空时编码及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无线移动通信已成为通信领域的研究热点。目前,已有多项技术被人们看好,将很有希望成为未来移动通信系统架构中的关键技术。这其中包括能有效克服多径效应,提高系统数据传输速率的OFDM (Orthogonal Frequency Division Multiplexing)技术,基于空分复用或空间分集,能显著提高系统容量或有效改善系统性能的MIMO(Multiple Input Multiple Output)技术等。正是在这种应用和研究背景下诞生的空时编码(Space-Time Code, STC)技术受到广泛重视。本文在国家“十五”863计划重大课题“新一代蜂窝移动通信系统无线传输链路技术研究(2001AA123014)”和国家自然科学基金重大项目“未来移动通信系统基础理论与技术研究”子课题“基于MIMO-OFDM系统的空中接口自适应技术研究(60496310)”的资助下,针对恶劣的无线移动通信环境,如信道空间相关、时频选择性衰落等,对多用户环境下的空时编解码传输方案、预编码技术等进行研究,力图通过稳健的解码器设计或者预编码技术的运用改善系统对抗衰落的性能。
     论文首先基于已有空时相关MIMO信道模型,分析给出了联合空时互相关函数解析表达式,并推导给出了空时分组编码传输方案理论成对错误概率表达式。通过评估收发两端天线阵列间距、倾斜角度及其散射体角度扩展、不同信道时变等因素对空时分组编码传输系统性能影响,进一步验证了该空时相关MIMO信道模型的正确性。同时,已有的空时相关信道模型,或者仅考虑信道空间相关,或者仅考虑信道时变。我们提出了一种混合模型对信道空时相关联合建模。最后,基于上述两种空时相关信道模型,评估给出:当信道时变较小时,大的信道空间相关带来系统性能损失更为严重;而当信道时变增大时,无论信道何种程度空间相关,大的信道时变则主导系统性能损失。由此可见,信道特性,诸如空间相关、时频选择性衰落等,特别是多用户环境下,对空时编解码传输方案设计有着重要影响。
     在以往的空时分组编码多用户上行系统中,ZF和MMSE解码器设计方案均假定信道准静态衰落,信道一旦时变,则接收端在解码某用户信号时即引入符号间干扰,且这种干扰随信道时变增大而增加。由此提出了两类新解码器设计方案。方案一,基于时变信道下接收信号表达式联合解码,从而去除解码期望用户信号时符号间干扰的影响。方案二,基于ZF思想,构造一变换矩阵,作用该矩阵于接收信号矢量使之对角化,从而达到去除符号间干扰影响之目的。上述两类解码器设计方案仅适用于时变平坦衰落信道、2用户上行系统。接着,将上述适用于2用户系统的新解码器设计方案推广至已有空时分组编码多用户系统框架,替代迭代软入软出多用户检测方案,从而降低计算复杂度。然后,结合OFDM技术,基于每个平坦衰落子载波信道运用上述新解码器设计方案,将其推广至时频选择性衰落信道、多用户上行系统。在各种系统配置下,相对于已有传统解码器,新解码器获得显著性能增益,同时不存在误码平层现象。
     对于传统的组分层空时结构解码器设计方案,首先利用组检测技术获得期望分组的发射信号,再空时解码获得该分组内的发射符号。Dai提出了一种解码器设计方案,但其本质思想并未改变,即首先运用组检测技术抑制组间干扰,再最大似然解码获得期望分组内的发射符号。已有解码器设计方案均假定信道准静态衰落,信道一旦时变,则不再适用。作为改进,我们提出了一种适用于时变信道、组分层空时结构的新解码器设计方案。对于该方案,首先构造“正交对”矩阵去除所有分组内符号之间的干扰,再运用递推降维矩阵求逆算法,并行检测获得所有分组的发射符号。我们将证明,Zhuang提出的适用于时变信道、4发天线系统的解码器即为本文的特例。与传统的解码器相比较,新设计的解码器计算复杂度得到大大降低。
     论文最后针对多用户下行空分复用系统,提出了一种预编码器设计方案。在基站发射端,根据最小平均矢量符号错误概率准则,预编码器构造为所有用户信道状态信息的函数。由于多用户干扰在基站端被预去除,所以终端用户仅利用简单的线性解码即可获得发射符号。该多用户下行空分复用系统预编码器设计方案获得了与单用户预编码系统几乎一致的性能。接着,针对频率选择性衰落信道,提出了一种适用于多用户下行MIMO-OFDM系统的预处理传输方案。在基站发射端,通过所有终端用户在每个子载波信道上发射预处理矢量的良好设计,将多用户下行MIMO系统转换为并行独立的单用户MIMO系统,并确保每终端用户的多用户干扰被良好去除。在用户接收端,利用简单的线性解码即可获得最大解码后符号信噪比,从而最小该用户误码率。
Recently, wireless mobile communication has been the hot topic in the domain of communication. Nowadays, many techniques have been comprehensively considered as the major candidates of the future radio communication architecture. Among which includes OFDM and MIMO, the former can effectively combats multipath fading and improves transmission rate of data, the latter can effectively enhances system performance or notably improves system capacities using spatial diversity or spatial multiplexing techniques. Space-time code appears at the background of applications and immediately attracts much more attentions. Supported by the National High Technology Research and Development Program of China under Grant No. 2001AA123014 and National Science Foundation of China under Grant No. 60496310, our research work concentrates on the severe communication circumstances, for example, spatially correlative and time-frequency selective fading channel, and focuses on the design of codec for space-time architecture and the utilizing of linear precoding technique especially on the multiuser scenario trying to improve the system performance to combate various fading.
