户用生物质气化炉燃烧模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前随着能源环境危机的日益加剧,开发利用新能源成为全球能源机构的一项重要任务,而生物质能资源作为一种绿色可再生能源,其开发利用越来越受到重视,生物质热解气化技术作为一种非常重要生物质转化利用技术,也在不断研究中。然而,现有大多数气化炉存在结构复杂、操作繁琐、焦油、原料易烧穿等问题等,针对我国农村当前的经济水平和农村能源结构,户用生物质气化炉以其原料丰富、结构简单、经济实用、易于维护等优点,适合我国农村地区用能方式,促进农村地区向着洁净、高效的用能方式前进,进而加快我国农村经济发展。
     本文针对当前市场上户用生物质气化炉结构缺陷和应用中存在的问题,研制了新的混吸式户用生物质气化炉,并以此为研究对象,自行搭建实验台,进行了生物质气化及燃气燃烧换热等主要热工性能参数的实验研究,同时采用CFD方法对燃气在燃烧室的燃烧换热进行数值计算。这种实验与仿真模拟相结合的研究方法,为新一代户用生物质气化炉的开发和应用提出一种新的研究方向。
     实验中通过对不同气化剂空气流量下气化室内温度分布、气化强度及生产能力的研究揭示了:随着气化剂空气量的增加,气化室内氧化层厚度增大,炉内温度升高,气化强度增强,热功率增大。同时,小功率工况下,气化炉运行稳定且运行时间长,可满足连续供暖需求;反之,则运行不稳定,且难持续,连续采暖时功率不足,大功率持续供暖还有待解决。
     此外,还研究了在不同过量空气系数下气化可燃气的燃烧换热情况及烟气排放情况:过量空气系数设定在1.05~1.5之间,随着过量空气系数的增加,燃烧更加充分,烟气中可燃成分降低,且当过量空气系数为1.2~1.3时,燃气燃烧充分且稳定,烟气中可燃成分浓度低,且污染物NOX浓度也较低。但由于炉膛容积较小,燃气燃烧换热不充分,炉膛出口烟温较高,因此,还需对燃烧室结构进行改进,以提高其燃烧换热效果。
     在采用STAR-CD对燃烧室内的燃气燃烧换热情况进行数值计算中,选用合理的湍流流动模型、燃烧模型及辐射换热模型等,对燃烧室内的速度、温度、浓度等分布进行预测,结果表明:冷态时,气化可燃气与空气混合后在环形预混段充分混合后由小孔喷射进入炉膛,各小孔喷射速度基本相同,且各喷射孔处湍动能较强,增强了其预混效果,有利于预混可燃气在炉膛内的充分燃烧;热态时,预混燃气喷射进入炉膛后主要集中在其中心区域燃烧,形成主要高温区,且高温区对应高浓度区,但由于顶部水套对其火焰传播的影响,在炉膛上部周围再次燃烧,形成二次高温区,可见,预测结果与实验值基本一致,因此,所选模型基本合理。
     根据实验和数值计算发现,现有燃烧室容积较小,燃气燃烧不充分,换热效果不理想,较难实现大功率持续运行,因此,对原结构进行了改进:将喷射孔减少至6个和炉膛高度提高至200mm,并对改进后的结构采用相同的CFD方法对改进后结构进行数值计算:喷射小孔减少后,喷射速度增加,湍动能增强,预混效果增强;炉膛抬高后,炉膛容积增大,燃气停留时间延长,燃烧更加充分,烟气中可燃成分降低,换热效果增强。结果表明,改进后结构燃烧换热更充分,炉膛出口温度明显降低,排放也得到一定改善。
     综上所述,本文采用的实验和数值模拟相结合的研究方法为气化炉改进设计开辟了一种新途径,并为新一代户用生物质气化炉的开发研制提供一定的依据。
Currently, as the environment and energy crisis is becoming even more aggravating, It is an important task for human being to explore and utilize the renewable energy. Biomass recourse as one of the renewable energy, various related technology have being developed. Biomass thermal pyrolysis gasification technology, as one of the most important Energy conversion technologies, is getting more and more attention. However, the present gasification stoves in the market have lots of problems, such as the complex structure, tough operation, tar problem, and so on. Rural China areas can provide abundant biomass materials for Household Biomass Gasification Stove, and stoves are very suitable for rural area for its advantages with simple structure, economic and practical, operational. Biomass energy utilization will dramatically promote rural energy saving and environmental protection.
