周向浓淡旋流燃烧器空气动力场的试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈尔滨锅炉厂引进英国MBEL公司(英巴)公司技术的周向浓淡旋流燃烧器,前后墙对冲布置。在锅炉实际运行中出现了燃烧器附近水冷壁结渣的问题。针对这个问题,结合周向浓淡旋流燃烧器的工作原理,从试验和数值模拟两方面分析产生这些问题的可能原因,建立冷态模化试验台,通过试验和数值模拟的研究,力求寻找可行性方案。
     在对周向浓淡旋流燃烧器空气动力场试验结果中可以看出,中心回流区分布均不对称,原燃烧器模型当燃烧器中心风率为设计值时,中心回流区起始于燃烧器喷口内,在一次风与内二次风喷口延长线之间,煤粉易在燃烧器预混段内着火燃烧。原燃烧器模型一次风与二次风混和过早,造成携带煤粉的一次风被旋转的中心风和二次风带动旋转,在经过预混段后进入炉膛,易被甩到水冷壁上,造成燃烧器喷口及周围水冷壁的结渣。试验中射流扩展角最大为90°,乙二醇烟雾示踪试验表明各结构的外二次风扩展角差别不大,均在60°左右,不存在气流飞边的现象。将内二次风喷口向炉内推进使得中心回流区逐渐变小,当推进至外二次风扩口后端时中心回流区最小,中心回流区减小则卷吸的高温烟气量也相应减小,有利于减少燃烧器喷口结渣。
     从周向浓淡旋流燃烧器空气动力场模拟结果中可以得出,通过中心线回流区分布不对称的原因是一次风与燃烧器中心线偏离一定距离切向进入,切向速度沿圆周方向分布不对称,导致整个流场的分布不对称,从而产生了中心回流区分布不对称这一现象。从原型燃烧器喷口处轴向、切向、径向速度分析可知,原型燃烧器喷口结渣的原因同样是一次风在旋转的中心风和内二次风的带动下旋转运动并不断向喷口四周扩散,造成一次风携带的颗粒被甩到燃烧器喷口和水冷壁上,从而造成结渣。切向速度差别不大,原型燃烧器模拟的结构轴向速度衰减的最快,径向速度最大,最容易结渣,而将内二次风喷口向炉内推进,径向速度的绝对值最小,有利于减少结渣,但是不能根除结渣,模拟中同样发现不存在气流飞边的现象。
     周向浓淡旋流燃烧器空气动力场试验和模拟结果分析,找到了燃烧器附近水冷壁结渣的部分原因,并提出了解决方案,在工程实践中具有一定的指导意义。
The circumferential bias swirl bunner(CBSB) imported from babcock UK by Harbin Boiler Company was applied in the opposed wall firing boiler and caused slagging nearby the burner. Cold model experiments and numerical simulation combined with analyse of the working principle of the CBSB was performed to explore the reasons of this problem and to search for feasible scheme.
     Results of the aerodynamic experiments indicate that the central recirculation zone asymmetrically distributes. When the rate of the central air equal to design value, the recirculation zone started in the spout of CBSB, between the elongation line of the primary air and the secondary air spout and the pulverized coal fired easily in the premixing segment. Therefore, the primary air and the secondary air mix in advance ,which prompt the primary air with pulverized coal to rotate with the swiveling central air and secondary air and reach the water-wall after the premixing segment. That’s the reason of slaging in the water-wall around the nozzle of burner. The most expansion angle is 90°in the experiment. It is indicated that the expansion angle of the outer secondary air had little difference in the five Structures, which is about 60°in the smoke tracing experiment. The slagging is not caused by flash. The central recirculation zone became smaller while the nozzle of inner secondary air was moved towards furnace. The least central recirculation zone can be got while the nozzle of inner secondary air was just behind the flaring of outer secondary air. The high temperature flue gas entrained by the central recirculation zone reduces with the decrease of area of the central recirculation zone which helps to reduce slagging.
     Results of numerical simulation of the aerodynamic field indicate that the reason of central recirculation zone unsymmetrical distribution is that the primary air is injected to the internal barrel in a tangential direction through the nozzle, and it had a certain distance deviation from the central line of the burner. Along the circumferential direction the tangential velocity distributed unsymmetrically causing the whole aerodynamic unsymmetrical distribution.