     Firstly, we provide the analytical expression of the joint space-time cross-correlation function and deduce the theoretical pairwise error probability of space-time block coded transmission scheme based on the existed spatially and temporally correlated MIMO channel model. Also, we investigate the impacts of antennas array spacing, angles, the spread of scatterings at the both ends of the link upon the system performance and further testify the validity of the general MIMO channel model. At the same time, the all existed MIMO channel models considered spatial correlation or temporal variation respectively, we present a hybrid model to model spatial-temporal correlation jointly. Finally, we arrive at a userful conclusion: high spatial correlation dominates the performance loss when the temporal variation is small, whereas large temporal variation contributes to the performance loss whatever degree spatial correlation is based on the two above channel models. Thus it can be seen various channel conditions, such as spatial correlation, time-frequency selective fading etc, have important influences on the space-time transmission scheme especially on the multiuser scenario.
     For the space-time block coded multiuser uplink, the design of conventional ZF and MMSE decoder assumed channels are quasi-static. When the channels are time-selective fading, these conventional decoders induce to the Inter-Symbol Interference (ISI) in order to obtain one user’s signals, furthermore, the ISI becomes larger resulted from the increase of the channels time variations. So, we propose two kinds of new decoders for the space-time block coded multiuser uplink over time-selective fading channels. For the first kind of decoder, ISI is removed using jointly decoding based on the new received signal expressions over time-selective fading channels. For the second kind of decoder, we construct a transformed matrix using the ZF idea and act this matrix on the received signal vector to result in a diagonal matrix thereby eliminating the influence of ISI. The two above decoders are appropriate to two users system and the channels are flat time-selective fading. Next, we extend the above decoder to the existed space-time block coded multiuser architecture and substitute it for the iterative soft input soft output (SISO) multiuser dectection thus reducing the calculational complexities. Then, the above decoder is used at each flat fading subcarrier channel and is extended to the frequency-selective fading channels combining with OFDM technique. Compared with the conventional decoders, the new decoder obtains notable performance gains and does not exhibit error floors for the various system configurations.
