学学报, 2007, 29(1): 16-20
    [100]张全,陈义良.基于CSP理论修正的准稳态假设[J].中国科学技术大学学报, 2001, 31(4): 448-453
    [101]董刚,邱榕,蒋勇,张和平.利用主成分分析法简化甲烷/空气层流预混火焰的反应机理[J].火灾科学, 2004, 13(3): 158-162
    [102] Green, W. H, and Schwer, D. A. Computational Fluid and Solid Mechanics [M]. 1209-1212 ed Elsevier Science Ltd., 2001
    [103] Schwer, D. A. A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry [J]. Combustion Theory and Modelling, 2003(7): 383~399
    [104] Schwer, D. A., Tolsma, J. E., Green, W. H., and Barton, P. I. On upgrading the numerics in combustion chemistry codes [J]. Combustion and Flame, 2002, 128(3): 270-291
    [105]乔瑜,姚洪,王臣,徐明厚.基于自适应方法的Sn/O/H/N/C/Cl反应机理简化[J].工程热物理学报, 2007, 28(2): 335-338
    [106]乔瑜,徐明厚.基于自适应化学理论甲烷预混燃烧的非主量成分的数值计算[J].中国电机工程学报, 2005, 25(13): 86-90
    [107] Powers, J. M. Review of multiscale modeling of detonation [J]. Journal of Propulsion and Power 2006, 22(6): 1217-1229
    [108] Chapman, D. L. On the rate of explosion in gases [J]. Philosophical Magazine, 1899, 47: 90-103
    [109] Jouguet, E. On the propagation of chemical reactions in gases [J]. J. de Mathématique Pures et Appliquées, 1906, Vol. 1, 347-425
    [110] Zel'dovich, Y. B. To the question about energetic use of detonation combustion [J]. Journal of Technical Physics, 1940, 10(17): 1453-1461
    [111] Neumann, J. V. Theory of detonation waves [M]. In A. J. Taub, Collected Works. Macmillan, ed. J.V. Neumann 1942
    [112] Strehlow, R.A., Engel. C.D., . Transverse waves in detonations: II - structure and spacing in H2-O2, C2H4-O2, and CH4-O2 systems [J]. AIAA Journal 1969, 7(3): 492-496
    [113] Kaneshige, M. and Shepherd, J. E. Detonation database [J]. Technical Report FM97-8, GALCIT, 1997
    [114] Strehlow, R. A., Liaugminas, R., Watson, R. H., and Eyman, J. R. Transverse wave structure in detonations [J]. Eleventh. Symposium (International) on Combustion,The Combustion Institute, Pittsburgh, Pa., 1967: 683-692
    [115] Strehlow, R. A. Multi-dimensional detonation wave structure [J]. Astronautica Acta, 1970, 15: 345-357
    [116] Strehlow, R. A. and Biller, J. R. On the strength of transverse waves in gaseous detonations [J]. Combustion and Flame, 1969, 13(6): 577-582
    [117] Edwards, D. H. and Parry, D. J. The structure of transverse waves in detonations [J]. ASTRONAUTICA ACTA, 1969, 14: 533-537
    [118] Smirnov, N. N. and Tyurnikov, M. V. Experimental investigation of deflagration to detonation transition in hydrocarbon-air gaseous mixtures [J]. Combustion and Flame, 1995, 100(4): 661-668
    [119] Shepherd, J. E. The structure of the detonation front in gases [R]. AIAA Paper, 2002-773. 2002
    [120] Pintgen, F., Eckett, C. A., Austin, J. M., and Shepherd, J. E. Direct observations of reaction zone structure in propagating detonations [J]. Combustion and Flame, 2003, 133(3): 211-229
    [121] Tieszen, S. R., Sherman, M. P., and Benedick, W. B. Detonability of H2/air-diluent mixtures [J]. Sandia Report, Sandia National Laboratories, Albuquerque, NM, SAND85-1263, 1987
