移动通信中MIMO系统的线性预编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)技术是第三代和未来移动通信系统在给定的频谱范围内实现高速率数据传输、提高数据传输质量的重要途径。本文对MIMO系统中的线性预编码技术进行了深入研究,主要工作如下:
     1.平坦瑞利衰落信道中的线性疏散码设计:首先提出了在平坦快衰落信道环境下线性疏散码的设计准则。通过对快衰落信道和准静态衰落信道下线性疏散码的成对错误概率的分析,比较了快衰落信道和准静态衰落信道下线性疏散码的分集度及编码增益,证明了线性疏散码在快衰落信道中的性能优于准静态衰落信道下的性能。推导了快衰落信道下线性疏散码的最小编码增益界,并根据此最小编码增益界确定了优化准则进行优化搜索。计算机仿真证明通过该搜索法搜索到的线性疏散码有很好的误比特性能。针对一般时间相关平坦衰落信道,提出了引入符号交织的线性疏散码编码方案。通过在线性疏散码编码器后加一个符号交织器,可以将一般时间相关平坦衰落信道下线性疏散码的信号模型转化为等效的平坦快衰落信道下的信号模型,线性疏散码的优化设计转化为快衰落信道下的线性疏散码设计。
     2.MIMO-OFDM系统的空频线性疏散码设计:针对频率选择性衰落信道下的MIMO-OFDM系统,提出了分组空频线性疏散码的设计方法。分析比较了连续分组和抽取分组空频线性疏散码的成对错误概率,并根据子载波相关性给出了子载波抽取分组的方法。对于多径衰落下的MIMO-OFDM系统,通过子载波分组的方法可以把空频线性疏散码的优化设计转化为平坦快衰落信道下的空时线性疏散码设计。
     3.空间复用MIMO系统线性预编码算法研究:针对空间复用MIMO系统,提出了基于最大似然检测准则的子信道码距分配线性预编码算法,并分两种情况研究了子信道码距分配预编码算法。当发射机知道MIMO信道的完全信息时,根据等效子信道传输模型构造了线性预编码矩阵。分析表明给定信道样本下的系统成对错误概率由各子信道分配的码距所决定,在此基础上给出了码距分配矩阵的构造方法和优化准则,讨论了线性增益码距分配预编码和等增益码距分配预编码两种码距分配预编码方法。当MIMO信道衰落系数存在空间相关性时,给出了发射机只知道MIMO信道相关信息时的子信道码距分配预编码算法。
     4.基于串行干扰抵消检测技术的V-BLAST系统的线性预编码算法:在具有空间相关性的MIMO信道环境下,提出了解相关和功率分配联合预编码算法来提高V-BLAST系统的误比特性能。接着给出了另一种基于串行干扰抵消检测技术的V-BLAST系统的线性预编码方法——直接矩阵预编码。直接矩阵预编码直接从成对错误概率性能角度出发,对参数化的预编码矩阵进行实时优化。论文分别给出了两发射天线及更多发射天线V-BLAST系统最优预编码矩阵的简化搜索方法。
MIMO techniques are key schemes for achieving high data rate and performance in 3G mobile communications and beyond. In this dissertation, we mainly focus on the topics of linear space-time precoding. The main contents are as follows:
     1. Design of Linear dispersion codes in flat Rayleigh fading channels. Firstly, we study the linear dispersion codes design in flat fast fading channels. We analyze the pairwise error probability of linear dispersion codes in fast and quasi-static fading channels, and compare the diversity order and code gain of linear dispersion codes in fast and quasi-static fading channels. It is proved that the performance of linear dispersion codes is better in fast fading channels. We deduce the minimum code gain bound of linear dispersion codes in fast fading channels, and determine the optimization criterion to search optimal code according to the minimum code gain bound. Simulations demonstrate that the linear dispersion codes obtained by computer search have good performance. Secondly, a linear dispersion codes transmit scheme with symbol interleaver is proposed for general time correlated flat fading channels. By introducing a symbol interleaver after encoder of linear dispersion codes, the original system model can be regarded as equivalent system model in fast fading channels. Thus, the optimization of linear dispersion codes in general time correlated flat fading channels is turned to the optimization for flat fast fading channels.
