Ni/Ni_3Al纳米丝中界面与合金化效应的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基单晶高温合金为典型的Ni/Ni3Al两相结构,具有良好的抗蠕变、抗断裂、抗氧化和耐腐蚀等性能,是制造航空发动机和工业燃气轮机叶片的关键材料。本文结合改进分析型嵌入原子方法(MAEAM),利用分子动力学方法(MD)探讨Ni/Ni3Al纳米丝中合金化、界面和尺寸等对纳米丝形变机制的影响,为高温合金材料的设计及其应用提供理论指导。
     本文首先研究Ni、Al和V纳米丝的尺寸效应,结果表明由于自由表面的变化导致纳米丝的力学和热学性能随着纳米丝尺寸减小而线性减小。纳米丝熔化机制随着尺寸减小而发生变化,相应的临界尺寸分别为0.476nm、0.526nm和0.625nm。对于小于临界尺寸的纳米丝,其熔化主要由原子振动非谐效应所致,相反,表面预熔及其熔化在纳米丝熔化过程中占主导地位。
     对比分析Ni/Ni3Al(γ/γ')纳米丝和块体材料的表观界面能,发现块体材料的表观界面能为负,而纳米丝的表观界面能为正,其数值随着界面过渡区(ITR)厚度减小而线性减小。通过研究ITR厚度对原子平均能量的影响关系,得出块体材料ITR的临界厚度约等于1.7nm。探讨了γ'-相体积分数对临界厚度界面区域表观界面能的影响,发现含有(50-70)%γ'-相体积分数的Ni/Ni3Al界面结合最好。对于Ni/Ni3Al纳米丝,通过研究尺寸对纳米丝在一定厚度界面区域能量与其平均能量极限值之差的影响,确定纳米丝的ITR临界厚度约为6.20nm。分析了Ni/Ni3Al纳米丝的延-脆性断裂转变机制,发现Ni/Ni3Al纳米丝的延-脆性断裂转变临界尺寸处于(2.3~3.5)nm之间。
     研究了合金化元素(Re、Ru、Co、Ta)在Ni3Al合金中的位置取代情况,结果表明Co趋向于置换其中的Ni位,其置换形成能为正,相反,Re、Ru和Ta倾向于取代Al位,且其置换形成能都负。分析了这些合金化元素及其掺杂方式对Ni3Al合金的微观结构和力学性能影响,发现当Re、Ru和Ta等元素置换第一、第三、第一和三近邻Ni原子以及第四近邻以内的所有基体原子时,合金化原子显著增强了Ni3Al合金力学性能,而当这三种元素置换第二、第四、第二和四近邻的Al原子时,对Ni3Al合金力学性能的强化效应不明显。而对于Co元素,无论用哪种置换方式,对Ni3Al合金力学性能强化效应不明显。详细分析各溶质元素对合金力学性能的强化机制,发现溶质原子的尺寸及其与基体原子间相互作用是力学性能增强的主要因素。研究了溶质(Re、Ru、Co、V和Ta)团簇对Ni/Ni3Al纳米丝的力学性能影响,发现纳米丝体模量随溶质团簇尺寸变化关系与其在块体材料中变化趋势不相同。其中,Re团簇增强纳米丝的力学性能,而且这种增强效应随着尺寸增大而变得更加明显,Ru和Co团簇对Ni/Ni3Al纳米丝的力学性能基本没有影响, V和Ta团簇的加入有降低合金纳米丝力学性能的趋势,且这种趋随着团簇尺寸增大变得更为明显。
     Ni/Ni3Al纳米丝在外加载荷条件下的尺寸效应研究表明,合金纳米丝的屈服强度和弹性模量随尺寸增大而变大,而合金纳米丝的屈服应变随着尺寸的增大而减小,三者随着尺寸不断变化而逐渐接近于一极限值,进一步研究发现层错滑移是纳米丝形变产生的主要原因。通过对Ni/Ni3Al纳米丝拉伸应变温度效应的研究,发现其形变主要归结于层错滑移和原子振动非谐效应,随着温度升高,纳米丝形变主要因素由以层错滑移为主逐步转向原子振动的非谐效应为主。研究合金化(Re、Ru、Co、Ta和V)团簇对Ni/Ni3Al纳米丝的力学性能及其机制的影响。除Co团簇外,其他合金化团簇的加入明显改变了纳米丝的力学性质。
     讨论合金化(Re、Ru和Ta)团簇对50%γ'-相Ni/Ni3Al纳米丝的形变行为及其微观机制的影响,研究表明,低温下,含Re和Ru团簇纳米丝的形变主要由位错滑移所致,且合金化团簇强烈地阻碍位错运动,使滑移现象局限在其周围,并在此出现颈缩现象。而在高温条件下,由于原子振动非谐效应,Re团簇无法有效地阻止位错滑移,而Ru团簇仍然保持完好结构,有效地阻止体内位错滑移,与其在低温形变机制类似。而含Ta团簇的纳米丝形变却不同,形变范围仅限于Ta团簇周围,其形变机制主要是由Ta原子尺寸及其非谐效应所致。
Due to the good creep, fracture resistance, antioxidation and corrosionresistances, Ni-based single crystal superalloy with a typical two-phase structure ofNi/Ni3Al, is a key material to produce the blade of aero-engines and industrial gasturbines. In the dissertation, molecular dynamics (MD), together with the modifiedanalytic embedded-atom method (MAEAM), is used to explore the effects of thealloying elements, interface and their influence on the deformation mechanisims ofNi/Ni3Al nanowire (NW), which can provide theoretical guidances for the designs andapplications of advanced high-temperature alloy materials.
     In the dissertation, the size effect of Ni, Al and V NWs are firstly studied. Theresults obtained indicate that the mechanical and thermodynamic properties decreaselinearly with the size decreasing as result of the existence of the free surface. We findout that the melting mechanism of Ni, Al and V NWs also changes with the sizedecreasing and the corresponding critical size of these NWs is about0.476nm,0.526nm and0.625nm, respectively. For the small-sized NWs, the melting behaviorresults mainly from the anharmonic effect of atomic vibration, on the contrary, for thelarge-sized NWs, the free surface plays a predominant role in the surface premeltingand melting transition of NWs.