    [122] Nikolic, M., Williams, D. N., and Bauwens, L. Detonation cell sizes - A numericalstudy [R]. AIAA Paper, 1999-0967. 1999
    [123] Kaneshige, M. J. and Shepherd, J. E. Oblique detonation stabilized on a hypervelocity projectile [J]. 26th Symposium (International) on Combustion, The Combustion Institute, 1996, 26: 3015-3022
    [124] Strehlow, R. A. Gas pase detonations: Recent developments [J]. Combustion and Flame 1968, 12(2): 81-101
    [125] Kailasanath, K., Oran, E. S., Boris, J. P., and Young, T. R. Determination of detonation cell size and the role of transverse waves in two-dimensional detonations [J]. Combustion and Flame, 1985, 61(3): 199-209
    [126] Lefebvre, M. H., Oran, E. S., Kailasanath, K., and Van Tiggelen, P. J. The influence of the heat capacity and diluent on detonation structure [J]. Combustion and Flame 1993, 95(1-2): 206-218
    [127] Williams, D. N., Bauwens, L., and Oran, E. S. Detailed structure and propagation of three-dimensional detonations [R]. 26th Int. Symp. on Combustion, 1996. 1996
    [128] Cho, D., Won, S., Choi, J-Y., Ma, F., and Yang, V. Three-dimensional unstable detonation wave structures in pipes [R]. AIAA Paper, 2006-957. 2006: 44th AIAA Aerospace Sciences Meeting and Exhibit
    [129] Long, L. N. Navier-stokes and monte carlo results for hypersonic flow [J]. AIAA Journal 1991, 29(2): 200-207
    [130] Connor, P. D. O., Long, L. N., and Anderson, J. B. The direct simulation of detonations [R]. AIAA Paper, 2006-4411. 2006: Sacramento, CA, AIAA/ASME/SAE/ASEE Joint Propulsion Conference
    [131] Sharma, A. and Long, L. N. Numerical simulation of the blast impact problem using the direct simulation Monte Carlo (DSMC) method [J]. Journal of Computational Physics 2004, 200 (1): 211 - 237
    [132] Connor, P. D. O, Long, L. N., Anderson, J. B. Direct Simulation of Ultrafast Detonations in Mixtures [J]. RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics, 2005, 762: 517-522
    [133]胡绍鸣,李辰芳.对爆轰CJ模型和ZND模型合理性的讨论[J].高压物理学报, 2003, 17(3)
    [134]李银成.爆轰产物物态方程(Ⅱ)——爆轰的ZND理论不成立吗?(下) [J].高压物理学报, 2000, 14( 1): 6-15
    [135]李银成.爆轰产物物态方程(Ⅱ)——爆轰的ZND理论不成立吗?(上) [J].高压物理学报, 1999, 13(4): 247-
    [136]徐晓峰,解立峰,彭金华,何志光,惠君明.碳氢燃料爆轰波胞格结构的实验研究[J].含能材料, 2003, 11(3): 57-60
    [137]王丁喜,严传俊.爆震燃烧波在管内传播过程的二维数值模拟[J].机械科学与技术, 2006, 25(4): 461-464
    [138]董刚,于陆军,唐敖,范宝春.环形火焰引发爆震的数值研究[J].推进技术, 2005, 26(4): 348-353
    [139]刘云峰,王健平.有限谱ENO格式在爆轰波数值模拟中的应用[J].爆炸与冲击, 2003, 23(4 ): 343-348
    [140] Ciccarelli, G., Ginsberg, T., Boccio, J., Economos, C., Sato, K., and Kinoshita, M. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures [J]. Combustion and Flame, 1994, 99(2): 212-220
    [141] Ciccarelli, G., Ginsberg, T., and Boccio, J. L. The influence of initial temperature on the detonability characteristics of hydrogen-air-steam mixtures [J]. Combustion Science and Technology, 1997, 128(1 - 6): 181 - 196