     2. Design of space-frequency linear dispersion codes for MIMO-OFDM systems. Grouping space-frequency linear dispersion code is proposed for MIMO-OFDM systems in frequency selective fading channels. We analyze the pairwise error probability of grouping space-frequency linear dispersion codes and give thesubcarrier grouping method based on the channel frequency domain correlation. For MIMO-OFDM systems in frequency selective channels, the optimization design of grouping space-frequency linear dispersion codes is turned to the optimization for flat fast fading channels.
     3. Precoding based on code distance allocation for spatial multiplexing MIMO systems. Based on ML detection, subchannel code distance allocation precoding is proposed for spatial multiplexing MIMO systems. We discuss the precoding algorithms in two cases. When full channel information is available at the transmitter, we give the structure of linear precoding matrix. The analysis shows that pairwise error probability of precoded spatial multiplexing MIMO systems is determined by the minimum code distance allocated to each subchannel. The construction method and optimization criterion of code distance allocation matrix is given. Equal gain allocation and linear gain allocation precoding methods are discussed. In spatial fading correlated MIMO channels, we also give the subchannel code distance allocation precoding algorithms when spatial fading correlation is known at the transmitter.
     4. Linear precoding for V-BLAST based on OSIC detection. For spatial fading correlated MIMO channel, we first propose decorrelation and power allocation joint precoding to improve BER performance of V-BLAST systems. Another direct matrix precoding algorithm is also proposed for V-BLAST systems using OSIC detection to optimize precoding matrix directly based on pairwise error probability. We give the search methods for optimal precoding matrix for V-BLAST system with two and more transmit antennas respectively
引文
[1] 尤肖虎,曹淑敏,李建东,“第三代移动通信系统发展现状与展望”,电子学报,vol. 27, no.11A, pp.3-8, 1999.
    [2] 张平 等编著,“WCDMA 移动通信系统”,人民邮电出版社,2001.
    [3] 邱玲 等编著,“第三代移动通信技术”,人民邮电出版社,2001.
    [4] 程云鹏 编著,“矩阵论”,西北工业大学出版社,2000.
    [5] 邬刚,“移动通信中空时编码和发射分集技术的研究”,东南大学博士学位论文,2002.
    [6] 程健,“无线移动通信中发射分集和空时编码技术”,东南大学博士学位论文,2002.
    [7] 3GPP, “Technical Specification 25.211, vol.3.2.0, Physical channels and mapping of transport channels onto physical channels(FDD)”, Mar. 2000.
    [8] 3GPP, “Technical Specification 25.201, vol.4.0.0, Technical Specification Group Radio Access Network;Physical layer - General description(Release 4)”, Mar. 2001.
    [9] 3GPP2, C.S0002-A, “Physical layer standard for cdma2000 spread spectrum systems, publication version”, June 2000.
    [10] 3GPP, “Technical Specification Group Radio Access Network,3G TR25.848 v4.0.0, Physical Layer Aspects of UTRA High Speed Downlink Packet Access (Release 4)” Mar. 2001.
    [11] ITU Website, http://www.itu.int/imt/2-radio-dev/proposals.
    [12] A. Paulraj, R. Nabar and D. Gore, “Introduction to space-time wireless communications”, New York, the Press Syndicate of the University of Cambridge, 2003.
    [13] J. G. Proakis, “Digital Communications”, 3rd Edition, New York: McGraw-Hill, 1995
    [14] W. C. Jakes, “Microwave Mobile Communications”, Piscataway, NJ, IEEE Press, 1993.
    [15] A.Bria, F.Gessler, O.Queseth, R.Stridh, M.Unbehaun, Wu Jiang, J.Zander and M.Flament, “4th-generation wireless infrastructures: scenarios and researchchallenges”, IEEE Personal Communications, vol.8, no.6, pp.25 –31, Dec. 2001.
    [16] Ashish Bhargave, Rui J. P. De Figueiredo and Torbjorn Eltoft, “A Detection Algorithm for the V-BLAST System”, IEEE GLOBECOM’2001, pp.494-498.