     In this subject, it did some experiments combined with CFD simulation analysis for a new type of up-down-draft stove. The stove structure integrates updraft and down-draft fixed-bed gasifier and takes the advantages of them, which is developed for the hope of overcoming the defects and problems existing in the application of current stoves in the market. The preliminary research in this subject provides some basic performance parameters to further improvement and points the way to further design and investigation.
     In the experiment, as the gasification agent air mass flow injected increased, the oxygen layer thickness in gasifying chamber increased, the stove temperature became higher, gasification intensity increased, and also thermal power increased. While the stove was working in low power conditions, the performance of the gasification stove was steady which can be used of continuous heating for rural user energy daily required. Contrarily, while the stove power was larger than a level, the performance was unsteady which could only provide intermittent heating. So there is a problem to be resolved next.
     The study was also made a research on different coefficient of excess air cases. When the coefficient of excess air was in the range of 1.2 to 1.3, the mixture fuel gas combustion flame was steady, and left less combustible ingredients and pollutions in smoke emissions. However the result also showed that temperature of the smoke exiting from outlet was higher and the heat exchange in the furnace was insufficient. So there is still room to make some changes in stove geometrical structure to further improve the heat exchange effect.
     In the subject, it employed the software STAR-CD to have CFD flow and combustion simulation. In the calculation, some simplifications and assumptions were necessary, and it chose the appropriate turbulence flow and combustion model and heat radiation model. The parameters including velocity, the temperature and concentration were predicted, the results showed that: when just flow were calculated, biomass syngas were converged at the circle premixing plenum and mixed, then the premixed gas were into the furnace through the hole located in the inner plenum wall, where the turbulent kinetic energy was much more powerful and the premixing process took well for their combustion in the furnace; when combustion occurred, the firing flame happened almost in the central area of furnace, forming the high temperature area, where there is also the product species high concentration area. As a result of the resistance of the upper water space wall, the flame was forced to the round in the furnace, so the unburnt gas could burn again, and then the temperature rose and the product species concentration increased. In conclusion, the prediction had a good agreement with the experimental results, so the simulation models used in the paper was generally reasonable.
     According to the issue mentioned above, the present furnace volume was small, the gas couldn’t burn completely, heat exchange was not wall, and it was difficult to perform at high power for a long time, so works had to be done to improve the stove geometrical structure in the simulation model, as decreased the holes to 6 or elevated the furnace up to 200mm. Then the calculations were made in the same CFD method and models to have a simulation for new improved structure. It shows that for the holes decreased, the inject velocity increased, turbulent kinetic energy enhanced, the premixing process took well; in the 200mm furnace, absolutely the volume increased, and the retention time was prolonged, then the combustion and heat exchange took well, the unburnt fuel concentration in the emission decreased. The predictions showed that the improved structure enhances heat exchange between smoke and coolant, which decreases dramatically the outlet smoke temperature and also reduces pollutants in emissions.
     Briefly speaking, it provides a new practical method to improve the structure of the next generation product for house-hold biomass gasification stove by means of this experiment research combined simulation prediction. The results obtained here can be very useful for further investigations and applications.
引文
[1] BP Statistical Review of World Energy[J]. BP Group, June 2004.
    [2]唐炼.世界能源供需现状与发展趋势[J].国际石油经济,2005,11(3):30-33.
    [3] Hall D O. Biomass energy in industrialised countries-a view of the future[J]. Forest Ecology and Management, 1997, 91:17-45.
    [4] P.F.RANDERSON,董宏林,F.M.SLATER.世界若干国家生物质能源利用及其有关问题研究[J].宁夏农林科技,1999,5:5-8.
    [5] Goran Berndes, Monique Hoogwijk, Richard van den Broek. The contribution of biomass in the future global energy supply: a review of 17 studies[J]. Biomass and Bioenergy, 2003(25):1-28.
    [6]张无敌,宋洪川,韦小岿,等. 21世纪发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [7] Gunther Fischer, Leo Schrattenholzer. Global bio-energy potentials through 2050[J]. Biomass and Bioenergy,2001( 20): 151–159.
    [8]程备久.生物质能学[M].北京,化学工业出版社,2008.
    [9] Gunther Fischer, Leo Schrattenholzer. Global bio-energy potentials through 2050[J]. Biomass and Bioenergy, 2001( 20): 151-159.
    [10]官巧燕,廖福霖,罗栋.国内外生物质能发展综述[J].农机化研究,2007(11):20-25.
    [11]闫丽珍,闵庆文,成升魁.中国农村生活能源利用与生物质能开发[J].资源科学,2005,27(1):8-13.