    [142] Westbrook, C. K., and Urtiew, P. A. Chemical Kinetic Prediction of Critical Parameters in Gaseous Detonation [J]. 19th Symp. (Int'l.) on Combustion,The Combustion Institute, 1982: 615 - 623
    [143] Oran, E. S. and Gamezo, V. N. Origins of the deflagration-to-detonation transition in gas-phase combustion [J]. Combustion and Flame, 2007, 148(1-2): 4-47
    [144] Strehlow, R. A., Crooker, J., and Cusey, R. E. Detonation initiation behind an accelerating shock wave [J]. Combustion and Flame, 1967, 11(4): 339-351
    [145] Chan, C. K. Collision of a shock wave with obstacles in a combustible mixture [J]. Combustion and Flame 1995, 100 (1-2)
    [146] Khokhlov, A.M., Oran, E.S., and Wheeler, J. C. A theory of deflagration-to-detonation transition in unconfined flames [J]. Combustion and Flame 1997, 108(4): 503-517
    [147] Khokhlov, A. M., Oran, E. S., and Thomas, G. O. Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames [J]. Combustion and Flame 1999, 117(1-2): 323-339
    [148] Oran, E. S. and Khokhlov, A. M. Deflagrations, hot spots, and the transition to detonation [J]. Phil. Trans. Roy. Sot. Lond. A, 1999, 357(1764): 3539-3551
    [149] Khokhlov, A. M. and Oran, E. S. Numerical simulation of detonation initiation in a flame brush: the role of hot spots [J]. Combustion and Flame, 1999, 119(4): 400-416
    [150] Li, J., Lai, W. H., and Chung, K. Tube diameter effect on deflagration-to-detonation transition of propane–oxygen mixtures [J]. Shock Waves, 2006, 16(2)
    [151] Wang, B. L., Olivier, H., and Gronig, H. Ignition of shock-heated H2-air-steam mixtures [J]. Combustion and Flame, 2003 133(1): 93-106
    [152] Chapin, D. M. A study of deflagration to detonation transition in a pulsed detonation engine [D]. Georgia Institute of Technology, 2005
    [153] Kuznetsov, M., Ciccarelli, G., Dorofeev, S., Alekseev, V., Yankin, Y., and Kim, T. H. DDT in methane-air mixtures [J]. Shock Waves, 2002, 12(3): 215-220
    [154] Ciccarelli, G., Boccio, J. L., Ginsberg, T., Finfrock, C., Gerlach, L. Tagawa, H., Malliakos, A., Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility, in Conference: 23. water reactor safety information meeting, Bethesda, MD (United States), 23-25 Oct 1995; Other Information: PBD: [1995]. 1995. p. Size: 22 p.
    [155] Ciccarelli, G. and Dubocage, P. Flame acceleration in fuel-air mixtures at elevated initial temperatures [R]. AIAA Paper, 2002-4020. 2002: 7-10 July 2002, Indianapolis, Indiana 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
    [156] Ciccarelli, G. Critical tube measurements at elevated initial mixture temperatures [J]. Combustion Science and Technology, 2002, 174(5): 173 - 183
    [157] Card, J., Rival, D., and Ciccarelli, G. DDT in fuel air mixtures at elevated temperatures and pressures [J]. Shock Waves, 2005, 14(3): 167-173
    [158] Ciccarelli, G., Boccio, J. L., Ginsberg, T., Finfrock, C., Gerlach, L., Tagawa, H., Malliakos, A., The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon, in Other Information: PBD: May 1998. 1998. p. Size: 75 p.