     For the existed group layered space-time architecture, the conventional group detection technique is applied firstly to suppress the interferences from other groups and space-time decoding is then performed to obtain the desired group’s signals. Dai et al proposed a decoding scheme but the essential ideas do not change, also, exploiting firstly group detection to suppress the other groups’interferences and ML is then used to get the desired group’s signals. The all existed decoders assumed the channels are quasi-static. They are not appropriate once the channels are time-selective fading. So, we present a new decoder appropriate to group layered space-time architecture over time-selective fading channels. For the new decoder, the orthogonal pairs of matrixes are constructed firstly and employed to remove the inter-interference of all groups then use the low complexity matrix inverse algorithm to obtain the all groups’transmitted signals by parallel detecting. It is also proved that the old decoding scheme proposed by Zhuang et al is a special case of our decoder. Compared with the conventional decoders, the new decoder reduces greatly the calculational complexities.
     Finally, a precoding scheme is proposed for the multiuser downlink spatial multiplexing system. At the transmitter, the precoder is constructed as the function of all users’channel state information according to the performance criterion of minimizing average probability of vector symbol error. Since the multiuser interferecnce (MUI) is precancelled at the transmitter, each terminal user just utilizes the simple linear decoding to obtain the transmitted symbols. It is verified that our proposed precoding scheme arrives at almost the same performance as the single user precoding system. Next, we present a transmission scheme for the multiuser downlink over frequency-selective fading channels. At the transmitter, the multiuser MIMO system is transformed to parallel independent single user MIMO system through the perfect design of transmit preprocessing vectors at the subcarrier channel thus assuring the good elimination of MUI at each terminal user. At the receiver, use just simple linear decoder to achieve the maximum signal-to-noise ration of the decoded symbol thus minimizing the bit error rate of each user.
引文
[1] Suk Yu Hui, Kai Hau Yeung. Challenges in the migration to 4G mobile systems. IEEE Communications Magazine, 2003, 41: 54~59
    [2] Sun Jun-Zhao, Sauvola J., Howie D. Features in future 4G visions from a technical perspective. in: IEEE Global Telecommunications Conference. 2001. 3533~3537
    [3] Jin Young Kim, Eun Cheol Kim. Key concept of radio access for the 4G mobile communication systems. in: The 6th International Conference on Advanced Communication Technology, 2004. 245~248
    [4] Zahariadis T. Trends in the path to 4G. Communications Engineer. 2003. 12~15
    [5] 古丽萍. 面对第四代移动通信的思考. 电子技术应用, 2002. 6~8
    [6] Le Floch B., Halbert-Lasalle R., D. Castellain. Digital audio broadcasting to mobile receivers. IEEE Trans. Consum.Electron., 1989, 35(3): 493~503
    [7] Sari H., Karam G., Janclaude J. Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag., 1995, 36(2): 100~109
    [8] IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High Speed Physical Layer in the 5 GHz Band, IEEE Std 802.11a/D7.0, 1999
    [9] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE, 2002
    [10] Bingham JAC. MultiCarrier Modulation for Data Transmission: An Idea Whose Time has Come. IEEE Comm. Mag., 1990, 37(5): 5~14