    [17] A. Gorokhov, “Capacity of multi-antenna Rayleigh channel with a limited transmit diversity”, IEEE Proc. ISIT2000.
    [18] A.F.Naguib, V.Tarokh, N.Seshadri, A.R.Calderbank, “A space-time coding modem for high-data-rate wireless communications”, IEEE J. Select. Areas Commun., vol.16, no.8, pp.1459-1478, Aug., 1998.
    [19] A.J.Paulraj, C.B.Papadias, “Space-time processing for wireless communications”, IEEE Signal Processing Magazine, vol.14, pp. 49-83, Nov. 1997.
    [20] Ayman E. Naguib, Nambi Seshadri and A. R. Calderbank, “Increasing Data Rate over Wireless Channels, Space-Time Coding and Signal Processing for High Data Rate Wireless Communications”, IEEE Signal Processing Magazine, pp.76-92, May 2000.
    [21] B.G.Evans and K Baughan, “Visions of 4G”, Electronics & Communication Engineering Journal, vol.12, no.6, pp.293 –303, Dec. 2000.
    [22] Babark Hassibi and Bertrand M. Hochwald, “High-rate codes that are linear in space and time”, IEEE Trans. Inform. Theory, vol. 48, pp. 1804-1824, July 2002.
    [23] Babark Hassibi and Bertrand M. Hochwald, “Linear dispersion codes”, 2001 IEEE International Symposium on Information Theory, pp.325, 24-29 June 2001.
    [24] Brian L. Hughes, “Further Results on Different Space-Time Modulation”, IEEE Sensor Array and Multichannel Signal Processing Workshop’2000, pp.163-167.
    [25] B. Lu, X. Wang, “Space-time code design in OFDM systems”, IEEE GLOBECOM’2000, vol.2, pp.1000–1004, Dec. 2000.
    [26] B.L.Hughes, “Differential space-time modulation”, IEEE Trans. Inform. Theory, vol.46, no.7, pp.2567 -2578, Nov. 2000.
    [27] Bertrand M. Hochwald, Thomas L. Marzetta, Thomas J. Richardson, Wim Sweldens and Rüdiger Urbanke, “Systematic Design of Unitary Space-Time Constellations”, IEEE Trans. Inform. Theory, Vol. 46, No. 6, pp.1962-1973, Sep. 2000.
    [28] B.M.Hochwald, T.L.Marzetta, “Unitary space-time modulation for multiple- antenna communications in Rayleigh flat fading”, IEEE Trans. Inform. Theory, vol.46, no.2, pp.543 –564, Mar. 2000.
    [29] C. Chuah, J. Kahn and D.Tse, “Capacity of multi-antenna array systems in indoor wireless environment”, IEEE GLOBECOM’1998, pp.1894-1899.
    [30] C.Papadias, B.Hochwald, T.Marzetta, M.Buehrer and R.Soni, “Space-time spreading for CDMA systems”, in Proc. 6th Workshop Smart Antennas Wireless Mobile Communications, Stanford, CA, July 22-23, 1999.
    [31] C. Y. Lee William, “Mobile Communication Design Fundamentals”, Seconds Edition, John Wiley & Sons, Inc., 1993.
    [32] D.J. Love, R.W. Heath, Jr., “Limited feedback precoding for spatial multiplexingsystems using linear receivers”, IEEE MILCOM’2003, vol.1, pp: 627–632, 3-16 Oct. 2003.
    [33] D.J. Love, R.W. Heath, Jr., “Limited feedback unitary precoding for orthogonal space-time block codes”, IEEE Trans. Signal Processing, vol.53, no.1, pp.64- 73, Jan. 2005.
    [34] D.Wubben, R.Bohnke, J.Rinas, V.Kuhn, K.D.Kammeyer, “Efficient algorithm for decoding layered space-time codes”, IEE Electronics Letters, vol.37, no.22, pp.1348 –1350, Oct. 2001.