     We calculate the apparent interfacial energy (AIE) of the bulk and NWs. The AIEvalues of the bulk are negative; in contrast, those of NWs are positive. And the AIEmagnitudes of the bulk and NWs decrease linearly with the decreasing thickness ofthe interfacial transition region (ITR). For the bulk materials, the critical thickness ofITR is about1.7nm by examining the thickness dependence of the average energy ofatom. We discuss the γ'-phase volume (γ'-VF) effect on the apparent interfacial energyof ITR with the critical thickness. The results show that the value of AIE is the lowestas γ'-VF ranges from50%to70%, which indicates that the bonding strength of theNi/Ni3Al interface with these γ'-VFs is the most excellent. For the Ni/Ni3Al NWs with50%γ'-VF, we estimate that the critical thickness of ITR is about6.20nm bymonitoring the size dependence of the differentia between the average energy of ITRand its limited value. Successively, the ductile-brittle fracture transition mechanism ofNW is in detail discussed. We discover that the critical size of discriminating betweenthe ductile-brittle transition behaviors is in the range of (2.3~3.5) nm.
     The site preference of the alloying elements (Re, Ru, Co and Ta) in the Ni3Alalloy is studied, which shows that the Co atom prefers to substitute the Ni site and itssubstituting formation energy is positive, conversely, the Re, Ru and Ta atoms preferto occupy the Al site and the substituting formation energies are less than zero. Westudy the effect of the alloying elements, together with the substituting manners, onthe microstructure and the mechanical properties. When these alloying elements (Re,Ru and Ta) substitute the1st,3rd,1stand3rdnearest neighboring Ni atoms or all matrixatoms within the4thnearest neighboring distance, the mechanical property of Ni3Alalloy is significantly enhanced. In contrast, as the alloying elements replace the2nd,4th,2ndand4thnearest neighboring Al atoms, the strengthening effect of the solutedoping on the mechanical property is obscure. In addition, no matter what types of thedoping manners, the strengthening effect of the Co element is not obvious. Thedetailed analysis is focused on the strengthening mechanism of the alloying elementson the mechanical property, which indicate that there are two main factors, namely thesize of the solute atom and the solute-solvent interaction, to control the strengtheningeffect. According to the solute (Re, Ru, Co, V and Ta) cluster having an effect on themechanical properties of Ni/Ni3Al NWs, we find out that the evolution tendencies ofthe bulk modulus varying with the incremental size are apparently different fromthose of the bulk counterpart. The mechanical properties of Ni/Ni3Al NWs with Realloying cluster increase apparently with the cluster size increasing. The sizes of theRu and Co alloying clusters have a weak effect on the improvement in the mechanicalproperties. And for the V and Ta cluster, their addition can reduce the mechanicalproperties, the trends of which are more and more prominent as the cluster sizeenlarges.
     The size effect on the mechanical properties of Ni/Ni3Al NW is studied with agiven external load. The obtained results indicate that the yield strength and theelastic modulus increase exponentially and the yield strain descreses exponentiallywith the increasing size. And three of them are gradually close to the limit value asthe wire size reaches a critical one. Then, we investigate the deformation mechanismof Ni/Ni3Al NW and find out that the fualt slip is the decisive factor. The temperaturedependence of the stress-strain process of Ni/Ni3Al NW is in detail discussed, whichindicates that the deformation of NW is mainly ascribed to the anharmonic vibrationand dislocation slip. The dominant function of the above factors is different with thetemperature increasing. Under the condition of a loading strain, we study theinfluence of the Re, Ru, Co, Ta and V clusters on the mechanical propert ies of Ni/Ni3Al nanowire. The doping solute clusters except the Co cluster can soften themechanical properties of NW.
     Finally, taking Ni/Ni3Al NW with the Re, Ru and Ta cluster locating in theγ'-phase as an example, we analyze the temperature dependence of the mechanicalproperties of nanowire and detailedly discuss the deformation behavior and itsinherent mechanism of wire. For NW with the Re cluster, the deformation results fromthe dislocation slip at the lower temperatures. Because the cluster impedes thedislocation motion, the slip phenomenon occur around the Re cluster and then thenecking generate here. The similar deformation mechanism has been also found inNWs with the Ru cluster at the lower temperatures. At the higher temperatures, thedeformation of NW has yet originated from the dislocation slip. But the Re cluster hasno influence on the dislocation motion for the stronger anharmonic effect. However,the deformation mechanism of NWs with the Ru cluster is in disagreement. Becausethe Ru cluster with a perfect lattice can effectively hold back the dislocation spread,similar to that of NW with the Ru cluster at the lower temperatures. The causes ofdeformation of NWs with the Ta cluster are different. The deformation behavior isalmost confined to the cluster vicinity. Therefore, the deformation mechanism of NWwith the Ta cluster originates mainly from the solute size and the anharmonic effect.
引文
[1]仲增墉,叶恒强.金属间化合物.北京:机械工业出版社,1992,17-23
    [2]郑运荣,张德堂.高温合金与钢的彩色金相研究.北京:国防工业出版社,1999,76-82
    [3]陈金国.军用航空发动机的发展趋势.航空科学技术.1994,1(5):9-13
    [4]孔祥鑫.第四代战斗机及其动力装置.航空科学技术.1994,1(5):21-27
    [5] Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloysfor industrial gas turbine application. Acta Materialia,2011,59(1):225-240
    [6]王明罡.元素Re对单晶镍基合金TCP相形态及蠕变行为的影响.[东北大学博士学位论文].沈阳:东北大学材料学院,2010,12-18