    [11] Wang Z., Giannakis G. B. Wireless Multicarrier Communications: Where Fourier meets Shannon. IEEE signal Processing Mag., 2000, 17(5): 29~48
    [12] Yang Hongwei. A road to future broadband wireless access: MIMO-OFDM-based air interface. IEEE commun. Mag., 2005, 43: 53~60
    [13] Foschini G. J., Gans M. J. On Limits of Wireless Communications in a Fading Environment when using Multiple Antennas. Wireless Personal Communications, 1998, 6: 311~335
    [14] Telatar E. Capacity of multi-antenna Gaussian channels. AT&T-Bell Labs Internal Tech.Memo., June 1995
    [15] Wolniansky P. W., Foschini G. J., Golgen G. D. et al. V-Blast: an architecture for realizing very high data rates over the rich-scattering wireless channel. 1998 URSI International Symposium on Signals, Systems, and Electronics, 1998, 295~300
    [16] Foschini G. J. Layered space–time architecture for wireless communication in a fading environment when using multielement antennas. Bell Labs Tech. J., 1996, 41~59
    [17] Foschini G. J., Golden G. D., Wolniansky P. W. et al. Simplified processing for wireless communication at high spectral efficiency. IEEE J. Select. Areas Commun.—Wireless Commun. Series, 1999, 17: 1841~1852
    [18] Ha J. et al. LDPC-coded OFDM with Alamouti/SVD Diversity Technique. Wireless Pers. Commun., 2002, 23(1): 183~194
    [19] Tarokh V., Seshadri N., Calderbank A. R. Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inform. Theory, 1998, 44: 744~765
    [20] Tarokh V., Jafarkhani H., Calderbank A. R. Space-time block codes from orthogonal designs. IEEE Trans. Inform.Theory, 1999, 45: 1456~1467
    [21] Jafar S. A., Goldsmith A. Transmitter optimization and optimality of beamforming for multiple antenna systems. IEEE Trans. on Wireless Commun., 2004, 3: 1165~1175
    [22] 陈钟麟. 基于发射分集的差分空时码研究: [博士学位论文]. 华中科技大学: 2003.
    [23] Baro S., Bauch G., Pavlic A. et al. Improving BLAST Performance using Space-Time Block Codes and Turbo Decoding. in: IEEE Globecom, 2000. 1067~1071
    [24] Wubben D., Rinas J., Bohnke R. et al. Efficient Algorithm for Detecting Layered Space-Time Codes. in: ITG Conference on Source and Channel Coding, 2002. 399~405
    [25] Da-shan Shiu, Kahn J. M. Layered space-time codes for wireless communications using multiple transmit antennas. in: IEEE ICC, 1999. 6~10
    [26] Stefanov A., Duman T. M. Turbo-coded modulation for systems with transmit and receive antenna diversity. in: IEEE Globecom, 1999. 2336~2340
    [27] Stefanov A., Duman T. M. Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model,decoding approaches, and practical considerations. IEEE J. on Sel. Areas in Comm., 2001, 19: 958~968
    [28] Boutros J. J., Boixadera F., Lamy C. Bit-interleaved coded modulations for multiple-input multiple-output channels. in: IEEE ISSSTA, 2001. 123~126
    [29] Ariyavisitakul S. Turbo space–time processing to improve wireless channel capacity. IEEE Trans. on Comm., 2000, 46(8): 1347~1358
    [30] Xin Y., Liu Z., Giannnakis G. B. High-rate layered space-time transmissions based on constellation-rotation. in: IEEE WCNC, 2002. 471~476
    [31] Daniel KC S., Cheng R. S. Detection techniques for V-BLAST in frequency selective fading channels. in: IEEE WCNC, 2002. 487~491
    [32] Xin Y., Wang Z., Giannakis G. B. Space-time diversity systems based on linear constellation precoding. IEEE Trans. on Wireless Comm., 2003, 2(2): 294~305
    [33] Alamouti S. M. A simple transmit diversity technique for wireless communications. IEEE J. on Sel. Areas in Comm., 1998, 16(8): 1451~1458