     According to the figures of the axial velocity, radial velocity, tangential velocity at the nozzle of the CBSB, the conculsion can be drawn that the reason of slagging was also the primary air with pulverized coal driven to rotate with the swiveling central air and secondary air and the pulverized coal continuously diffusing widely near the water-wall. Tangential velocity had little difference. In the Structure 1, the axial velocity was the most fast attenuation, the radial velocity was the highest, it is the easiest slagging. While the nozzle of inner secondary air was moved towards furnace, the absolute value of radial velocity reduces, which is benefital to lessen slagging, but the movement of nozzle of inner secondary air can not eradicate slagging. It was also found that the jet was not flash in the simulation.
     This paper studys the results of slagging through the expriments and numerical simulation of the aerodynamic field ,and puts forward solution of slagging, which has important guiding significance and application value in engineering practice.
引文
1刘志强,陈纪玲.中国大气环境质量现状及趋势分析.电力环境保护, 2007,23(1): 23-27
    2张安华.中国电力工业能效问题分析.中国能源, 2006,28(7):16-18 3
    3谢秋野,姜士宏,赵敏等.我国发电新技术与展望.电力建设, 2006,27(12):1-5
    4 J. Reilly, M. Mayer, J. Harnisch. The Kyoto Protocol and Non-CO2 Greenhouse Gases and Carbon Sinks. Environmental Modeling and Assessment, 2002,7(4):217-229
    5 L. D. Smoot. A Decade of Combustion Research. Progress in Energy and Combustion Science,1997,23(3):203-232
    6 R. A. Newby, W. F. Domeracki, A. W. McGuigan et al. Integration of Combustion Turbine Systems into Pressurized Fluidized Bed Combustion Combined Cycles. American Society of Mechanical Engineers,1994:1-11
    7徐旭常,陈昌和,祁海鹰等.我国燃煤污染控制技术与对策的研究.苏州科技学院学报, 2003,16(1):8-15
    8程俊峰,曾汉才,熊蔚立等.降低300MW贫煤锅炉NOx排放的试验研究.中国电机工程学报. 2002, 22(5):157-160
    9张宇,周力行,张健.进口堵塞对旋流煤粉燃烧器NOx生成影响的数值模拟.中国电机工程学报. 2003, 23 (9):162-166
    10《现代电站锅炉技术及其改造》编委会.现代电站锅炉技术及其改造.中国电力出版社, 2004:6~19
    11秦裕琨,孙绍增,吴少华.浓缩煤粉燃烧技术的发展.燃烧科学与技术. 1995,1(1):43~48
    12秦裕琨,李争起,孙锐等.风包粉煤粉燃烧原理及实验研究.中国电机工程学报. 2000,20(5):55~61
    13张永福.双重复合旋流燃烧器对低负荷稳燃的作用.中国电力. 1999, 32(2): 17-19
    14李方钺,张永福.复合旋流燃烧器的稳燃机理和应用.东南大学学报. 1999, 29(1): 78-81
    15马晓茜,靳世平,钱壬章.新型煤粉开缝钝体燃烧器的稳燃机理与应用.电站系统工程. 1994, 10(6):31-45
    16郑友取,罗坤,樊建人等.钝体煤粉浓淡燃烧器内空气动力场的数值试验研究.热力发电. 2003, (6): 11-14
    17夏振海,张新育,樊建人等.可调浓度煤粉浓淡燃烧器的数值模拟.燃烧科学与技术. 2000, 6(3): 214-217
    18曾瑞良,徐秀清.富集型煤粉直流燃烧器的稳燃原理及应用.中国电力. 1999, 32(3): 29-31
    19 S. Y. Chen, G. S. Liu, H. C. Zeng et al. Parameter Optimization for the Corrugated Bluff-Body in a WR Burner. Journal Huazhong University of Science and Technology. 1994, 22(3): 74
    20 E. K. An, T. M. Xu, S. E. Hui et al. Comparison Experimental Research of Horizontal Dense-Dilute Pulverized Coal Stream Bu`rner and WR Burner. ICEE. Proceedings of the 1998 International Conference on Energy and Environment, Shanghai, China, 1998. Beijing, China, China Machine Press: 587-594