    [7] Clemens M L, Price A, Bellows R S. Advance solidification processing of anindustrial gas turbine engine component. Journal of Metals,2003,55(3):27-31
    [8]张俊,张爱斌,谭永宁,等. Re对定向凝固Ni基高温合金组织及性能的影响.航空材料学报,2010,30(3):24-27
    [9] Francis I, VerSnyder M, Shank E. The development of columnar grain and singlecrystal high temperature materials through directional solidification. MaterialsScience and Engineering,1970,6(4):213-217
    [10] Gell M, Duhl D N, Gupta D K, et al. Advanced superalloy airfoils. Journal ofMetals,1987,39(7):11-15
    [11]任英磊.一种镍基单晶高温合金的组织演化与高温力学性能.[中国科学院博士学位论文].沈阳:中国科学院金属研究所,2002,35-46
    [12] Svoboda J, Luká P. Creep deformation modeling of superalloy single crystals.Acta Materialia,2000,48(10):2519-2528
    [13] Claudia S, Monika F K. Phase compositions and lattice misfit in CMSX-11partition coefficients in single crystal nickel-based superalloy. Scripta Materialia,2001,44(5):731-736
    [14]东华.第三代单晶高温合金.航空制造工程,1995,2(12):9-12
    [15]王云江.镍基合金力学性能与元素分配行为的第一原理研究.[清华大学博士学位论文].北京:清华大学物理系,2010,3-10
    [16] Erickson G L, In: Kissinger R D, et al. eds. Superalloys, Worrendale: TheMinerals, Metals&Materials Society,1996,5-18
    [17] Byung S R, Nam S W. Fatigue-induced precipitates at grain boundary ofNb-A286alloy in high temperature low cycle fatigue. Materials Science andEngineering A,2000,291(1-2):54-59
    [18]全宏声.日本开发第四代单晶合金.材料工程,2000,26(6):6-7
    [19]孙广华,李晓欣.美国研制的第四代单晶合金.国际航空,2007,14(12):221-222
    [20]司古.美利坚大国地位的动力基石.航空知识,2010,11(12):19-31
    [21] Reed R C. The superalloys: Fundamentals and Applications. New York:Cambridge University Press,2006,51-64
    [22]梅炳初,王为民,袁润章. Ni3Al的有序性、脆性及塑性,武汉工业大学学报,199,18(1)1-4
    [23] Shibuya S, Kaneno Y, Yoshida M, et al. Dual multi-phase intermetallic alloyscomposed of geometrically close packed Ni3X(X: Al, Ti and V) type structures-Ⅱ: mechanical properties. Acta Materialia,2006,54(3):861-870
    [24]胡壮麒,刘丽荣,金涛,等.镍基单晶高温合金的发展.航空发动机,2005,3(1):1-7
    [25] Mot N F, Nabarro F R N. Report of the Conference on Stren gth of Solids, London:Physical Society,1948,1-10
    [26] Muraleedharan K, Balamuralikrishnan R, Das N. TEM and3D atom probecharacterization of DMS4cast nickel base superalloy, Journal of MaterialsScience,2009,44(9):2218-2225
    [27] Heckl A, Rettig R, Singer R F. Solidification characteristics and segregationbehavior of nickel-base superalloys in dependence on different rhenium andruthenium contents, Metallurgical and Materials Transaction A,2010,41(1):202-211
    [28] Walston W S, Ohara K S, Ross E W, et al. Rene N6: Third Generation SingleCrystal Superalloy, Superalloys, Metals&Materials Society,1996,12-45
    [29] Reed R C, Yeh A C, Tin S, et al. Identification of the partitioning characteristicsof ruthenium in single crystal superalloys using atom probe tomography, ScriptaMaterialia,2004,51(4):327-331
    [30] Wang W Z, Jin T, Zhao N R, et al. Effect of cobalt on chemical segregation andsolution process in Re-containing single crystal superalloys, Transactions ofNonferrous Metals Society of China,2006,16(3): s1978-s1981
    [31] Wang W Z, Jin T, Liu J L, et al. Role of Re and Co on microstructures and γ′coarsening in single crystal superalloys, Materials Science and Engineering A,2008,479(1-2):148-156
    [32] Carroll L J, Feng Q, Mansfield J F, et al. Elemental partitioning in Ru-containingnickel-base single crystal superalloys, Materials Science and Engineering A,2007,457(1-2):292-299
    [33] Mottura A, Warnken N, Miller M K, et al. Atom probe tomography analysis ofthe distribution of rhenium in nickel alloys, Acta Materialia,2010,58(3):931-942
    [34]赵彦,陈铮,王永欣,等.有序能对Ni75Al15Cr10合金Cr替代行为影响的微观相场研究.金属学报,2009,45(5):635-640
    [35] Wang C, Wang C Y. Density functional theory study of Ni/Ni3Al interfacealloying with Re and Ru, Surface Science,2008,602(14):2604-2609
    [36] Wang Y J, Wang C Y. The alloying mechanisms of Re, Ru in the quaternary Nibased superalloys γ/γ′interface: A first principles calculation. Materials Scienceand Engineering A,2008,490(1-2):242-249
    [37] Zhou Y, Mao Z, Morrison C B, et al. The partitioning and site preference ofrhenium or ruthenium in model nickel based superalloys: An atom-probetomographic and first principles study. Applied Physics Letters,2008,93(17):171905
    [38]彭平,陈律,周惦武,等. Re与Ru合金化对Ni/Ni3A1相界电子结构影响的第一原理研究,金属学报,2007,43(2):137-142
    [39] Gong X F, Yang G X, Fu Y H, et al. First-principles study of Ni/Ni3Al interfacestrengthening by alloying elements, Computational Materials Science,2009,47(2):320-325
    [40] Kim D E, Shang S L, Liu Z K. Effects of alloying elements on elastic propertiesof Ni3Al by first-principles calculations. Intermetallics,2010,18(6):1163-1171
    [41] Miura H, Suzuki K, Ito H, et al. Creep and fatigue damages of Ni-base-superalloy caused bystrain-induced anisotropic diffusion of component elements.Key Engineering and Materials,2010,417/418(8):261-264
    [42]于松,王崇愚,于涛.嵌入原子法研究Ni3Al中点缺陷以及Re择优占位和集团化.物理学报,2007,56(6):3212-3218
    [43] Fleischer R L. Substitutional solution hardening. Acta Metallurgica,1963,11(3):203-209
    [44] Blavette D, Caron P, Khan T. An atom probe investigation of the role of rheniumadditions in improving creep resistance of Ni-base superalloys. ScriptaMetallurgica,1986,20(10):1395-1400
    [45]王开国,李嘉荣,曹春晓.单晶高温合金蠕变行为研究现状.材料工程,2004,28(1):3-7
    [46] Cottrell A H. Report of a conference on the strength of solid. London: PhysicalSociety,1948,1-10
    [47]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2006,12-16
    [48]戴安邦,沈孟长.元素周期表.上海:科学技术出版社,1979,16-34
    [49] Kitashima T T. Yokokawa A C, Harada H. Analysis of element-content effects onequilibrium segregation at γ/γ′interface in Ni-phase superalloys using the clustervariation method. Intermetallic,2008,16(6):779-784
    [50] Hwang J Y, Nag S, Singh A R P, et al. Evolution of the γ/γ′interface width in acommercial nickel base superalloy studied by three-dimensional atom probetomography. Scripta Materialia,2009,61(1):92-95