    [34] Lozano A., Papadias C. Space-Time Receivers for Wideband BLAST in Rich-Scattering Wireless Channels. in: IEEE VTC, 2000. 186~190
    [35] Lozano A., Papadias C. Layered Space-Time Receivers for Frequency-Selective Wireless Channels. IEEE Trans. on Comm., 2002, 50(1): 65~73
    [36] Wubben D., Kuhn V., Kammeyer K.-D. Successive detection algorithm for frequency selective layered space-time receiver. in: IEEE ICC, 2003. 2291~2295
    [37] Zhu X., Murch R. D. MIMO-DFE based BLAST over frequency selective channels. in: IEEE Globecom, 2001. 25~29
    [38] Zhu X., Murch R. D. Layered space-time equalization of multiple-input multiple- output frequency selective channels. in: IEEE ICC, 2002. 330~334
    [39] Boubaker N., Letaief K. B., Murch R. D. A layered space-time coded wideband OFDM architecture for dispersive wireless links. in: 6th IEEE Symposium on Computers and Communications, 2001. 518~523
    [40] Xin Y., Giannakis G. B. High-rate space-time layered OFDM. IEEE Communications Letters, 2002, 6(5): 187~189
    [41] Wittneben A. A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. in: IEEE ICC, 1993. 1630~2634
    [42] Wittneben A. Base station modulation diversity for digital SIMULCAST. in: IEEE VTC, 1993. 505~511
    [43] Seshadri N., Winters J. H. Two signaling schemes for improving the error performance of frequency-division-duplex transmission systems using transmiter antenna diversity. Int. J. Wireless Information Networks, 1994, 1(1)
    [44] Winters J. H. The diversity gain of transmit diversity in wireless systems with Rayleigh fading. in: IEEE ICC, 1994. 1121~1125
    [45] 3G TS 25.221 V3.3.0(2000.3),http://www.3gpp.org./
    [46] Tarokh V., Jafarkhani H., Calderbank A. R. Space-time block coding for wireless communications: performance results. IEEE J. on Sel. Areas in Comm., 1999, 17(3): 451~460
    [47] Kang G., Zhang P., Haas H. et al. Good space-time trellis codes in terms of distance spectrum. in: IEEE VTC, 2002. 24~28
    [48] Milleth J. K., Giridhar K., Jaliha D. Distance-optimized space-time trellis codes. in: IEEE International Conference on Personal Wireless Commun., 2002. 56~60
    [49] Kang G., Elena C., Qi B. et al. Searching good space-time trellis codes of high complexity. in: IEEE WCNC, 2002. 109~113
    [50] Sasazaki Y., Ohtsuki T. Improved design criteria and new trellis codes on space-time trellis coded modulation in fast fading channels. in: IEEE Globecom, 2002. 1103~1107
    [51] Safar Z., Liu K. J. R. Space-time trellis code construction for fast fading channels. in: IEEE ICC, 2002. 563~567
    [52] Chen Z., Yuan J., Vucetic B. Improved space-time trellis coded modulation scheme on slow Rayleigh fading channels. IEE Electronics Letters, 2001, 37(7): 440~441
    [53] Tao M., Cheng R. S. Improved design criteria and new trellis codes for space-time coded modulation in slow flat fading channels. IEEE Communications Letters, 2001, 5(7): 313~315
    [54] Li T., Letaief K. B. Bit-interleaved trellis coded unitary space-time modulation with iterative decoding, in: IEEE WCNC, 2002. 84~88
    [55] Gulati V., Narayanan K. R. Concatenated codes for fading channels based on recursive space--time trellis codes. IEEE Trans. on Wireless Commun., 2003, 2(1): 118~128
    [56] Li Y., Hui J., Wang X. Non-full rank space-time trellis codes for serially concatenated system, IEE Communications Letters, 2002, 6(9): 397~399
    [57] Liew T. H., Choi B. J., Hanzo L. Comparative study of concatenated turbo coded and space-time block coded as well as space-time trellis coded OFDM. in: IEEE VTC, 2001. 6~9
