SAGD技术开采稠油的余热利用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步提高稠油油田采收率,保证油田稳产,我国辽河油田首次采用了SAGD稠油开采技术。SAGD采油技术的实施,虽然缓解了稠油开采难及油田稳产的压力,但井口采出液温度高达170-180℃,引起了较大的剩余热能。针对上述问题,本文进行了深入研究。主要工作如下:
     1、在国内外余热利用途径的基础上,提出了SAGD采油区余热发电和直接利用相结合的热能梯级利用方案。
     2、在余热发电系统方案中,选取R134a为循环工质,并以热力学理论为基础,确定了余热发电系统的运行参数,计算了汽轮机的热力参数,得出了系统的发电量。
     3、从冷凝器换热理论出发,利用MATLAB软件编制了参数计算程序,分析了各设计参数对冷凝器性能参数的影响。在此基础上以冷凝器年总费用为目标函数建立优化数学模型,利用MATLAB软件对其进行优化,确定了最优设计参数。
     4、在余热直接利用方案中,设计计算了锅炉给水二次预热所需换热器以及生产部门采暖所需换热量。
     5、对SAGD余热利用方案的经济性和环保性进行了分析。
To further enhance heavy oil recovery and ensure stable oil field exploitation, Liaohe Oilfield in China adopted SAGD technology to exploit heavy oil for the first time. Although the implementation of SAGD technology has overcame oil exploitation barrier and succeeded in maintaining constant oil field exploitation, the followed problem is wellhead produced fluid temperature researched up to 170-180℃with much heat wasted. Regarding to the problem above, this paper makes deep research in several aspects. The main works are as follows:
     1、Based on waste heat utilization method at home and abroad, a set of technical program of cascading use of waste heat is proposed in SAGD oil zone with the combination of generation of electrical energy and direct use.
     2、In the waste heat power generation system program, R134a is selected as the cycle refrigerant. Based on the theory of thermodynamics, the operating parameters of power generation system are determined; thermodynamic parameters of the turbine are calculated; generating capacity of the system is obtained.
     3、From the aspect of heat transfer theory in condenser, the parameter calculation program is compiled using MATLAB software, and then the impact of the design parameters on the performance parameters of the condenser is analyzed. On the basis of that, the parameters of condenser are optimized by taking the annual total cost of the condenser as the objective function; optimization model is established using MATLAB software; the most superior technical parameters are determined.
     4、In the directly use heat program, the number of heat exchangers required in the secondary preheating boiler feed water and the heat of production sectors for heating needed are calculated.
     5、The economy and environmental protection of SAGD waste heat recovery program are analyzed.
引文
[1]于淑梅,傅松,陈海平,郭江龙.低温废热高效回收系统及其火用评价[J].热能动力工程,2002,(17):285-287.
    [2]冯朝辉.利用本钢余热开展集中供热项目的研究[D].沈阳:东北大学,动力工程,2007,5-6.
    [3]孙志旭,李羡济.循环水余热回收利用是热电企业挖潜增效、节能减排的好途径[C].2008,595-605.
    [4]吴霞.蒸汽辅助重力泄油技术研究进展[J].特种油气藏,2007,14(1):7-8.
    [5]张义堂.热力采油提高采收率技术[M].北京:石油工业出版社,2006,1-2.
    [6]禚月平.蒸汽辅助重力泄油(SAGD)项目组织建设案例研究[D].大连:大连理工大学,2009,25-26.
    [7]R. M. Butler SAGD Comes of Age[C].JCPT, July,1998,37 (7):9-12.
    [8]窦宏恩.稠油热采应用SAOD技术的探讨[J].石油科技论坛,2003,50-53.
    [9]吴亦三.中低温余热发电系统[J].节能技术,1989,(5):39-43.
    [10]Funamizu N, Ogoshi M. Reuse of Water and Heat Energy in Waste water in Japan[A]. Proceeding of 21st century in tematrnal conference&exhibition on developing strategy of urban wastewater trcatment and reuse[C]. Beijing, China,2001,9-12.
    [11]Funamizu N, lisa M. Reuse of heat energy in wastewater:implementation examples in Japan[J]. Water Science and Technology,2001,43(10):277-286.
    [12]吴亦三.中低温余热发电系统[J].节能技术,1989, (5):39-43.
    [13]丁联合.闪蒸汽在余热发电中的应用[J].西北电建,2004,4:26-28.
    [14]薄涵亮,马昌文,吴少融.氨水工质朗肯循环[J].清华大学学报,1997,37(2):108-109.
    [15]赵力,王晓东,张启.非共沸点工质用于太阳能低温朗肯循环的理论研究[J].太阳能学报,2009,30(6):738-743.
    [16]周大吉.西藏羊八井地热发电站的运行、问题及对策[J].电力建设,2003,24(10):1-3.
    [17]赵玉坤,侯谦..石油化工厂低位能应用概述[J].节能,1999,(6):9-10.
    [18]高学伟,李楠,康慧.地热发电技术的发展现状[J].新能源,2008,3:59-62
    [19]廖家祺,陈安民.炼油厂低温热回收利用的途径及技术[J].炼油设计,2000,30(9):61-62.