    [51] Hobbs R A, Zhang L, Rae C M F, et al. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystalnickel-base superalloy at1100℃. Metallurgical and Materials Transactions A,2008,39(5):1014-1025
    [52] Horstemeyer M F, Baskes M I. Atomistic finite deformation simulation: Adiscussion on length scale effects in relation to mechanical stress. Journ al ofEngineering Materials and Technology, Transactions of the ASME,1999,121(4):114-119
    [53] Wang Z L. Nanowire and Nanobelt-materials, properties and devices.北京:清华大学出版社,2004,65-72
    [54] Li X F, Hu W Y, Xiao S F, et al. Molecular dynamics simulation ofpolycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects.Physica E,2008,40(10):3030-3036
    [55] Miao L, Bhethanabotla V R, Joseph B. Melting of Pd clusters and nanowires: Acomparison study using molecular dynamics simulation. Physical Review B,2005,72(13):134109
    [56] Park H S, Cai W, Espinosa H D, et al. Mechanics of Crystalline nanowires. MrsBull,2009,34(3):178-183
    [57] Petrova H, Perez-Juste J, Zhang Z Y, et al. Crystal structure dependence of theelastic constants of gold nanorods. Journal of Materials Chemistry,2006,16(40):3957-3963
    [58] Liang H Y, Upmanyu M, Huang H C. Size-dependent elasticity of nanowires:nonlinear effects. Physical Review B,2005,71(24):241403(R)
    [59] Pirota K R, Silva E L, Zanchet D, et al. Size effect and surface tensionmeasurements in Ni and Co nanowires. Physical Review B,2007,76(23):233410
    [60] Yao H Y, Yun G H, Bai N, et al. Surface elasticity on the size-dependent elasticproperty of nanowires. Journal of Applied Physics,2012,111(8):083506
    [61] Zhu Y, Qin Q Q, Xu F, et al. Size effect on elasticity, yielding, and fracture ofsilver nanowires:In situ experiments. Physical Review B,2012,85(4):045443
    [62] Boukai A, Xu K, Heath J R, Size-dependent transport and thermoelectricproperties of individual polycrystalline bismuth nanowires. Advanced Materials,2006,18(7):864-869
    [63] Wu H A. Molecular dynamics study on mechanics of metal nanowire. MechanicsResearch Communications,2006,33(1):9-16
    [64] Gao Y J, Wang H B, Zhao W J, et al. Anisotropic and tempertue effects onmechanical properties of copper nanowires under tensile loading. ComputationalMaterials Science,2011,50(10):3032-3037
    [65] Wang J, Huang Q A, Yu H. Size and temperature dependence of Young’smodulus of a silicon nano-plate. Journal of Physics D: Applied Physics,2008,41(16):165406
    [66] Guicciardi S, Swarnakar A K, Van der Biest O, et al. Temperature dependence ofthe dynamic Young’s modulus of ZrB2-MoSi2ultra-refractory ceramiccomposites. Scripta Materials,2010,62(11):831-834
    [67] Ueda K, Koyama T, Hiramatsu R, et al. Tmeperature dependence of carrier spinpolarization determined from current-induced domain wall motion in a Co/Ninanowire. Applied Physics Letters,2012,100(20):202407
    [68] Zhang J, Wang C Y, Chowdhury R, et al. Size-and temperature-piezoelectricproperties of gallium nitride nanowires. Scripta Materialia,2013,68(8):627-630
    [69] Caillard D. A TEM in situ study of alloying effects in iron. Ⅰ-Solid solutionsoftening caused by low concentrations of Ni, Si and Cr. Acta Materialia,2013,61(8):2793-2807
    [70] Caillard D. A TEM in situ study of alloying effects in iron. Ⅱ-Solid solutionsoftening caused by high concentrations of Si and Cr. Acta Materialia,2013,61(8):2808-2827
    [71] Sun F, Zhang J X, Tian Y. Calculation of alloying effect of Ruthenium inNi-based single-crystal superalloys. Computational Materials Science,2012,60(1):163-167
    [72] Chen H J, Chen Y Y, Hsieh C H, et al. Silicon doping induced bending inaluminum nanowires. Applied Physics Letters,2007,90(2):023111
    [73] Yee R J, Gibson S J, Dubrovski V G, et al. Effects of Be doping on InP nanowiregrowth mechanisms. Applied Physics Letters,2012,101(26):263106
    [74] Amorim E P M, da Silva E Z. Effect of light impurities on the electronicstructure of copper nanowires. Physical Review B,2012,85(15):155407
    [75]叶恒强著,材料界面结构与特性.北京:科学出版社,1999,21-24
    [76] Liu Z G, Wang C Y, Yu T. Influence of Re on the propagation of a Ni/Ni3Alinterface crack by molecular dynamics simulation. Modelling and Simulation inMaterials Science and Engineering,2013,21(4):045009
    [77] Sun C Q. Oxidation electronics: bond-band-barrier correlation and itsapplications. Progress in Materials Science,2003,48(6):521-685
    [78] Gutkin M Yu, Enzevaee C, Shodja H M. Interface effects on elastic behavior ofan edge dislocation in a core-shell nanowire emedded to an infinite matrix.International Journal of Solids and Structure,2013,50(7-8):1177-1186
    [79] Diao J K, Gall K, Dunn M L. Surface-stress-induced phase transformation inmetal nanosires, Nature Materials,2003,2(10):656-660
    [80] Diao J K, Gall K, Dunn M L. Yield strength asymmetry in metal nanowires, NanoLetters,2004,4(10):1863-1867
    [81] Wu Z X, Zhang Y W, Jhon M H, et al. Nanostructure and surface effects on yieldin Cu nanaowires. Acta Materialia,2013,61(6):1831-1842
    [82] Hou M, Melikhova O. Internal stress and mechanical deformation of Al andAl/Ni multilayed nanowires. Acta Materialia,2009,57(2):453-465
    [83] Ahmadzadeh-Bakhshayesh H, Gutkin M Yu, Shodja H M. Surface/interfaceeffects on elastic behavior of a screw dislocation in an eccentric core-shellnanowire. International Journal of Solids and Structure,2012,49(13):1665-1675
    [84] Koh S J A, Lee H P, Lu C, et al. Molecular dynamics simulation of solidplatinum nanowire under uniaxial tensile strain: A study on temperature andstrain rate effects. Physical Review B,2005,72(8):085414
    [85] Bringa E M, Cazamias J U, Erhart P, et al. Atomistic shock Hugonoit simulationof single-crystal copper. Journal of Applied Physics,2004,96(7):3793-3799
    [86] Park H S, Gall K, Zimmerman J A. Shape memory and pseudoelasticity in metalnanowires. Physical Review Letters,2005,95(25):255504