    [58] Yeap B. L., Liew T. H., Hanzo L. Turbo equalization of serially concatenated systematic convolutional codes and systematic space time trellis codes. in: IEEE VTC, 2001. 164~1468
    [59] Cheng J., Cheng M., Wang H. et al. An enhanced criterion for space-time trellis code and serially concatenated convolutionally coded STTC, in: IEEE Milcom, 2001. 1320~1324
    [60] Yim E., Kim D., Song H. MIMO iterative decoding of serial concatenation using space-time trellis codes, IEE Electronics Letters, 2002, 38(4): 190~191
    [61] Liberti J. C., Triolo A. A., Hoeming T. R. OFDM space-time trellis-coded mimo systems with experimental results. in: Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002. 1349~1353
    [62] Ge Y. Improved space-time trellis code in OFDM system. in: IEEE International Conference on Communication Technology, 2003. 1412~1415
    [63] Qin M., Blum R. S. Properties of space-time codes for frequency selective channels and trellis code designs. in: IEEE ICC, 2003. 2286~2290
    [64] Liu Z., Xin Y., Giannakis G. B. Space-time-frequency trellis coding for frequency-selective fading channels. in: IEEE VTC, 2002. 145~149
    [65] Gerstacker W. H., Obernosterer F., Schober R. et al. Symbol-by-symbol and trellis-based equalization with widely linear processing for space-time block-coded transmission over frequency-selective fading channels. in: IEEE Globecom, 2002. 365~369
    [66] Yeap B. L., Liew T. H., Hanzo L. Reduced complexity turbo equalization for space-time trellis coded system. in: IEEE VTC, 2002. 1689~1693
    [67] Li Y. G., Winters J. H., Sollenberger N. R. Signal detection for MIMO-OFDM wireless communications. in: IEEE ICC, 2001. 3077~3081
    [68] Biglieri E., Taricco G., Tulino A. Performance of space-time codes for a large number of antennas. IEEE Trans. on Information theory, 2002, 48(7): 1794~1803
    [69] Aktas D., Gamal H. E., Fitz M. P. On the design and maximum-likelihood decoding of space–time trellis codes. IEEE Trans. on Comm., 2003, 51(6): 854~859
    [70] Jafarkhani H. A quasi-orthogonal space-time block code. IEEE Trans. on Comm., 2001, 49(1): 1~4
    [71] Tirkkonen O., Boariu A., Hottinen A. Minimal non-orthogonality rate 1 space-time block code for 3+ Tx. in: IEEE ISSSTA, 2000. 429~432
    [72] Sezgin A., Jorswieck E. A. On optimal constellations for quasi-orthogonal space-time codes. in: IEEE ICASSP, 2003. 345~348
    [73] Su W., Xia X. A design of quasi-orthogonal space-time block codes with full diversity. in: Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002. 1112~1116
    [74] Su W., Xia X. Quasi-orthogonal space-time block codes with full diversity. in: IEEE Globecom, 2002. 1098~1102
    [75] Li Z., Hu G. Space-time block codes based on coordinate symmetric orthogonal designs. IEE Electronics Letters, 2003, 39(8): 670~671
    [76] Ganesan G., Stoica P. Space-time block codes: a maximum SNR approach. IEEE Trans. on Information Theory, 2001, 47(4): 1650~1656
    [77] Xin Y., Wang Z., Giannakis G. B. Space-time constellation-rotating codes maximizing diversity and coding gains. in: IEEE Globecom, 2001. 455~459
    [78] Geng J., Mitra U. On space-time block codes for linear MMSE decoders. in: IEEE International Symposium on Information Theory, 2002
    [79] Beygi H. L., Ghaderipoor A. R., Dolatyar K. et al. A new lattice decoding for space time block codes with low complexity. in: IEEE PIMRC, 2002. 428~430
    [80] Uysal M., Georghiades C. N. An efficient implementation of a maximum-likelihood detector for space-time block coded systems. IEEE Trans. on Comm., 2003, 51(4): 521~5244