    [159] Gilbert, R. B. and Strehlow, R. A. Theory of detonation initiation behind reflected shock waves [J]. AIAA JOURNAL, 1966, 4(10): 1777-1783
    [160] Strehlow, R. A.and Dyner, H. B. One-dimensional detonation initiation [J]. AIAA Journal 1963, 1(3): 591-595
    [161] Zel'dovich, Ia B., Kogarko, S. M., and Simonov, N. N. An experimental investigation of spherical detonation in gases [J]. Sov. Phys. Tech. Phys. (Soviet Physics - Technical Physics), 1957, 1: 1689-1713
    [162] Radulescu, M. I., Higgins, A. J., Lee, J. H. S., and Murray, S. B. On the explosion length invariance in direct initiation of detonation [J]. Proceedings of the Combustion Institute, 2000, 28: 637-644
    [163] Ju, Y., Masuya, G., and Sasoh, A. Numerical and theoretical studies on detonation initiation by a supersonic projectile [J]. 27th Symposium (International) On Combustion, 1998, 27: 2225-2231
    [164] Lee, J. H. S. and Higgins, A. J. Comments on criteria for direct initiation of detonation [J]. Phil. Trans. R. Soc. Lond. A, 1999, 357(1764): 3503-3521
    [165] Lee, J. H., Knystautas, R. Laser spark ignition of chemically reactive gases [J]. AIAA Journal, 1969, 7: 312–317
    [166] Miziolek, A. W., Forch, B. E., Sausa, R. C., and Dewilde, M. A. Ultraviolet laser applications to combustion diagnostics [J]. AIP Conference Proceedings 1986, 146(1): 628-631
    [167] Lavid, M., Nachshon, Y., Gulati, S. K., and Stevens, J. G. Photochemical ignition of premixed hydrogen/oxygen mixtures with ArF laser [J]. Combustion Science and Technology, 1994, 96(4-6): 231 - 245
    [168] Forch, B. E. Multiphoton photochemistry and resonant laser ignition of reactivegases [J]. Nonlinear Optics: Materials, Fundamentals, and Applications, 1994. NLO '94 IEEE, 1994, 25(29 ): 353 - 355
    [169] Daiber, J. W. and Thompson, H. M. Laser-driven detonation waves in gases [J]. Physics of Fluids, 1967 10( 6): 1162-1169
    [170] Phuoc, T. X. Laser-induced spark ignition fundamental and applications [J]. Optics and Lasers in Engineering, 2006, 44(5): 351-397
    [171] Weinrotter, M., Kopecek, H., and Wintner, E. Laser ignition of engines [J]. Laser Physics, 2005, 15(7): 947-953
    [172] Morsy, M. H. and Chung, S. H. Laser-induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture [J]. Experimental Thermal and Fluid Science 2003, 27(4): 491-497
    [173] Kopecek, H., Lackner, M., Iskra, K. F., Forsich, C., Rüdisser, D., Neger, T., Winter, F., and Wintner, E. Laser ignition of methane-air mixtures at high pressures and optical diagnostics [J]. SPIE, 2003, 5147: 331-342
    [174] Ronney, P. D. Laser versus conventional ignition of flames [J]. Opt. Eng., 1994, 33(2): 510–521.
    [175] Carrier, G. F., Fendell, F. E., and Chou, M. S. Laser-initiated conical detonation wave for supersonic combustion. III [R]. AIAA Paper, 92-3247. 1992: 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference & Exhibit.
    [176] Morsy, M. H., Ko, Y. S., and Chung, S. H. Laser-induced ignition using a conical cavity in CH4–air mixtures [J]. Combustion and Flame, 1999, 119(4): 473-482
    [177] Morsy, M. H., Ko, Y. S., Chung, S. H., and Cho, P. Laser-induced two-point ignition of premixture with a single-shot laser [J]. Combustion and Flame, 2001, 124(4): 724-727
    [178] Lee, J. H. S. On the initiation of Detonation by a Hypersonicity Projectile [R]. Zeldovich Memorial Conference on Combustion. 1994. Voronovo, Russia
    [179] Nettleton, M. A. Recent work on gaseous detonations [J]. Shock Waves, 2002, 12(1): 3-12
    [180]韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术, 2003, 24(1): 63-66
    [181]董刚,范宝春,谢波.氢气-空气混合物中瞬态爆轰过程的二维数值模拟[J].高压物理学报, 2004, 18(1): 40-46