    21 Sivy, L. Jennifer. Status and Demonstration of the B&W DRB-4Z? Burner Developed for B&W's Advanced Coal-Fired Low-Emission Boiler System. American Society of Mechanical Engineers, Environmental Control Division Publication, EC. Proceedings of the 1997 International Joint Power Generation Conference, Denver, CO, USA, 1997. Fairfield, NJ, USA, ASME: 205-211
    22 Holmstead, R. Jeffrey. The Clear Skies Act: a Better Way to Achieve Clean Air. Air and Waste Management Association's Magazine for Environmental Managers. 2003: 32-37
    23聂其红,吴少华,孙绍增等.国内外煤粉燃烧低NOx控制技术的研究现状.哈尔滨工业大学学报. 2002, 34(6):826-831
    24 H. A. El-Salmawy. Control of NOx Emissions from a Diffusion Flame in an Oxygen Enriched Combustion. Journal of Engineering and Applied Science. 2001, 48(3): 565-581
    25《中国电力百科全书》编委会.中国电力百科全书火力发电卷.中国电力出版社, 2001:609~610
    26秦裕琨,李争起,吴少华.旋流煤粉燃烧技术的发展.热能动力工程. 1997, 12(4): 241-244
    27 Y. C. Chao. Recirculation Structure of the Co-annular Swirling Jets in a Combustor. AIAA Journal. 1988,26(5): 623-625
    28何佩鏊.旋流式煤粉燃烧器(一).电站系统工程. 1999,(1):4~9
    29何佩鏊.我国燃煤电厂NOx控制和清洁燃烧技术.电站系统工程. 1993,9(1):36~46
    30邬兆春. B&W公司低NOx煤粉燃烧技术.锅炉通讯. 1996,19(1):1~11
    31侯建生.燃烧贫煤的EI-DRB型旋流式煤粉燃烧器.锅炉技术. 1992,3(6):22~26
    32冯俊凯,沈幼庭,杨瑞昌.锅炉原理与计算.第二版.科学出版社, 1992:212~213
    33 J. M. Rackley. Application of Advanced Technology to Meet World-wide Environmental Regulations. Third International Conference on Combustion Technologies for a Clean Environment, 1995, Centro Cultural De Belem Lisbon Oortugal. 1.L.7: 1~14
    34 M. Kimoto. Development of New Type Pulverized Coal Burner for Low NOx and Low Unburned Cabon Combustion. Proceedings of the Third International Symposium on Coal Combustion Science and Technology, September 18~21,1995, Beijing, China: 256~266
    35阎维平,刘彦丰,刘志敏等. Babcock双调风旋流煤粉燃烧器二次风配风特性的模化试验研究.动力工程. 1995,15(4):37~41
    36 M. Jochem, W. Schreier, H. Thierbach. Development of an Ultra NOx Staged Mixing Burner for Pulverized Coal. ASME, Environmental Control Division Publication, EC. Proceedings of the 1996 International Joint Power Generation Conference, Houston, TX, USA, 1996. ASME: 119-149
    37 J. M. Beer, M. A. Toqan, J. M. Haynes, et al. Development of the RSFC Low NOx Burner from Fundamentals to Industrial Applications. ASME Power Division, ASME Fuels and Combustion Technologies Division, ASME Nuclear Engineering Division. Proceedings of the IJPGC 2002 International Joint Power Generation Conference, Scottsdale, AZ, USA, 2002. ASME: 899-906
    38 L. E. Barta, P. F. Lewis, Beer M. Janos. Low NOx Combustion of Pulverized Coal Using the Radially Stratified Flame Core Burner. ASME, Fuels and Combustion Technologies Division FACT. The 1999 International Joint Power Generation Conference and ICOPE'99, Burlingame, CA, USA, 1999. 23(1): 165-178