    [12]吴创之,马隆龙.生物质能现代化利用技术[M].化学工业出版社,2003.
    [13]万仁新.生物质能工程[M].中国农业出版社,1992.
    [14]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5.
    [15]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):76-80.
    [16] Wang X H, Feng Z M. Biofuel use and its emission of noxious gases in rural China [J]. Renew able and Sustainable Energy Reviews, 2004, 8 (2) : 183- 192.
    [17] Ajay Kumar, David D.Jones, Milford A. Hanna. Thermo-chemical Biomass Gasification: A Review of the Current Status of the Technology[J]. Energies 2009, 2: 556-581.
    [18]刘国喜、庄新姝.国外生物质气化技术的应用[J].农村能源,2000,4:12-14.
    [19]佟树声.西欧三国生物质能技术考察情况[J].农村能源,1997(5):18-20.
    [20]吴创之,等.农业生物质气化发电技术应用分析[J].新能源,1995,17(5):5-11.
    [21]邓先伦,高一苇,许玉,等.生物质气化与设备的研究进展[J].生物质化学工程,2007(6):37-41.
    [22]米铁,等.生物质气化技术比较及其气化发电技术研究进展[J].新能源及工艺,2004(5):33-37.
    [23]董玉平,邓波,景元琢等.中国生物质气化技术的研究和发展现状[J].山东大学学报(工学版),2007(2):1-8.
    [24]米铁,唐汝江,陈汉平等.生物质气化技术及其研究进展[J].化工装备技术,2005,2:50-56.
    [25] K. Maniatis. Progress in thermochemical biomass conversion [M].Blackwell Science, 2001.
    [26] Agus Haryanto,Sandun D. Fernando,ec al. Upgrading of syngas derived from biomass gasification: A thermodynamic analysis[J]. biomass and bioenergy,2009(33): 882-889.
    [27]马隆龙,吴创之、孙立.生物质气化技术及其应用[M].化学工业出版社,2003.
    [28] Peter McKendry. Energy production from biomass (part 3): gasification technologies[J]. Bioresource Technology,2002(83): 55-63.
    [29] Chunshan Li,Kenzi Suzuki.Tar property, analysis, reforming mechanism and model for biomass gasification—An overview[J]. Renewable and Sustainable Energy Reviews, 2009(13):594-604.
    [30] Lopamudra Devi, Krzysztof J.Ptasinski, Frans J.J.G. Janssen.A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and Bio-energy, 2003(24):125-140.
    [31] T.B Reed, Ronal Larson. A Wood-Gas Stove for Developing Countries[C]. Developments in Thermo-chemical Biomass Conversion, 1996(5):20-24.
    [32] T.B Reed, E. Anselmo, K.Kircher. Testing and Modelling the Wood-Gas Turbo Stove[C]. Progress in Thermo-chemical Biomass Conversion, 2000, 9:17-22.
    [33] A.Saravanakumar, T.M. Haridasan, et al. Experimental investigations of long stick wood gasification in a top lit updraft fixed bed gasifier[J].Fuel Processing Technology, 2007(86): 2846-2856.
    [34] A.Saravanakumar, T.M. Haridasan, et al. Experimental investigations of long stick wood gasification in a top lit updraft fixed bed gasifier[J].Fuel Processing Technology, 2007(86): 2846-2856.
    [35] Karstad Elsen. Elsen Karstad's Charcoal Making Wood Gas Cooking Stove[J]. 1997, 9(97).
    [36] PROF. S.C. BHATTACHARYA, M. AUGUSTUS LEON. A BIOMASS-FIRED GASIFIER STOVE (IGS-2) FOR INSTITUTIONAL COOKING.
    [37] Stanley Richard, Venter Kobus. Holey Briquette Gasifier Stove Development. Aug.2003.
    [38] S.C.Bhattacharya, M.Augustus Leon. PROSPECTS FOR BIOMASS GASIFIERS FOR COOKING APPLICATIONS IN Asia[J]. Energy Field of Study, 2005.
    [39] The Origins of the Juntos Gasifier Stoves: Short Version. Paul S. Anderson, Dept of Geography-Geology, Illinois State University, Normal, IL 61790-4400.
    [40]李发权.固定床秸秆气化系统的设计与性能实验研究[D].新疆:石河子大学,2006.
    [41]段玉燕.户用型生物质气化炉的开发与实验研究[D].浙江:浙江大学,2008.
    [42]浙江大学.户用高效生物质气化炉[P].中国,发明专利,200610052450,2007.