    [182] Takai, R., Yoneda, K., and Hikita, T. Study of detonation wave structure [R]. Proceedings of the 15th International Symposium on combustion,1975. 1975
    [183] Gua, X. J., Emersona, D. R., and Bradley, D. Modes of reaction front propagation from hot spots [J]. Combustion and Flame 2003, 133(1-2): 63-74
    [184] Strehlow, R. A. and Salm, R. J. The failure of marginal detonations in expanding channels [J]. Acta Astronautica, 1976, 3(11): 983–994
    [185] Strehlow, R. A. and Crooker, A. J. The structure of marginal detonation waves [J]. Acta Astronautica, 1974, 1: 303-315
    [186] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F. Continuous spin detonations [J]. Journcal of Propulsion and Power, 2006, 22(6): 1204-1216
    [187]张德良,胡湘渝.气相爆轰波沿胞格的动力学机理研究[J].高压物理学报, 2001(3)
    [188]杜扬,沈伟,周建忠.爆轰波在突扩通道中传播的数值模拟研究[J].爆炸与冲击, 2004, 24(1): 75-79
    [189]年伟民,周凯元,夏昌敬,王汉良,叶剑飞.气相爆轰波通过声学吸收壁时强度衰减过程的实验研究[J].火灾科学, 2003, 12(2): 84-89
    [190] Oppenheim, A. K., Smolen, J. J., and Zajac, L. J. Vector polar method for the analysis of wave intersection [J]. Combustion and Flame, 1968, 12(1): 63-76
    [191] Ashford, S. A. and Emanuel, G. Wave angle for oblique detonation waves [J]. Shock Waves, 1994, 3(4): 327-329
    [192] Rubins, P. M. and Rhodes JR, R. P. Shock-induced combustion with oblique shocks, comparison of experiment and kinetic calculations [J]. AIAA Journal 1963, 1(12): 2778-2784
    [193] Higgins, A. J., and Bruckner, A. P. Experimental Investigation of Detonation Initiation by Hypersonicity Blunt Projectiles [R]. AIAA Paper 1996-0342. 1996
    [194] Sturtzer, M.-O., Togami, K., Yamashita, S., Takayama, K. Detonation Wave Generated by a Hypervelocity Projectile [J]. Heat Transfer Research, 2007, 38(4): 291-297
    [195] Srulijes, J., Smeets, G., and Seiler, F. Expansion tube experiments for the investigation of ram-accelerator-related combustion and gasdynamic problems [R]. AIAA Paper, 1992-3246. 1992
    [196] Morris, C. I., Kamel, M. R., Ben-Yakar, A., and Hanson, R. K. Combined schlieren and OH PLIF imaging study of ram accelerator flowfields [R]. AIAA Paper, 98-0244. 1998
    [197] Morris, C. I., Kamel, M. R., and Hansom, R. K. Shock-induced combustion in high-speed wedge flows [J]. 27th Symp. (International) on Combustion, 1998, 27: 2157–2164
    [198] Choi, J.-Y., Jeung, I.-S., and Yoon, Y.,. Computational Investigation of Structure and Dynamics of Oblique Detonation at Off-Attaching Condition [R]. Proceedings of the 22nd International Symposium on Shock Waves,1999. 1999
    [199] Dabora, E. K., Nicholls, J. A., and Morrison, R. B.,. The Influence of a Compressible Boundary on the Propagation of Gaseous Detonations [R]. Proceedings of the Tenth Symposium (International) on Combustion, 1965. 1965
    [200] Viguier, C., Figueira da Silva, L.F., Desbordes, D., and Deshaies, B. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixtures [R]. Proceedings of the Twenty-Sixth Symposium (International) on Combustion. 1996
    [201] Viguier, C., Gourara, A., and Desbordes, D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow [J]. 27th Symposium (International) on Combustion, 1998, 27: 2207-2214
    [202] Berlyand, A. T., Vlasenko, V. V., and Svishchev, S. V. Stationary and nonstationary wave structures that arise in stabilization of detonation over a compression surface [J]. Combustion, Explosion, and Shock Waves, 2001, 37(1): 82-98
    [203]柳森,简和祥,白智勇,平新红,部绍清. 37mm冲压加速器热发射试验初步结果[J].流体力学实验与测量, 1999, 13(3): 32-41
    [204]柳森,简和祥,白智勇,平新红,部绍清. 37mm冲压加速器试验和计算[J].力学学报, 1999, 31(4)
    [205]崔东明,范宝春,邢晓江.驻定在高速弹丸上的斜爆轰波[J].爆炸与冲击, 2002, 22(3): 263-266
    [206]崔东明.驻定斜爆轰特性的理论与实验研究[D].南京理工大学, 1999
    [207] Wintenberger, E. and Shepherd, J. E. Introduction to "To the Question of Energy Use of Detonation Combustion" by Ya. B. Zel'dovich. [J]. Journal of Propulsion and Power, 2006, 22(3): 586-587