    39孙金武. WR型和XWD型(双通道)浓淡燃烧器的结构特点、设计原理及低负荷稳燃机理分析.热力发电. 2000, (2): 22-25
    40 Kiga, Takashi, Ohishi, et al. Application of IHI Wide Range Pulverized Coal Burners to 600 MW Coal Firing Boiler. IHI Engineering Review. 1990, 23(4): 123-128
    41李争起,吴少华,孙锐等.直流二次风率对径向浓淡旋流煤粉燃烧器空气动力特性的影响.燃烧科学与技术. 1996, 2(3): 243-248
    42李争起,孙锐,陈智超等.一种中心给粉旋流煤粉燃烧器.中国发明专利,专利号: ZL 031 11101.7
    43李争起,陈智超,孙锐等.适用于燃用贫煤1025t/h锅炉的中心给粉旋流煤粉燃烧器.机械工程学报. 2006,42(3):221~226
    44蒋羽中,徐宪斌,冷杰.华能丹东电厂低NOx分级燃烧系统.东北电力技术.2000,11:1~4
    45岑可法.锅炉燃烧试验研究方法及测量技术.水利电力出版社. 1987: 25-29
    46李敬.径向浓淡旋流煤粉燃烧器空气动力特性实验研究.哈尔滨工业大学硕士论文. 19-22
    47刘文铁,阮根健,孙洪宾.锅炉热工测试技术.哈尔滨工业大学出版社. 1996: 55-56
    48梁振山,隋秀兰,赵小朵.毕托管测试技术.华北电力技术.1999,11:24~25
    49李之光.相似与模化.国防工业出版业.1982:18, 282
    50陈卓如,金朝铭,王成敏等.工程流体力学.高等教育出版社. 1992: 98, 271
    51 R. W. Curtis, L. E. Johnson. Use of Flow Models for Boiler-Furnace Design. 1959: 10
    52刘程.表面活性剂产品大全.化学工业出版社. 1998:1~5
    53 Jakirlic, J. Volkert, H. Pascal et al. DNS. Experimental and Modelling Study of Axially Compressed In-cylinder Flow. Int. J. Heat and Fluid Flow. 2000, 21:627~639
    54 M. Manhart, R. Friedrich. DNS of a Turbulent Boundary Layer with Separation. Int. J. Heat and Fluid Flow. 2002, 23:572~581
    55 L. Selle, G. Lartigue, T. Poinsot et al. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combustion and Flame. 2004, 137:489~505
    56周屈兰.径向浓淡式双调风旋流燃烧器的试验研究与数值模拟.西安交通大学博士论文. 2001:169~201
    57倪建民,陈云,樊建人等.旋流燃烧器出口湍流流场的数值模拟.动力工程. 2004, 24(1):102~105
    58孙锐.径向浓淡旋流煤粉燃烧器流动特性试验研究与数值模拟.哈尔滨工业大学博士论文. 1998:63~86
    59周力行.湍流气粒两相流动和燃烧的理论与数值模拟.清华大学出版社, 1991:153~175
    60 P. Orlandi,D. Ebstein. Turbulent Budgets in Rotating Pipes by DNS. Journal of Heat and Fluid Flow. 2000,21:499~505
    61 S. Sirisup,G. E. Karniadakis. DNS and Experiments of Flow past a Wired Cylinder at Low Reynolds Number. European Journal of Mechanics B/Fluids. 2004,23:181~188
    62 H. Kawamura, H. Abe. DNS of Turbulent Heat Transfer in Channel Flow with Respect to Reynolds and Prandtl Number Effects. International Journal of Heat and Fluid Flow. 1999,20:196~207
    63 B. J. Boersma, Large-Eddy. Simulation of Turbulence Flow in a Cured Pipe. ASME. J. Fluids Engineering. 1996,118:248~253
    64 Q. Z Wang. Large Eddy Simulation of Turbulence Gas-Solid Flows in a Vertical Channel and Evaluation of Second-Order Models. International Journal of Heat and Fluid Flow. 1998,19:505~511
    65 P. Givi. Spectral and Random Vortex Methods. In: Libby P A,Williams F A. Turbulent Reacting Flows. San Diego. Academic Press. 1993:475~572
    66张颉.旋流煤粉燃烧锅炉燃烧及NO排放特性的数值模拟.哈尔滨工业大学硕士论文. 2003:14~32
    67 D. C. Haworth, S. B. Pope. A PDF Modeling Study of Self-Similar Turbulent Free Shear Flows. Phys. Fluids. 1987,4:1026~1044
    68曾小林.水平浓淡煤粉燃烧器近场气固两相流场的数值模拟.哈尔滨工业大学硕士论文. 2004:7~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700