饱水黄土隧洞支护衬砌结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济飞速发展,基础设施建设大力推进,交通(公路、铁路、城市地铁)、水利等设施的建设高峰期已经出现,越来越多的工程修建说明了一个问题:中国已是世界上隧洞及地下工程规模最大、数量最多、地质条件和结构形式最复杂、修建技术发展速度最快的国家之一,技术水平与建设成就已走在世界前列。但由于岩土体物理力学性质的不明确性、隧洞工程的个体差异性等原因,尤其对饱水黄土隧洞而言,设计理论还不够完善。因此研究饱水黄土隧洞支护衬砌结构设计具有理论与实践意义。
     通过介绍引洮工程15#隧洞的工程概况,明确了该隧洞与周边环境的关系,借助多年来积累的工程地质勘查资料及科研成果,分析了该隧洞洞身围岩的特殊性质。该隧洞洞身围岩主要为第四系饱水土,由可塑~硬塑状的重粉质壤土、粉质粘土和软塑状的粉质壤土、砂壤土组成,整体土层极不均一,围岩性状差异大。其次,总结现有隧洞衬砌结构设计的计算模型,指出每种模型各自的特点以及相关的计算理论,并选择了利用两种模型分别计算的方法。选取类马蹄形及圆形断面两种不同工况,利用ANSYS软件对该隧洞衬砌结构进行力学分析,发现圆形断面的受力比类马蹄形受力好。然而,类马蹄形断面与圆形断面相比具有更大的使用空间和使用宽度。在满足相同净空的要求下,圆形隧洞的开挖量大,衬砌和加固圈的用量也相应增大,施工没有类马蹄形断面方便。总结各方面因素,建议采用类马蹄形断面型式。随后用FLAC软件模拟了隧洞的开挖,经过计算表明,按照原设计文件的支护衬砌结构偏于保守,有较大的优化空间。将原设计文件中的衬砌减薄100mm、锚杆设置减少4根,从支护前、支护后、设置锚杆后三个阶段对整个开挖过程进行分析,得出优化方案是可行的。再对地震作用下隧洞衬砌结构的力学响应进行时程分析,验证优化方案中衬砌结构在地震作用下的稳定性,同时说明支护体系中锚杆的设置在抗震中的重要作用。最后通过对该隧洞施工过程中实际监测数据进行回归分析,指出隧洞的支护参数要随时根据施工过程中围岩的动态信息进行调整,保证施工安全顺利进行。
     引洮工程15#饱水黄土隧洞断面较大,长度较长,工程地质条件极为复杂、性质恶劣,具有极强典型性,研究该隧洞的支护衬砌结构设计对今后类似工程的建设具有极强的指导意义。
With the rapid development of China's national economy, the infrastructure construction has been promoted, China is stepping into the phase of construction peak on transportation (such as road, rail, urban subway), and water conservancy facilities, the increasing number of engineering construction illustrates a fact: China has became one of the countries which has the largest scale of underground projects all over the world, and the amount of tunnels in china is the largest, with the uttermost complex geological conditions. China has the fastest speed of technological developme-nt with respect to these projects, and our technical level and economic achievements have been walking in the forefront of the world. However, due to the reasons about the unclear properties of the physical and mechanical properties of rock and soil, the tunnel project's individual differences, the design theory is not perfect especially for water-saturated loess tunnel, it is theoretically and practically significant to study water-saturated loess tunnel the support lining structure design.
     Through the introduction of the "Yintao" project15#tunnel project overview, we can realize the relationship between the surrounding environment and the tunnel, with the help of engineering geological exploration data and research results accumulated over the years, we analyzed the special nature of the surrounding rock of the tunnel body and came up with a stability evaluation. The tunnel body surrounding rock is the fourth unsaturated soil, constructed by plastic to hard plastic like heavy silt loam, silty clay and soft plastic-like silty loam, sandy loam, the overall soil very uniform, the rock traits very different. Secondly, we summarize the existing tunnel lining structure design calculation model, pointing out the characteristics and computational theory of each model, and select the means of calculated using two methods respectively. Selecting class horseshoe-shaped and circular cross-section of two different conditions by ANSYS mechanical analysis of the lining structure of the tunnel, found that the force of the circular cross-section is better than the class horseshoe force. However, comparing with a circular cross section, the class horseshoe-shaped cross-section has more using space and greater width. To meet the same clearance requirements, the circular tunnel has lager amount of excavation, and using more lining and reinforcement ring, and it is not as convenient as the construction of class horseshoe section. Summarize various factors, it is recommended to use the class horseshoe-shaped sectional form. Then we used FLAC software to simulate the excavation of the tunnel, calculations show that, in accordance with the original design file support lining structure is conservative, we can largely optimize it. Thinning the lining in the original design file about100mm, decrease4bolt set, analyzing the entire excavation process from the perspective of supporting ago、after supporting、 after setting the bolt, we can conclude that optimization scheme is feasible. Tunnel lining structure mechanical response under earthquake time history analysis to verify the stability of the optimization program lining structure under seismic action also indicates the important role of anchor support system set up in the earthquake. Finally, the regression analysis through the tunnel construction process monitoring data, pointed out that the tunnel support parameters should be adjusted at any time based on the dynamic information of surrounding rock in the construction process, so that we can ensure the construction of safe and smooth.