    [43]李鹏.户用型上吸式生物质气化炉的结构设计与实验研究[D].新疆:石河子大学,2008.
    [44]吴杰,王维新,李发权.户用型上吸式棉杆气化炉气化性能的实验研究[J].农机化研究,2007,6(6): 139-140.
    [45]李鹏,吴杰,王维新.户用型上吸式生物质气化炉的改进设计[J].农机化研究,2008,5(5):76-78.
    [46]周海伦,孙健,陈砺,等.木薯茎秆的生物质气化工艺研究[C].第九届全国化学工艺学术年会论文集,2005.
    [47]骆伟峰,王红林,陈砺,等.下吸式固定床气化木薯茎秆实验研究[J].广东化工,2008,6(35):13-16.
    [48]钟浩,谢建,杨宗涛,等.生物质热解气化技术研究现状及其发展[J].云南师范大学学报,2001,21(1):41-45.
    [49]刘向军.四角切向燃烧煤粉锅炉炉内燃烧过程的数值模拟[D].北京:清华大学,1997.
    [50]钱力庚. 330MW电站对冲锅炉炉内过程数值模拟和实验研究及四角锅炉变负荷研究及炉内过程通用程序的设计与研究[D].浙江:浙江大学,2001.
    [51]范贤振,郭烈锦,高晖,等. 200MW四角切圆燃烧煤粉炉炉内过程的数值模拟[J].西安交通大学学报,2002,3:241-245.
    [52]申春梅. 1000MW单炉膛双切圆锅炉炉内燃烧过程的数值模拟[D].黑龙江:哈尔滨工业大学,2006.
    [53]刘明.生物质气化及其燃气燃烧实验研究与分析[D].天津:天津大学,2008.
    [54] Hill Scott C, Smoot Douglas L. Comprehensive three-dimensional model for simulation of combustion systems: PCGC-3[J]. Energy & Fuels, 1993, 7(6):874-883.
    [55] R.K. Boyd, J.H. Kent. Three-dimensional furnace computer modeling [J]. Symposium (International) on Combustion, 1988, 21:267-274.
    [56] Sebastien MURER, Barbara PESENTI, Paul LYBAERT. Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace [J]. Energy Environmental Science, 2006, 30:135–143.
    [57] S.D. Sharma,M. Dolan,et al. A critical review of syngas cleaning technologies fundamental limitations and practical problems[J]. Powder Technology, 2008(180): 115-121.
    [58] R. Vuthaluru, H.B. Vuthaluru. Modelling of a wall fired furnace for different operating conditions using FLUENT[J]. Fuel Processing Technology, 2006, 87:633-639.
    [59]赖艳华,吕明新,等.生物质热解气化气中焦油的生成机理及其脱除研究[J].农村能源,2001,4:16-20.
    [60] Jun Han, Heejoon Kim.The reduction and control technology of tar during biomass gasification/pyrolysis: An overview[J]. Renewable and Sustainable Energy Reviews,2008(12): 397-416.
    [61]孙立、徐敏.低质生物质原料固定床热解气化及反应特性[J].会议,会议中国太阳能学会生物质能专业委员会.山东省能源所.
    [62] Methodology STAR-CD Version 3.15[M]. Japan, CD-adapco.
    [63]王福军,计算流体动力学分析[M].北京:清华大学出版社,2004,09:114-158.
    [64]傅维镳、张永廉、王清安,等.燃烧学[M].北京:高等教育出版社,1992年.
    [65]张会强,陈兴隆,周力行,等.湍流燃烧数值模拟研究的综述[J].力学进展,1999,4(29):567-576.
    [66] James F. Driscoll. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities[J]. Progress in Energy and Combustion Science, 2008(34): 91-134.
    [67]范维澄.计算燃烧学[M].安徽:安徽科学技术出版社,1987.
    [68] Ge Song, Tor Bj?rge, Jens Holen and Bj?rn F. Simulation of fluid flow and gaseous radiation heat transfer in a natural gas-fired furnace[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1997, 7(2/3):169-180.
    [69] E. Knudsen, O. Kurenkovy, et al. Modeling flame brush thickness in premixed turbulent combustion[J]. Proceedings of the Summer Program, 2006.
    [70]雷廷宙,师新广,李海军等.生物质燃气专用灶具的设计[J].农业工程学报,2001,17(4):166-167.
    [71] Pro-am user guide STAR-CD Version 3.15[M]. Japan, CD-adapco.
    [72] Schlichting H. Boundary Layer Theory[J]. McGraw-Hill, New York,1968,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700