    [208] Nikolaev, Y. A., Vasil'ev, A. A., and Ul'yanitskii, B. Y. Gas detonation and its application in engineering and technologies [J]. Combustion, Explosion, and Shock Waves, 2003, 39(4): 382-410
    [209] Dunlap, R., Brehm, R., and Nicholls, J. A. A preliminary study of the application of steady-state detonative combustion to a reaction engine [J]. Jet Propulsion, 1958, 28(7): 451-456
    [210] Bazhenova, T. V. and Soloukhin, R. I. Gas ignition behind the shock wave [R]. Proc. of Int. VII Symposium on Combustion. 1959
    [211] Ferri, A. Review of problems in application of supersonic combustion [J]. Journal of the Royal Aeronautical Society, 1964, 68(645): 575-595
    [212] Nicholls, J. A., Dabora, E. K., and Gealler, R. A. Studies in connection withstabilized gaseous detonations waves [R]. 7th Symposium (International) on Combustion and Detonation, Butterworths, London. 1959
    [213] Nicholls, J. A., and Dabora, E. K., An experimental and theoretical study of stationary gaseous detonation waves, in Air Force Office of Scientific Research. 1961.
    [214] Willbanks, C. E. Sensitivity of premixed compression-Initiated supersonic combustion to small perturbations in inlet flow variables [J]. AIAA JOURNAL, 1970, 8(1): 115-119
    [215] Fendell, F., Mitchell, J., McGregor, R., Magiawala, K., and Sheffield, M. Laser-initiated conical detonation wave for supersonic combustion. II [R]. AIAA, Aerospace Sciences Meeting and Exhibit, 30th, Reno, NV, Jan. 6-9, 1992. 11 p. 1992
    [216] Phuoc, T. X. and White, F. P. Laser-induced spark ignition of CH4/air mixtures [J]. Combustion and Flame, 1999, 119(3): 203-216
    [217] Phuoc, T. X. An experimental and numerical study of laser-induced spark in air [J]. Optics and Lasers in Engineering, 2005, 43(2): 113-129
    [218] Hertzberg, A. Ram accelerator - A new chemical method for accelerating projectilesto ultrahigh velocities [J]. AIAA Journal, 1988, 26(2): 195-203
    [219] Ghorbanian, K., Sterling, J. D. Gas dynamic unstart in superdetonative ram accelerators [R]. AIAA Paper, 1996-2948. 1996
    [220] Guee-Won Moon, In-Seuck Jeung, and Jeong-Yeol Choi. Numerical Study of Unstart Process in ISL RAMAC 30 Ram Accelerator [R]. AIAA Paper, 2000-3236. 2000
    [221] Schultz, E., Knowlen, C., and Bruckner, A. P. . Detonation limits applied to the subdetonative ram accelerator starting process [R]. AIAA Paper, 1997-807. 1997
    [222] Knowlen, C., Bundy, C., Bruckner, A.P.,. Ram accelerator experiments leading to operation at fill pressures up to 20 MPa [R]. AIAA Paper, 2002-1015. 2002
    [223] Falempin, F., Daniau, E., and Getin, N. Toward a continuous detonation wave rocket engine demostrator [R]. AIAA Paper, 2006-7956. 2006
    [224] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F. Continuous spin detonation of fuel-air mixtures [J]. Combustion, Explosion, and Shock Waves, 2006, 42(4): 463-471
    [225] Daniau, E., Falempin, F., and Zhdan, S. Pulsed and rotating detonation propulsion systems: First step toward operational engines [R]. 2005
    [226] Lentsch, A. and Bec, R. Overview of current French activities on PDRE and continuous detonation wave rocket engines [R]. AIAA Paper, 2005-3232. 2005
    [227] Olivier, H., Jiang, Z., Yu, H. R., and Lu, F. K. Detonation-driven shock tubes and tunnels [J]. Progress in Astronautics and Aeronautics, 2002, 198: 135-203
    [228] Yu, H. R., Esser, B., Lenartz, M. et al. Gaseous detonation driver for a shocktunnel [J]. Shock Waves, 1992, 2(4): 245-254
    [229] Jiang, Z. L., Zhao, W., Wang, C., and Takayama, K. Forward-running detonation drivers for high-enthalpy shock tunnels [J]. AIAA Journal 2002, 40(10): 2009-2016