     Water diverting project15#water-saturated loess tunnel section, with longer length, very complex engineering geological conditions, and poor nature, is a very strong typical of the tunnel support lining structure design for the construction of similar projects in the future with a strong guiding significance.
引文
[1]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9.
    [2]王梦恕.21世纪山岭隧道修建的趋势[J].铁道标准设计,2004,(9):38-40.
    [3]王梦恕.我国城市交通的发展方向[J].铁道工程学报,2003,(1):43-47.
    [4]王梦恕.用隧道工程优化南水北调中线方案[J].隧道建设,2003,23(1):1-3.
    [5]王志强.甘肃引洮工程重大工程地质问题研究[D].兰州大学,2006.
    [6]王志强.甘肃引洮供水工程饱和黄土工程地质研究[J].工程地质学报,2005,13(4):471-476.
    [7]王志强,韩文峰,路泽生,等.甘肃引洮供水工程饱和黄土隧洞施工方法选择的工程地质研
    究[J].工程地质学报,2006,14(4):564-569.
    [8]甘肃省引洮供水一期工程初步设计报告[R].甘肃省水利水电勘测设计研究院.2006.
    [9]康复生.引洮供水工程黄土隧洞围岩的稳定性分析[J].资源环境与工程,2011,25(5):459-460.
    [10]董子奇.引洮总干下段饱水黄土隧洞开挖施工[J].甘肃水利水电技术,2009,45(9):56-59.
    [11]张卫国,姜韦华,张伟,等.地下工程结构计算方法概述[J].地下空间,2002,22(3):197-199.
    [12]赵尚毅,郑颖人,宋雅坤,等.地下隧道衬砌结构内力计算方法探讨[J].后勤工程学院学报,2007,23(4):29-33.
    [13]李宁,朱运明,谢定义,等.大断面饱和黄土隧洞成洞条件研究[J].岩土工程学报,2000,22(6):639-642.
    [14]张红,郑颖人,杨臻,等.黄土隧洞支护结构设计方法探讨[J].岩土力学,2009,30(z2):473-478.
    [15]乔春生,管振祥,滕文彦,等.饱水黄土隧道变形规律研究[A].2003年全球华人中青年学者岩土力学与工程学术论坛论文集[C].武汉:科学出版社,2003:225-230.
    [16]赵占厂,谢永利,杨晓华,等.黄土公路隧道围岩压力测试分析[J].现代隧道技术,2003,40(2):58-61.
    [17]D.T.C.Yao, J.H.Guo. Earth pressure on linings of shield tunnel[J]. Underground Construction and Ground Movement,2006,5:64-271.
    [18]C.Y.Yang, M.X.Xu. Reliability analysis of shotcrete lining during tunnel construction[J]. Jour nal of Construction Engineering and Management,2006,133:75-981.
    [19]B.Bennett, P.Branco. Performance of a tunnel in squeezing rock and rehabilitation strategies[J]. Eotechnical Engineering for Transportation Engineering Projects,2004,23:439-1447.
    [20]Z.G.Zhu, M.L.Sun. Calculation of surrounding rock pressure on multi-arch tunnel[J]. Internat ional Conference on Transportation Engineering,2009,20:90-996.
    [21]B.G.H, Y.Q.Zhu. Model test for dynamic construction mechanical effect of large-Span loess tunnel[J]. Journal of Shanghai Jiaotong University,2011,16(1):2-117.
    [22]李鹏飞,张顶立,赵勇,等.大断面黄土隧道二次衬砌受力特性研究[J].岩石力学与工程学报,2010,29(8):1690-1696.
    [23]李鹏飞,张顶立,王梦恕,等.海底隧道衬砌结构受力特点及断面形状优化[J].中国铁道科学,2009,30(3):51-56.
    [24]周笑,彭阳.荷载-结构模型在黄土隧道二次衬砌设计中的应用[J].四川建筑,2007,27(5):93-94.