    [35] Daniel Ka Chun So and Roger S. Cheng, “Detection Techniques for V-BLAST in Frequency Selective Fading Channels”, IEEE WCNC’2002, pp.487-491.
    [36] G.D. Golden, G.J. Foschini, R.A. Valenzuela and P.W. Wolniansky, “Detection algorithm and initial laboratory results using V-BLAST space-time communication architectiture”, IEE Electronics Letter, vol.35, No.1, pp.14-16, Jan. 1999.
    [37] G.Ganesan and P.Stocia, “Space-time block codes: A maximum SNR approach”, IEEE Trans. Inform. Theory, vol.47, no.4, pp.1650-1656, 2001.
    [38] G. J. Foschini and M. J. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas”, Wireless Personal Communications, pp.311-335, June 1998.
    [39] G.J.Foschini Jr., G.D.Golden, R.A.Valenzuela and P.W.Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays”, IEEE J. Select. Areas Commun., vol.17, pp.1841-1851, Nov. 1999.
    [40] G..J. Foschini, “Layered Space-time architecture for wireless communication in a fading environment when using multi-element antennas”, Bell Labs Technical Journal, pp.41-59, autumn 1996.
    [41] G. G. Raleigh and J. M. Cioffi, “Spatio-Temporal Coding for Wireless Communications”, IEEE GLOBECOM’1996, pp.1809-1814.
    [42] H. Bolcskei and A. Paulraj, “Space Frequency Codes for Broadband Fading Channels”, IEEE International Symposium on Information Theory, pp.219, June 2001.
    [43] H.Bolcskei, A.J.Paulraj, “Space-frequency coded broadband OFDM systems”, IEEE WCNC’00, vol.1, pp.1 –6, 2000.
    [44] H.Huang, M.Sandell and H.Viswanathan, “Achieving high data rates on the UMTS downlink shared channel using multiple antennas”, 3G Mobile Communicaiton Technologies, pp.373-377, 2001.
    [45] H. Jafarkhani, “A quasi-orthogonal space-time block code”, IEEE Trans. Commu., vol.49, no.1, pp.1-4, 2001.
    [46] H. Sampath, P. Stoica, A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion”, IEEE Trans. Commu., vol.49, no.12, pp.2198–2206, Dec. 2001.
    [47] H. Sampath and A. Paulraj, “Linear precoding for space-time coded systems with known fading correlations”, IEEE Communications Letters, 6(6), 2002.
    [48] H. Sampath, “Linear precoding and decoding for multiple input multiple output (MIMO) wireless channels”, PhD thesis, Stanford University, 2001.
    [49] I. E. Telatar, “Capacity of multi-antenna Gaussian channels”, Europ. Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.
    [50] J. Boutros, E. Viterbo, “Signal space diversity: A power and bandwidth efficient diversity technique for the Rayleigh fading channel”, IEEE Trans. Inform. Theory, vol.44, pp1453-1467, July 1998.
    [51] J.Chuang and N.Sollenberger, “Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment”, IEEE Communications Magazine, vol. 38, no.7, pp.78-87, July 2000.
    [52] J.H.Winters, J.Salz, R.D.Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems”, IEEE Trans. Commun., vol. 42, no.2, pp.1740 –1751, Feb./Mar./Apri.1994.
    [53] K.F. Lee, D.B. Williams, “A space-frequency transmitter diversity technique for OFDM systems”, IEEE GLOBECOM’2000, pp.1473-1477.
    [54] Li Y and Luo Z Q., “Parallel detection for V-BLAST system”, IEEE ICC’ 2002.
    [55] Li Ye, “Simplified channel estimation for OFDM systems with multiple transmit antennas”, IEEE Trans. Wireless Commun., vol.1, no.1, pp.67 –75, Jan. 2002.
    [56] L.M.A.Jalloul, K.Rohani, K.Kuchi and J.Chen, “Performance anlysis of CDMA Transmit diversity Methods”, IEEE VTC’1999, pp.1326-1330.
    [57] Li Yingbo, Y.L.Guan, “Modified Jakes model for simulating multiple uncorrelated fading waveforms”, IEEE ICC’2000, vo.1, pp.46–49, 2000.