    [230] Hong, C., Heng, F., YU, Hongru. Double detonation drivers for a shock tube/tunnel [J]. SCIENCE IN CHINA SERIES G PHYSICS,MECHANICS & ASTRONOMY, 2004, 47(4): 502-512
    [231] Lu, F. K., Wilson, D. R., Bakos, R. J., and Erdos, J. I. Recent advances in detonation techniques for high-enthalpy facilities [J]. AIAA Journal, 2000, 38(9): 1676-1684
    [232]刘长礼,张德良,胡宗民,姜宗林.正向爆轰驱动高焓激波风洞的数值模拟[J].计算力学学报, 2005, 22(4): 425-430
    [233] Mittal, G., Sung C.J., Yetter, R. A. Autoignition of H2/CO at elevated pressures in a rapid compression machine [J]. International Journal of Chemical Kinetics, 2006, 38(8): 516-529
    [234] Mueller, M. A., Kim, T. J., Yetter, R. A., and Dryer, F. L. Flow reactor studies and kinetic modeling of the H /O reaction [J]. International Journal of Chemical Kinetics, 1999, 31(2): 113-125
    [235] Yetter, R. A., Dryer, F. L., Rabitz, H. Flow reactor studies of carbon monoxide/hydrogen/oxygen kinetics [J]. Combust. Sci. and Technol., 1991, 79: 129-140
    [236] Peters, N. and Kee, R. J. . The Computation of Stretched Laminar Methane-Air Diffusion Flames Using a Reduced Four-Step Mechanism [J]. Combustion and Flame, 1987, 68(17)
    [237] Chen, J.-Y. . Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion [R]. Workshop on "Numerical Aspects of Reduction in Chemical Kinetics",CERMICS-ENPC ,1997. 1997: Cite Descartes - Champus sur Marne, France, September 2nd, 1997
    [238] Gamezo, V. N., Khokhlov, A. M., and Oran, E. S. The influence of shock bifurcations on shock-flame interactions and DDT [J]. Combustion and Flame, 2001, 126(4): 1810-1826
    [239]王丁喜.脉冲爆震发动机进气道内流场和爆震燃烧的数值研究[D].西北工业大学研究生院, 2005
    [240] Gordon, S., Mcbride, B. J., Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and chapman-jouguet detonations. 1971.
    [241] McBride, B. J., Gordon, S., and Reno, M. J., Coefficients for calculating thermodynamic and transport properties of individual species. 1993.
    [242] Venkateswaran, S., Deshpande, M., Merkle, C. L. The application of preconditioning to reacting flow computations [R]. AIAA Paper, 1995-1673. 1995
    [243] Buelow, P. E. O., Venkateswaran, S. and Merkle, C. L. Effect of grid aspect ratio on convergence [R]. AIAA Paper, 95-0565. 1995
    [244] Merkle, C. L., Sullivan, J. Y., Buelow, P. E. O., Venkateswaran, S. Computation of flow with arbitrary equations of state [J]. AIAA Journal, 1998, 36(4): 515-521
    [245] Wilson, G. J. and MacCormack, R. W. Modeling supersonic combustion using a fully-implicit numerical methol [R]. AIAA Paper, 90-2307. 1990
    [246]刘君,张涵信,高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5): 19-22
    [247] Mott, D. R., Oran, E. S., and Bram, v. L. A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics [J]. Journal of Computational Physics, 2000, 164(2): 407-428
    [248] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C.,. VODE, A Variable- Coefficient ODE Solver [J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(5): p.1038-1051
    [249] Larouturou, B. How to preserve the mass fraction positive when computing compressible multicomponent flows [J]. Journal of Computational Physics, 1991, 95(1): 59-84
    [250] Schwer, D. A. Numerical study of unsteadiness in non-reacting and reacting mixing layers [D]. The pennsylvania state university 1999
    [251]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].国防科技大学出版社, 2000
    [252]田德余,刘剑洪.化学推进剂计算能量学[M].河南科学技术出版社, 1992
    [253] Shepherd, J. E. Chemical kinetics of hydrogen-air-diluent detonations [J]. PAA, 1986, 106: 263-393
    [254]范宝春,崔东民,陈启峰.驻定激波诱导的化学反应[J].高压物理学报1997, 11(3): 182-188
    [255] Reynolds, W. C., The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN. 1986.