    [87] Deng C, Sansoz F. Near-ideal strength in gold nanowire achieved throughmicrostructure design. Acs Nano,2009,3(3):3001-3008
    [88] Yamakov V, Wolf D, Phillpot S R, et al. Deformation-mechanism map fornanocrystalline metals by molecular-dynamics simulation. Nature Materials,2004,3(1):43-47
    [89] Cao A J, Wei Y G, Ma E. Grain boundary effects on plastic deformation andfracture mechanisms in Cu nanowires: Molecular dynamics simulation. PhysicalReview B,2008,77(19):195429
    [90] Wu Z X, Zhang Y W, Jhon M H, et al. Nanowire failure: Long=Brittle andShort=Ductile. Nano Letters,2012,12(2):910-914
    [91] Seo J H, Yoo Y D, Park N Y, et al. Superplastic deformation of defect-free Aunanowires via coherent twin propagation. Nano Letters,2011,11(8):3499-3502
    [92] Xie K Y, Shrestha S, Cao Y, et al. The effect of pre-existing defects on thestrength and deformation behavior of α–Fe nanopillars. Acta materials,2013,61(2):439-452
    [93] Denis Y W Yu, Frans S.The yield streng of thin copper films on Kapton. Journalof Applied Physics,2004,95(6):2991-2997
    [94] Greer J R, Oliver W C, Nix W D. Size dependence of emchanical properties ofgold at the micron scale in the absence of strain gradients. Acta Materialia,2005,53(6):1821-1830
    [95] Weinberger C R, Jennings A T, Kang K, et al. Atomistic simulations andcontinuum modeling of dislocation nucleation and strength in gold nanowires.Journal of the Mechanics and Physics of Solid,2012,60(1):84-103
    [96] Wang R S, Hou H Y, Ni X D, et al. Molecular dynamics simulation of Ni3Almelting. Journal of University of Science and Technology Beijing,2008,15(4):425-429
    [97] Sutrakar V K, Mahapatra D R. Asymmetry in structural and thermo-mechanicalbehaviour of intermetallic NiAl nanowire under tensile/compressive loading: Amolecular dynamics study. Intermetallics,2010,18(8):1565-1571
    [98] Wang Y J, Gao G J, Ogata S. Size-dependennt transition of deformationmechanism, and nonlinear elasticity in Ni3Al nanowires. Applied Physics Letters,2013,102(4):041902
    [99] Sutrakar V K, Mahapatra D R. Superlasticity in intermetallic NiAl nanowire viaatomistic simulations. Materials Letters,2010,64(7):879-881
    [100]程登木. Ni3Al纳米材料热力学性质的分子动力学模拟.[电子科技大学硕士学位论文].成都:电子科技大学光电物理学院,2009,14-21
    [101] Liu Y, Chen K Y, Zhang J H, et al. First-principles investigation onenvironmental embrittlement of TiAl. Journal of Materials Research,1998,13(2):290-301
    [102]刘迪.低维纳米材料界面性质的理论和模拟研究.[吉林大学博士学位论文].长春:吉林大学材料学院,2010,31-36
    [103] Ozgen S, Duruk E. Molecular dynamics simulation of solidification kinetics ofaluminium using Sutton-Chen version of EAM. Materials Letters,2004,58(6):1071-1075
    [104] Shah P, Roy S, Chakravarty C. Melting of55-atom Morse clusters. Journal ofChemical Physics,2003,118(23):10671-10682
    [105] Daw M S, Baskes M I. Embedded-atom method: Derivation and application toimpurities, surface and other defects in metals. Physical Review B,1984,29(12):6443-6453
    [106]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用—原子尺度材料设计理论.长沙:湖南大学出版社,2003,18-25
    [107] Hu W Y, Masahiro F. The Application of the Analytic Embedded AtomPotentials to Alkali Metals. Modelling and Simulation in Materials Science andEngineering,2002,10(6):707-726
    [108]吴玉蓉.稀土镁合金的热力学及固溶特性的理论模拟.[湖南大学博士学位论文].长沙:湖南大学材料学院,2007,75-82
    [109] Alder B J, Wainwright T E. Phase transition for a hard-sphere system. Journalof Chemical Physics,1957,27(5):1208-1209
    [110] Swope W C, Anderson H C, et al. A computer simulation method for thecalculation of equilibrium constants for the formation of physical clusters ofmolecules: application to small water clusters. Journal of Chemical Physics,1982,76(1):637-649
    [111] NoséS. A unified formulation of the constant temperature molecular dynamicsmethods. Journal of Chemical Physics,1984,81(1):511-519
    [112] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions.Physical Review A,1985,31(3):1695-1792
    [113] Anderson H C. Molecular dynamics simulations at constant pressure and/ortemperature. Journal of Chemical Physics,1980,72(4):2384-2393
    [114] Kakimoto K, Umehara T, Ozoe H. Molecular dynamics analysis on dif fusion ofpoint defects. Journal of Crystal Growth,2000,210(1-3):54-59
    [115] Mishin Y. Atomistic modeling of the γ and γ′–phases of the Ni-Al system. ActaMaterialia,2004,52(6):1451-1467
    [116] Kart H H, Tomak M, Uludogan M, et al. Thermodynamical and mechanicalproperties of Pd-Ag alloys. Computational Materials Science,2005,32(1):107-117
    [117] Lou W H, Hu W Y, Xiao S F. Melting temperature of Pb nanostructuralmaterials from free energy calculation. Journal of Chemical Physics,2008,128(7):074710
    [118] Morris J R, Wang C Z, Ho K M, et al. Melting line of aluminum fromsimulation of coexisting phases. Physical Review B,1994,49(2):3109-3115
    [119] Honeycutt J D, Andersen H C. Molecular dynamics study of melting andfreezing of small Lennard-Jones clusters. Journal of Physical Chemistry,1987,91(19):4950-4963
    [120] Tsay S F, Wang S. Anomalies in the liquid structure of Ga metal, PhysicalReview B,1994,50(1):108-112
    [121] Arivalagan K, Ravichandran S, Rangasamy K, et al. Nanomaterials and itspotential applications. International Journal of Chemical Technolog y Research,2011,3(2):534-538
    [122] Gheshlaghi B, Hasheminejad S M. Size dependent surface dissipation in thicknanowires. Applied Physcics Letters,2012,100(26):263112
    [123] Ouyang G, Wang C X, Yang G W. Surface energy of nanostructure materialswith negative curvature and related size effects. Chemical Review,2009,109(9):4221-4247
    [124] Peng C, Ganesan Y W, Lu Y, et al. Size dependent mechanical properties ofsingle crystalline nickel nanowires. Journal of Applied Physics,2012,111(6):063524
    [125] Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning.Nano Letters,2012,12(2):887-892