    [58] Li Yunxin, Huang Xiaojing, “The generation of independent Rayleigh faders”, IEEE ICC’2000, vo.1, pp. 41 -45, 2000.
    [59] Mathini Sellathurai and Simon Haykin, “Further Results on Diagonal-Layered Space-Time Architecture”, IEEE VTC’2001, pp.1958-1962.
    [60] Mathini Sellathurai and Simon Haykin, “A Simplified Diagonal BLAST Architecture with Iterative Parallel-Interference Cancellation Receivers”, IEEE ICC’2001, pp.3067-3071.
    [61] M. C. Vanderveen, “Estimation of parametric channel models in wireless communication networks”, Ph.D. dissertation, Stanford University, 1998.
    [62] M.O.Damen, H.E.Gamal, N.C.Beaulieu, “Linear threaded algebraic space-time constellations”, IEEE Trans. on Inform. Theory, vol. 49, no. 10, pp. 2372-2388, Oct. 2003.
    [63] M.O. Damen, A. Tewfik, I.C. Belflore, “A construction of a space-time code based on number theory”, IEEE Trans. on Inform. Theory, vol.48, no.3, pp.753–760, March 2002.
    [64] M.O.Damen, N.C.Beaulieu, “On diagonal algebraic space-time block codes”, IEEE Trans. Commun., vol.51, no.6, pp.911-919, June 2003.
    [65] M.O.Damen, A.Chkeif and J-C.Belfiore, “Lattice code decoder for space-time codes”, IEEE Commu.Lett.. vol.4, pp.161-163, May. 2000.
    [66] M.Stege, J.Jelitto, M.Bronzel and G.Fettweis, “A multiple input-multiple output channel model for simulation of Tx- and Rx-diversity wireless systems”, IEEE VTC’2000-Fall, vol.2, pp.833 –839, 2000.
    [67] O. Berder, L.Collin, G. Burel, P. Rostaing, “Digital transmission combining BLAST and OFDM concepts: experimentation on the UHF COST 207 channel”, IEEE GLOBECOM’2001, pp.141–145, Nov. 2001.
    [68] O.Tirkkonen A.Hottinen, “Complex space-time block codes for Four Tx”, IEEE GLOBECOM’2000, pp.1005-1009, 2000.
    [69] P. Chaudhury, W. Mohr, and S. Onoe, “The 3GPP proposal for IMT-2000”, IEEE Communications Magazine, vol.37, no.12, pp. 72-81, Dec. 1999.
    [70] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-Scattering wireless Channel”, ISSSE’1998, pp.295-300.
    [71] R.J. Piechocki, P.N. Fletcher, A.R Nix, C.N. Canagarajah, J.P. McGeehan, “Performance evaluation of BLAST-OFDM enhanced Hiperlan/2 using simulated and measured channel data”, IEE Electronics Letters, vol.37, no.18, pp:1137– 1139, 2001.
    [72] R. Storn, K. Price, “Differential evolution-A simple and efficient heuristic adaptive scheme for global optimization over continuous spaces”, J. Global Optimization, vol.11, pp.341-359, 1997.
    [73] Robert W. Health, Jr. and A. J. Paulraj, “Linear dispersion codes for MIMO systems based on frame theory”, IEEE Trans. Signal Processing, vol. 50, pp. 2429-2441, Oct. 2002.
    [74] S.Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE J. Select. Areas Commun., vol.16, pp.1451-1458, Oct., 1998.
    [75] S.Catreux, P.F.Driessen, L.J.Greenstein, “Attainable throughput of an interference-limited multiple-input multiple-output (MIMO) cellular system”, IEEE Trans. Commun., vol.49, no.8, pp.1307 -1311, Aug. 2001.
    [76] Seung Hoon Nam, Oh-Soon Shin, Kwang Bok Lee, “Transmit power allocation for a modified V-BLAST system”, IEEE Trans. Commun., vol.52, no.7, pp.1074–1079, July 2004.
    [77] Seung Hoon Nam and Kwang Bok Lee, “Transmit power allocation for an extended V-BLAST systems”, IEEE PIMRC2002, pp.843-848.