    [256] Zel'dovich, Y. B. On the theory of the propagation of detonation in gaseous systems [J]. Zh. Exp..Teor. Fiz. (USSR). 1940, 10: 542-568
    [257] Doering, W. On detonation processes in gases [J]. Ann. Phys., 1943, 43: 421-436
    [258]洪滔,秦承森.一维爆轰波不稳定性的数值模拟[J].高压物理学报, 2003, 17(4): 255-260
    [259] Browne, S. and Shepherd, J. E., Numerical solution methods for shock and detonation jump conditions. 2004.
    [260] Slack, M. W. Rate coefficient for H + O2 + M = HO2 + M evaluated from shocktube measurements of induction times [J]. Combustion and Flame, 1977, 28(3): 241-249
    [261] Hidaka, Y., Sato, K., Henmi, Y., Tanaka, H., and Inami, K. Shock-tube and modeling study of methane pyrolysis and oxidation [J]. Combustion and Flame, 1999, 118(3): 340-358
    [262] Petersen, E. L., Davidson, D. F., Rohrig, M., Hanson, R. K. High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures [R]. 20th International Symposium on Shock Waves. 1996
    [263] Bhaskaran, K. A., Gupta, M. C., and Just, Th. Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures [J]. Combustion and. Flame, 1973, 21(1): 45–48
    [264] Dowdy, D. R., Smith, D. B., Taylor, S. C. and Williams, A. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures [J]. Proc. Combust. Inst., 1990, 23: 325-332
    [265] Aung, K. T., Hassan, M. I., Faeth, G. M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combustion and Flame, 1997, 109(l): 1 - 24
    [266] Revel, J., Boettner, J. C., Cathonnet, M., Bachman, J. S. Derivation of a global chemical kinetic mechanism for methane ignition and combustion [J]. J. Chim. Phys., 1994: 365-382
    [267] Yungster, S., Eberhardt, S., and Bruckner, A. P. Numerical Simulation of Hypervelocity Projectiles in Detonable Gases [J]. AIAA Journal, 1991, 29(2): 187-189
    [268] Inaba, K., and Matsuo, A. Cellular Structures of Planar Detonations with a Detailed Chemical Reaction Model [R]. AIAA Paper, 2001-0480. 2001
    [269]孙承纬,卫玉章,周之奎.应用爆轰物理[M].国防出版社, 1999
    [270]温春生,金志明,袁亚雄.冲压加速器弹丸发射系统非反应流场数值模拟[J].爆炸鱼冲击, 1997, 17(2): 119-126
    [271]陈坚强,张涵信,高树椿.冲压加速器燃烧流场的数值模拟[J].空气动力学学报, 1998, 16(3): 297-303
    [272] Choi, J-Y., Jeung, I-S., and Roh, T-S. Periodical Oscillation of Combustion Induced by Oblique Shock Wave [R]. AIAA Paper 2002-3717. 2002
    [273] Morris, C. I. Shock-induced combustion in high-speed wedge flows [D]. Standford University, 2001
    [274] Viguier, C., Guerraud, C. and Desbordes, D. Study of Critical Condictions of Onset of Standing Oblique Detonation Waves at Hypersonic Velocities in H2-Air Mixtures [R]. Proceedings of the 21# International Symposium on Shock Waves,1997. 1997
    [275] Morris, C. I., Kamel, M. R., and Hanson, R. K. Expansion Tube Investigation of Ram Accelerator Projectile Flow filelds [R]. AIAA Paper 96-2680. 1996
    [276] Pellett, G. L., Bruno, C., and Chinitz, W. Review of air vitiation effects on scramjet ignition and flameholding combustion [R]. AIAA Paper, 2002-3880. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700