    [126] Chen L Y, Richter G, Sullivan J P, et al. Lattice anharmonicity in defect-free Pdnanowhiskers. Physical Review Letters,2012,109(12):125503
    [127] Lu H M, Li P Y, Cao Z H, et al. Size-, Shape-, and dimensionality dependentmelting temperatures of nanocrystals. Journal of Physical Chemistry C,2009,113(18):7598-7602
    [128] Ouyang B, Qi W H, Liu C Z, et al. Size and shape dependent order-disorderphase transition of Co-Pt nanowires. Computational Materials Science,2012,63(1):286-291
    [129] Wang S Q, Ye H Q. Ab initio elastic constants for the lonsdaleite phases of C, Siand Ge. Journal of Physics: Condensed Matter,2003,15(12):5307-5317
    [130] Cagin T, John R R. Third-order elastic constants from molecular dynamics:theory and an example calculation. Physical Review B,1988,38(10):7940-7946
    [131] Simmons G, Wang H. Single crystal elastic constants and calculated aggregateproperties. Cambridge MA: MIT Press,1977,7-13
    [132] Li X Q, Zhang H L, Lu S, et al. Elastic properties of vanadium-based alloysfrom first-princples theory. Physical Review B,2012,86(1):014105
    [133] Li X Q, Zhang C, Zhao J J, et al. Mechanical properties and defective effects ofBCC V-4Cr-4Ti and V-5Cr-5Ti alloys by first-priciples simulations.Computational Materials Science,2011,50(9):2727-2735
    [134] Mehl M J, Papaconstantopoulos D A. Tight-binding total-energy method fortransition and noble metals. Physical Review B,1996,54(7):4519-4530
    [135] S derlind P, Eriksson O, Wills J M, et al. Theory of elastic constants of cubictransition metals and alloys. Physical Review B,1993,48(9):5844-5851
    [136] Bolef D I, Smith R E, Miller J G. Elastic properties of vanadium. Ⅰ.Temeprature dependence of the elastic constents and thermal expansion. PhysicalReview B,1971,3(12):4100-4108
    [137] Jing G Y, Duan H L, Sun X M, et al. Surface effects on elastic properties ofsliver nanowires: contact atomic-force microscopy. Physical Review B,2006,73(23):235409
    [138] Kumar K S, Swygenhoven H V, Suresh S. Mechanical behavior ofnanocrystalline metals and alloys. Acta Materialia,2003,51(19):5743-5774
    [139] Mehl M J, Osburn J E, Papaconstantopoulos D A, et al. Structural properties ofordered high-melting-temperature intermetallic alloys from firts-principlestotal-energy calculations. Physical Review B,1990,41(15):10311-10323
    [140] Foiles S M, Baskes M I, Daw M S, Embedde-atom-method functions for theFCC metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Physical Review B,1986,33(12):7983-7991
    [141]王博,张建民,路严冬,等. Fcc金属表面能的各向异性分析及表面偏析的预测.物理学报,2011,60(1):016601
    [142] Bozzolo G, Ferrante J, Ronald D N, et al. Surface segregation inmulticomponent system: Modeling of surface alloys and alloy surfaces.Computational Materials Science,1999,15(2):169-195
    [143] de Boer F R, Room R, Mattens W C M, et al. Cohesion in metals,North-Holland: Amsterdam,1988,1-45
    [144] Kumikov V K, Khokonov Kh B. On the measurement of surface free energy andsurface tension of solid metals. Journal of Applied Physics,1983,54(3):1346-1350
    [145] Tyson W R, Miller W A. Surface free energies of solid metals: Estimation fromliquid surface tension measurements. Surface Science,1977,62(1):267-276
    [146] Finnis M W, Sinclair J E. A simple empirical N-body potential for transitionmetals. Philosophical Magzine. A,1984,50(1):45-55
    [147] Guellil A M, Adams J B. The application of the analytic embedded atom methodto bcc metals and alloys. Journal of Materials Research,1992,7(3):639-652
    [148]张芳英,腾英元,张美霞,等. Al(001)、Al(110)、Al(111)面表面能的密度泛函理论计算.腐蚀科学与防护技术,2005,17(1):47-49
    [149] Rodriguez A M, Bozzolo G, Ferrante J. Multilayer relaxation and surfaceenergies of fcc and bcc metals using equivalent crystal theory. Surface S cience,1993,289(1-2):100-126
    [150] Mutasa B, Farkas D. Atomistic structure of high-index surfaces in metals andalloys. Surface Science,1998,415(3):312-319
    [151] Ouyang G, Li X L, Tan X, et al. Size-induced strain and stiffness of nanocrystals.Applied Physics Letters,2006,89(3):031904
    [152] Huang W J, Sun R, Tao J, et al. Coordination dependent surface atomiccontraction in nanocrystals revealed by coherent diffraction. Nature Materials,2008,7(4):308-313
    [153] Bai X M, Li M. Ring-diffusion mediated homogeneous melting in thesuperheating regime. Physical Review B,2008,77(13):134109
    [154] Yang X Y, Hu W Y, Liu F S, et al. Atomistic simulation for the size-dependentmelting behaviour of vanadium nanowires. Journal of Physics D: Applie dPhysics,2012,45(48):485304
    [155] Lide D R. Hand book of Chemistry and Physics(81st), FL: CRC Press,2000-2001,131-135
    [156] Kittel C. Introduction to solid state physics, New York: Wiley Press,1996,19-32
    [157] Lide D R. Hand book of Chemistry and Physics(81st), FL: CRC Press,2000-2001,251-252
    [158] Sun C Q. Thermo-mechanical behaviour of low-dimensional system: The localbond average approach. Progress in Materials Science,2009,54(2):1-159
    [159] Li H, Pederiva F, Wang B L, et al. How does the nickel nanowire melt? AppliedPhysics Letters,2005,86(1):011913
    [160] Wang B L, Yin S Y, Wang G H, et al. Novel structures and properties of goldnanowires. Physical Review Letters,2001,86(10):2046-2049
    [161] Li H, Wang B L, Wang J L, et al. Melting behavior of one dimensionalzirconium nanowire. Journal of Chemical Physics,2004,120(7):3431-3438
    [162] Sun F, Zhang J X, Liu P, et al. Atomic scale interfacial and compositionalcharacteristics of the and γ phases of Ni-based single-crystal superalloys. ActaMaterialia,2012,60(19):6631-6640
    [163] Mrkin I L, Kanchee O D. Relationship between heat resistance and difference inlattice spacings of phases in precipitation-hardening alloys. Metal Science andHeat Treatment,1967,9(1):10-13
    [164] Dirand L, Cormier J, Jacques A, et al. Measurement of the effective γ/γ' latticemismatch during high temperature creep of Ni-based single crystal superalloy.Materials Characterization,2013,77(3):32-46