    [25]张志刚,刘洪洲,朱正国,等.基于荷载及地层结构法的公路隧道二衬设计[A].第七届海峡两岸隧道与地下工程学术及技术研讨会暨海峡两岸岩土工程和地下工程青年科技研讨会论文集[C].大连:知识产权出版社,008:1274-1278.
    [26]计三有,刘德作.铁路隧道围岩与衬砌相互作用有限元分析[J].武汉理工大学学报(信息与管理工程版),2007,29(7):74-76.
    [27]齐琳.对北京地区公路隧道软弱围岩不同施工方法的定性分析[C].2009年全国公路隧道学术会议论文集.2009:60-69.
    [28]李雷.超浅埋大跨联拱隧道设计与施工[J].铁道标准设计,2009,(2):101-103.
    [29]张志刚,刘洪洲,黄伦海,等.基于地层结构法的傍山路段棚洞结构设计[J].隧道建设,2008,28(5):553-556,569.
    [30]高成雷.水布垭特大断面导流洞围岩稳定性分析[J].岩土力学,2004,25(z2):343-346.
    [31]杨建民,喻渝,谭忠盛,等.大断面深浅埋黄土隧道围岩压力试验研究[J].铁道工程学报,2009,(2):76-79.
    [32]扈世民,张顶立,王梦恕,等.大断面黄土隧道开挖引起的围岩力学响应[J].中国铁道科学,2011,32(5):50-55.
    [33]赵东平,喻渝,王明年,等.大断面黄土隧道变形规律及预留变形量研究[J].现代隧道技术,2009,46(6):64-69.
    [34]李新,杨兴国,周家文,等.复杂地质条件下引水隧洞围岩稳定性分析[J].水利与建筑工程学报,2010,08(6):113-116.
    [35]邓国华,邵生俊.黄土隧道围岩的结构性变化特征分析[J].岩土工程学报,2008,30(2):219-224.
    [36]霍润科,王艳波,宋战平,等.黄土隧道初期支护性能分析[J].岩土力学,2009,30(z2):287-290.
    [37]靳晓光,李晓红,杨春和,等.深埋隧道围岩-支护结构稳定性研究[J].岩土力学,2005,26(9):1473-1476.
    [38]韩桂武,刘斌,范鹤,等.浅埋黄土隧道衬砌结构受力分析[J].岩石力学与工程学报,2007,26(z1):3250-3256.
    [39]林乐彬,刘寒冰,刘辉,等.隧道围岩压力的应力分析方法[J].土木工程学报,2007,40(8):85-89.
    [40]王明年,郭军,罗禄森,等.高速铁路大断面深埋黄土隧道围岩压力计算方法[J].中国铁道科学,2009,30(5):53-58.
    [41]刘新荣,孙辉,陈晓江,等.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报,2005,27(6):695-697.
    [42]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [43]郑颖人,邱陈瑜,张红,等.关于土体隧洞围岩稳定性分析方法的探索[J].岩石力学与工程学报,2008,27(10):1968-1980.
    [44]熊启钧.隧洞[M].中国水利水电出版社,2002.
    [45]刘莹光.加筋技术在高土石坝抗震中的应用[D].大连理工大学,2006.
    [46]杜守继,职洪涛,翁慧俐,等.高速公路软岩隧道复合支护机理的FLAC解析[J].中国公路学报,2003,16(2):70-73,77.
    [47]鲁绪文.镇宁—水城高速公路客地滑坡有限差分法应力场的模拟及其抗滑桩内力计算的研究[D].贵州大学,2005.
    [48]龚彦峰.金沙洲隧道结构设计与施工工法优化研究[D].华中科技大学,2006.
    [49]马震岳,郭青春,赵宝友,等.水工地下隧洞在地震荷载作用下的动力特性分析[J].水电能源科学,2008,26(6):93-95,104.
    [50]周永江,王开云,符文熹,等.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报,2007,25(1):93-98.
    [51]周佳媚,袁松,高波,等.小净距隧洞地震动力响应下的围岩应力场[J].公路交通科技,2012,29(2):92-97.
    [52]康景文,颜光辉,胡静,等.深基坑锚拉支护结构地震时程分析及静动对比研究[A].中国建筑学会地基基础分会2010学术年会论文集[C].上海:知识产权出版社,010:183-186.
    [53]郑云峰,谌文武,刘小伟,等.引洮工程15#饱和黄土隧洞主要病害及防治措施[J].西北地震学报,2011,33(z1):340-344.
    [54]SL279-2002水工隧洞设计规范[S].中华人民共和国水利部,2002.
    [55]DL/T5195-2004水工隧洞设计规范[S].中华人民共和国国家发展和改革委员会,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700