    [78] Shiu Da-Shan, M.Kahn, “Layered space-time codes for wireless communications using multiple transmit antennas”, IEEE ICC’1999, vol.1, pp.436 –440.
    [79] Shiu Da-Shan “Iterative decoding for layered space-time codes”, IEEE ICC’2000, vol.1, pp. 297 -301.
    [80] S.Jun-Zhao, J.Sauvola and D.Howie, “Features in future: 4G visions from a technical perspective”, IEEE GLOBECOM’2001, vol.6, pp. 3533 –3537.
    [81] S.Loyka, J.Mosig, “Channel capacity of n-antenna BLAST architecture” IEE Electronics Letters, vol.36, no.7, pp. 660 –661, Mar.2000.
    [82] Suhas N. Diggavi, “On Achievable Performance of Spatial Diversity Fading Channels”, IEEE Trans. Inform. Theory, vol.47, no.1, pp.308-325, Jan. 2001.
    [83] Thomas L. Marzetta and Bertrand M. Hochwald, “Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading”, IEEE Trans. Inform. Theory, vol.45, no.1, pp.139-157, Jan. 1999.
    [84] T.L.Marzetta, B.Hassibi, B.M.Hochwald, “Structured unitary space-time autocoding constellations”, IEEE Trans. Inform. Theory, vol.48, no.4, pp.942 –950, Apr. 2002.
    [85] T.L.Marzetta, B.M. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading”, IEEE Trans. Inform. Theory, vol.45, no.1, pp.139 –157, Jan. 1999.
    [86] T. Ojanpera, R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS”, IEEE Communications Magazine, vol.36, no.9, pp. 82-86, Sept. 1998.
    [87] Vahid Tarokh, Nambi Seshadri, and A. R. Calderbank, “Space-Time Codes for High Data Rate Wireless Communications: Performance Criterion and Code Construction”, IEEE Trans. Inform. Theory, vol.44, , pp.744-765, Mar. 1998.
    [88] V. Tarokh, N. Seshadri, and R. Calderbank “Space-time block codes from orthogonal designs”, IEEE Trans. Inform. Theory, vol.45, no.5, pp.1456-1467, July 1999.
    [89] Vahid Tarokh, Hamid Jafarkhani and A. R. Calderbank, “Space-Time block coding for wireless communications: performance results”, IEEE J. Select. Areas Commun., vol. 17x, pp.20-22, March 1999.
    [90] V.Tarokh, H.Jafarkhani, “A differential detection scheme for transmit diversity”, IEEE J. Select. Areas Commun., vol.18, no.7, pp.1169 –1174, July 2000.
    [91] Won-Joon Choi, Rohit Negi and John M. Cioffi, “Combined ML and DFE decoding for the V-BLAST System”, IEEE ICC’2000, pp.1243-1248.
    [92] W.K.Wai, C-Y Tsui and R.S.Cheng, “A low complexity architecture of the V-BLAST system”, IEEE WCNC’2000, pp310-314.
    [93] Xiaodong Li, Howard Huang, G. J. Foschini and Reinaldo A. Valenzuela, “Effects of Iterative Detection and Decoding on the Performance of BLAST”, IEEE GLOBECOM’2000, pp.1061-1066.
    [94] Xiaojian Lu; Lin Dai, Ming Zhao, Jing Wang, “Optimized parameter design of linear dispersion codes in MIMO channels”, IEEE VTC’2003-Spring, pp.2386-2389.
    [95] X.Li, H. C.Huang, A.Lozano and G.J.Foschini, “Reduced-complexity detection algorithm for systems using multi-element arrays”, IEEE GLOBECOM’2000, pp.1072-1076.
    [96] Yuan Li and Zhi-Quan Luo, “Parallel detection for V-BLAST system”, IEEE ICC’ 2002, vol.1, pp.340-344.
    [97] J. A. C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come”, IEEE Communication Magazine, vol.28, no.5, pp.5-14, May 1990.
    [98] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing”, IEEE Trans. Commun., vol.3, pp.665-675, July 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700