    [165] F hrmann M, Fratzl P, Paris O, et al. Influnece of coherency stress onmicrostructural evolution in model Ni-Al-Mo alloys. Acta Metallurgica etMaterialia,1995,43(3):1007-1022
    [166] Banerjee R, Fain J P, Anderson P M, et al. Influence of crystallographicorientation and layer thickness on the fracture behavior of Ni/Ni3Al multilayeredthin films. Scripta Materialia,2001,44(11):2629-2633
    [167] Wang C, Wang C Y. Ni/Ni3Al interface: A density functional theory study.Applied Surface Science,2009,255(6):3669-3675
    [168] Wang Y J, Wang C Y, First-priciples calculations for the elastic properties ofNi-base model superalloys: Ni/Ni3Al multilayers. Chinese Physics B,2009,18(10):4339-4348
    [169] Ogata S, Umeno Y, Kohyama M. First-priciples approaches to intrinsic strengthand deformation of materials: perfect crystals, nano-structures, surfaces andinterfaces. Modelling and Simulation in Materials Science and Enginerring,2009,17(1):013001
    [170] Mishin Y, Asta M, Li J. Atomistic modeling of interfaces and their impact onmicrostrucutre and properties. Acta Materialia,2010,58(4):1117-1151
    [171] Hyland R W Jr. Homogeneous nucleation kinetics of Al3Sc in a dilute Al-Scalloy. Metallurgical and Materials Transactions A,1992,23(7):1947-1955
    [172] Wenderoth W, V lkl R, Yokokawa T, et al. High temperature strength of Pt-basesuperalloys with different γ′volume fractions. Scripta Materialia,2006,54(2):275-279
    [173] Srinivasan R, Banerjee R, Hwang J Y, et al. Atomic scale structure and chemicalcomposition across order-disorder interfaces. Physical Review Letters,2009,102(8):086101
    [174] Zhu T, Wang C Y. Misfit dislocation networks in the γ/γ′phase interface of aNi-based single-crystal superalloy: Molecular dynamics simulation. PhysicalReview B,2005,72(1):014111
    [175] Kitashima T, Harada H. A new γ′phase-field method for simulatingprecipitation in multicomponent nickel-base superalloy. Acta Materialia,2009,57(6):2020-2028
    [176] Ofori A P, Rossouw C J, Humphreys C J. Determining the site occupancy of Ruin the Ll2pahse of a Ni-base superalloy using ALCHEMI. Acta Materialia,2005,53(1):97-110
    [177] Galan U, Sodano H A. Molecular dynamics prediction of interfacial strengthand validation through atomic force microscopy. Applied Physics Letters,2012,101(15):151603
    [178] Shang S L, Kim D E, Zacherl C L, et al. Effects of alloying elements andtemperature on the elastic properties of dilute Ni-base superalloys fromfirst-pricinples calculations. Journal of Applied Physics,2012,112(5):053515
    [179] Wu Q, Li S S. Alloying element additions to Ni3Al: site preferences and effectson elastic properties from first-pricinples calculations. Computational MaterialsScience,2012,53(1):436-443
    [180] Liu Y H, Zhao J W. The size dependence of the mechanical properties andbreaking behavior of metallic nanowires. Computational Materials Scien ce,2011,50(5):1418-1424
    [181] Yang X Y, Xiao S F, Hu W Y. Atomistic simulation for the size effect on themechanical properties of Ni/Ni3Al nanowire. Journal of Applied Physics,2013,114(9):094303
    [182] He J, Lilley C M. Surface effect on the elastic behavior of static bendingnanowires. Nano Letters,2008,8(7):1798-1802
    [183] Yuan F L, Huang L P. Molecular dynamics simulation of amorphous silica underuniaxial tension: From bulk to nanowire. Journal of Non-Crystalline Solids,2012,358(24):3481-3487
    [184] Hyde J M, Marquis E A, Wiliford K B, et al. A sensitivity analysis of themaximum separation method for the characterisation of solute clusters.Ultramicroscopy,2011,111(6):440-447
    [185] Blavette D, Carron P, Khan T, et al. Superalloys, Warrendale PA, The Minerals,Metals and Materials Society,1988,21-26
    [186] Zhu T, Wang C Y, Gan Y. Effect of Re in γ phase, γ′phase and γ/γ′interface ofNi-based single-crystal superalloys. Acta Materialia,2010,58(6):2045-2055
    [187] Wang Y, Liu Z K, Chen L Q. Thermodynamic properties of Al, Ni, NiAl andNi3Al from first-pricinples calculations. Acta Materialia,2004,52(9):2665-2671
    [188] Kayser F X, Stassis C. The elastic constants of Ni3Al single at0and23.5℃.Physica Status Solidi A,1981,64(1):335-342
    [189] Prikhodko S V, Carnes J D, Isaak D G, et al. Temperature and compositiondependence of the elastic constants of Ni3Al. Metallurgical and MaterialsTransactional A,1999,30(9):2403-2408
    [190] Wang T, Chen L Q, Liu Z K. Lattice parameters and local lattice distortions infcc-Ni solutions. Metallurgical and Materials Transactional A,2007,38(3):562-569
    [191] Gray T, Whitby M, Mann N. http://www.ab126.com/Periodic-Elements/index_2.html,2012-10-28
    [192] Ruban A V, Skriver H L. Calculated site substitution in ternary γ'-Ni3Al:Temperature and composition effects. Physical Review B,1997,55(2):856-874
    [193] Wang S Y, Wang C Y, Sun J H, et al. Energetic and electronic structure of Reand Ta in the γ′phase of Ni-based superalloys. Physical Review B,2001,65(3):035101
    [194] Mekhrabov A O, Akdeniz M V, Arer M M. Atomic ordering characteristics ofNi3Al intermetallics with substitutional ternary additions. Acta Materialia,1997,45(3):1077-1083
    [195] Jiang C, Gleeson B. Site preference of transition metal elements in Ni3Al.Scripta Materialia,2006,55(5):433-436
    [196] Amouyal Y, Mao Z G, Seidman D N. Effects of tantalum on the partitioning oftungsten between the γ and γ′–phase in nickel-based superalloys: Linkingexperimental and computational approaches. Acta Materialia,2010,58(18):5898-5911
    [197] Becerra A, Pekguleryuz M J. Effects of lithium, and zinc on the latticeparameters of magnesium. Journal of Materials Research,2008,23(12):3379-3386
    [198] Cohen M L. Calculation of bulk moduli of diamond and zinc-blende solids.Physical Review B,1985,32(12):7988-7991