    [20]李维,尹述平.化工企业装置余热的综合开发利用[J].节能,2000,(8):19-21.
    [21]叶剑明,陈汝栈.余热发电的经济性分析[J].动力工程,1994,5(14):1-4.
    [22]王建财.低温余热发电模型研究[D].哈尔滨:哈尔滨理工大学,2003,28-37.
    [23]杨智博.基于有机朗肯循环的柴油机废气余热发电系统研究[D].哈尔滨:哈尔滨 理工大学,2006,5-7.
    [24]柯文.基于有机朗肯循环的铝电解槽烟气余热发电研究技术研究[D].中南大学,2009,16-18.
    [25]Luc G. Frechete. Performance Analysis of Brayton and Rankine Cycle Micro systems for Portable Power Generation. ASME International Mechanical Engineering Congress& Exposition New Orleans, Louisiana IMECE2002-39628.
    [26]John O. Everet.A Theory of Mapping from Structure to Function Appied to Engineering Thermodnamics. In Proceedings of the 14th International Joint Conference on Artificial Intell-igence(Montreal),Morgan Kaufmann,1995,1837-1843.
    [27]Panya Yodovard, JosePh Khedari. The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants,Energy sources.2001, (23),APrill:213-224.
    [28]Mago J, Chamarl M, Srinivasan K, etal. An examination of regenerative organic rankine cycles using dry fluids[J]. Applied Thermal Engineering,2008,28 (8/9):998-1007.
    [29]Takumi Hashizume. Power Generation Tecology by Hot water Heating of Low Temper-ature Power Generations Using Ammonia and Anunonia-Mixtureas Working Fluid[C]. Proce-edings of the 6th Asian Geothermal SymPosium.2004, Oct.5-7.
    [30]Johan Wall Karlskrona. Dynamics Study of an Automobile Exhaust System[J]. Depart-ment of Mechanical Engineering Blekinge Institute of Technology,2003:68-70.
    [31]王江峰,戴义平,陈江.中低温余热发电技术及其在水泥生产中的应用[J].节能,2007,(2):32-34.
    [32]王佩虎.蒸汽辅助重力泄油(SAGD)开发超稠油研究[D].大庆:大庆石油学院,2006,7-8.
    [33]朱仲军.电伴热系统在原油处理站的应用[J].江汉石油职工大学学报,2006,19(2):70-73.
    [34]杨维嵘.溴化锂吸收式制冷机的结构及原理[J].广东化工2009 36(193)177-180
    [35]虞煜磊,罗莎,任强.纯低温余热锅炉和热水闪蒸及时在预热发电中的应用[J].节能环保技术,2007,(11):32-34.
    [36]郑宗和,葛听,高金水.利用低温余热的低沸点介质发电系统[J].煤气与热力,2006,26(4):74-76.
    [37]顾伟,翁一武.低温热能发电技术及循环工质特性[J].2008,504-507.
    [38]谭羽飞.低温余热动力回收中选择工质的热力学原则[J].哈尔滨建筑大学学报,1995,28(5):82-85.
    [39]徐文轩.制冷剂R134a的物理性质[J].低温与特气,1992,4:28-30.
    [40]H. Weiss,R. Steidel,A. Lundberg. Performance Test of Lysholm Engine[J].UCRL, 51861-1975.
    [41]黄翔超.有机工质双循环螺杆膨胀机系统研究[D].天津:天津大学,2006,12-17.
    [42]王之安,胡亮光.汽液两相螺杆膨胀机流动特性分析[C].中国工程热物理学会工 程热力学与能源利用学术会议,1986,25-31.
    [43]刘化章.中低温余热发电的温度和工质条件[J].2000,25-29.
    [44]牛卫东.电厂汽轮机原理[M].北京:中国电力出版社,2008,5-9.
    [45]剪天聪.汽轮机原理[M].机械工业出版社,1987:5-7.
    [46]蒙春林.冲动式工业轮机热力和强度计算系统研究[D].中国电力出版社,2008,13-16.
    [47]彦启森,石文星,田长青.空气调节用制冷技术[M].北京:中国建筑工业出版社2006:76-77.
    [48]GB 1519-1999,管壳式换热器标准[S].1999,21-22.
    [49]曹卫华,郭正.最优化技术方法和MATLAB的实现[M].北京:化学工业出版社,2005,25-28.
    [50]肖红.非线性表量化函数与向量优化问题[J].安徽大学学报,2010,34(4):44-47.
    [51]章熙民,任泽霈.传热学[M].北京:中国建筑工业出版社,2001,196-197.
    [52]张志娥.升膜蒸发器的设计与应用[J].石油炼制,1989,10:1-6.
    [53]王志国,马一太,张守军.注汽锅炉系统用能分析方法研究[J].2001,32-34.
    [54]武站.油田注汽锅炉[M].上海:上海交通大学出版社,2008,32-34.
    [55]秦叔经,叶文邦.换热器[M].上海:化学工业出版社,2003,45-46.
    [56]汪健生,胡静,陈占秀.供暖方式的比较分析[J].暖通空调,2005,35(4):117-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700