    [199] Yokokawa T, Osawa M, Nishida K, et al. Effect of Ru addition to partitioningbehavior of alloying elements into γ and γ' phases of Ni-base superalloys. Journalof the Japan Institute of Metals,2004,68(2):138-141
    [200] Amouyal Y, Mao Z G, Morrison C B, et al. On the interplay between tungstenand tantalum atoms in Ni-based superalloys: An atom-probe tomographic andfirst-pricinples study. Applied Physics Letters,2009,94(4):041917
    [201] Mottura A, Finnis M W, Reed R C. On the possibility of rhenium cluster innickel-based superalloys. Acta Materialia,2012,60(6-7):2866-2872
    [202] Tiwari G P, Ramannujan R V. Review the relation between the electron to atomratio and some properties of metallic systems. Journal of Materials Science,2001,36(2):271-283
    [203] Dean J A. Lang’s handbook of Chemistry (15thEd.), New York: McGraw-HillPress,1999,25-31
    [204] Shein I R, Ivanovshii A L. Elastic properties of mono-and polycrystallinehexagonal AIB2-like diborides of s, p and d metals from first-pricinplescalculations. Journal of Physics: Condensed Matter,2008,20(41):415218
    [205] Wu Q, Li S S, Ma Y, et al. First principles calculations of alloying elementdiffusion coefficients in Ni using the five-frequency model. Chinese Physics B,2012,21(10):109102
    [206] Hattori M, Goto N, Murata Y, et al. Diffusion of Refractory elements inNi-X-Y(X, Y: Re, W, Ru, Al) Ternary Alloys. Materials Transactions,2006,47(2):331-334
    [207] Jang D C, Cai C, Greer J R. Influence of homogeneous interfaces on th estrength of500nm diameter Cu nanopillars. Nano Letters,2011,11(4):1743-1746
    [208] Tucker G J, Aitken Z H, Greer J R, et al. The mechanical behavir anddeformation of bicrystalline nanowires. Modelling and simulation in materialsscience and engineering,2013,21(1):015004
    [209] Jennings A T, Greer J R. Hererogeneous dislocation nucleation from surfacesand interfaces as governing plasticity mechanism in nanoscale matels. Journal ofMaterials Research,2011,26(22):2803-2814
    [210] Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening andmaximum strength in nano-twinned metals. Nature,2010,464(8):877-880
    [211] Li S Z, Ding X D, Deng J K, et al. Superelasticity in bcc nanowires by areviersible twinning mechanism. Physical Review B,2010,82(20):205435
    [212] Schi tz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulations of themechanical deformation of nanocrystalline metals. Physical Review B,1999,60(17):11971-11983
    [213] Park H S, Zimmerman J A. Modeling inelasticity and failure in gold nanowires,Physical Review B,2005,72(5):054106
    [214] Ichitsubo T, Koumota D, Hirao M, et al. Elastic anisotropy of rafted Ni-basedsuperalloy at high temperatures. Acta Materialia,2003,51(16):4863-4869
    [215] Zhang X, Stoddart P R, Comins J D, et al. High-temperature elastic propertiesof a nickel-based superalloy studied by surface Brillouin scattering. Journal ofPhysics: Condensed Matter,2001,13(10):2281-2294
    [216] Sawant A, Tin S. High temperature nanoindentation of a Re-bearing singlecrystal Ni-base superalloy. Scripta Materialia,2008,58(4):275-278
    [217]彭传校.镍纳米线的结构及其力学性能.[山东大学硕士学位论文].济南:山东大学材料学院,2009,46-48
    [218]李小凡.纳米结构Mo与FeAl单轴拉伸特性的分子动力学模拟.[湖南大学博士学位论文].长沙:湖南大学材料学院,2011,29-36
    [219] Xu S, Guo Y F, Ngan A H W. A molecular dynamics study on the orientation,size, and dislocation confinement effects on the plastic deformation of Alnanopillars. International Journal of Plasticity,2013,43(1):116-127
    [220] Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinnedcopper. Science,2009,323(5914):607-610
    [221] Lu K, Lu L, Suresh S. Strenthening materials by engineering coherent internalboundaries at the nanoscale. Science,2009,324(5925):349-352
    [222] Jiang J W, Leach A M, Gall K, et al. A surface stacking fault energy approachto predicting defect nucleation in surface-dominated nanostructures. Journal ofthe Mechanics and Physics of Solids,2013,61(9):1915-1934
    [223] Sankaranarayannan K R S, Bhethanabotla V R, Joseph B. Molecular dynamicssimulation of temperature and strain rate effects on the elastic properties ofbimetallic Pd-Pt nanowires. Physical Review B,2007,76(13):134117
    [224]王奋英.金属纳米材料的形变和断裂机理研究.[南京大学博士学位论文].南京:南京大学化学化工学院,2011,54-61
    [225] Zhan H F, Gu Y T, Yan C, et al. Numerical exploration of plastic deformationmechanisms of copper nanowires with surface defects. Computational MaterialsScience,2011,50(12):3425-3420
    [226] Chisholm C, Bei H, Lowry M B, et al. Dislocation starvation and exhaustionhardening in Mo alloy nanofibers. Acta Materialia,2012,60(5):2258-2264
    [227] Gutkin M Yu, Enzevaee C, Shodja H M. Interface effects on elastic behavior ofan edge dislocation in a core-shell nanowire embedded to an infinite matrix.International Journal of Solids and Structures,2013,50(7-8):1177-1186
    [228] Park H S, Gall K, Zimmerman J A. Shape memory and pseudoelasticity in matelnanowires. Physica Review Letters,2005,95(25):255504
    [229] Sansoz F, Deng C. Effects of twin and surface facet on strain-rate sensitivity ofgold nanowires as different temperatures. Physical Review B,2010,81(15):155430
    [230] Huang P H, Fang T H, Chou C S. The coupled effects of size, shape, andlocation of vacancy clusters on the structural deformation and mechanicalstrength of defective nanowires. Current Applied Physics,2011,11(3):878-887
    [231] Gao Y J, Wang H B, Zhao W J, et al. Anisotropic and temperature effects onmechanical properties of copper nanowires under tensile loading. ComputationalMaterials Science,2011,50(10):3032-3037
    [232] Zhu T, Li J, Ogata S, et al. Mechanics of ultra-strength materials. MaterialsReseach Society Bulletin,2009,34(3):167-172
    [233] Starink M J, Cao L F, Rometsch P A. A model for the thermodynamics of andstrengthening due to co-clusters in Al-Mg-Si based alloys. Acta Materialia,2012,60(10):4194-4207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700