    [81] Cavus E., Daneshrad B. A computationally efficient algorithm for space-time block decoding. in: IEEE ICC, 2001. 1157~1162
    [82] Li X., Luo T., Yue G. et al. A squaring method to simplify the decoding of orthogonal space-time block codes. IEEE Trans. on Comm., 2003, 49(10): 1700~1703
    [83] Beygi H. L., Ghaderipoor A. R., Dolatyar K. A fast decoding for space time block codes. IEEE workshop on Sensor Array and Multichannel Signal Processing, 2002, 427~431
    [84] Bauch G. Concatenation of space-time block codes and “turbo”-TCM. in: IEEE ICC, 1999. 1202~1206
    [85] Liew T. H., Pliquett J., Yeap B. L. et al. Concatenated space-time block codes and TCM, turbo TCM, convolutional as well as turbo codes. in: IEEE Goobecom, 2000. 1829~1833
    [86] Kang G., Jin X., Quan Q. et al. The decision schemes on the concatenation of space-time block code and convolutional code in WCDMA system. in: IEEE International Conferences on Info-tech and Info-net, 2001. 693~697
    [87] Gong Y., Letaief K. B. Concatenated space-time block coding with trellis coded modulation in fading channels. IEEE Trans. on Wireless Comm.,2002, 1(4): 580~590
    [88] Suh J., Howlader M. M. K. Design schemes of space-time block codes concatenated with turbo codes. in: IEEE VTC, 2002. 1030~1034
    [89] Agrawal D., Tarokh V., Naguib A. et al. Space-time coded OFDM for high data-rate wireless communication over wideband channels. in: IEEE VTC, 1998. 2232~2236
    [90] Choi W., Cioffi J. M. Space-time block codes over frequency selective Rayleigh fading channels. in: IEEE VTC, 2000. 2541~2545
    [91] Li K., Ingram M. A. Space-time-block-coded OFDM systems with transmit beamformers for high-speed indoor wireless communications. in: IEEE VTC, 2000. 2473~2477
    [92] Li Y., Chuang J., Sollenberger N. R. Transmitter diversity for OFDM systems and its impacts on high-rate wireless networks. in: IEEE ICC, 1999. 534~538
    [93] Liu Z., Giannakis G. B., Barbarossa S. et al. Transmit antennae space-time block coding for generalized OFDM in the presence of unknown multipath. IEEE J. on Sel. Areas in Comm., 2001, 19(7): 1352~1364
    [94] Giannakis G. B., Wang Z., Scaglione A. et al. AMOUR—Generalized multicarrier transceivers for blind CDMA irrespective of multipath. IEEE Trans. on Comm., 2000, 48(12): 2064~2076
    [95] Giannakis G. B., Stamoulis A., Wang Z. et al. Load-adaptive MUI/ISI-resillient generalized multi-arrier with linear and DF receivers. Eur. Telecommun. Trans., 2000, 11(6): 527~537
    [96] Wang Z., Giannakis G. B. Block spreading for multipath-resillient generalized multi-carrier CDMA. in: Signal processing advances in wireless communications, Giannakis G. B., Stoica P., Hua Y. and Tong L., Eds. Englewood Cliffs, NJ: Prentics-hall, 2000
    [97] Wang Z., Giannakis G. B. Wireless muiti-carrier communications: where Fourier meets Shannon. IEEE Signal Processing Mag., 2000, 17: 29~48
    [98] Liu Z., Giannakis G. B. Space-time block-coded multiple access through frequency-selective fading channels. IEEE Trans. on Comm., 2001, 49(6): 1033~1044
    [99] Stamoulis A., Liu Z., Giannakis G. B.. Space-time block-coded OFDMA with linear precoding for multirate services. IEEE Trans. on Signal Processing, 2002, 50(1): 119~129
    [100] Liu Z., Xin Y., Giannakis G. B. Space-time-frequency block coded OFDM with subcarrier grouping and constellation precoding. in: IEEE ICASSP, 2002. 2205~2208
    [101] Liu Z.,Xin Y., Giannakis G. B. Linear constellation precoding for OFDM with maximum multipath diversity and coding gains. IEEE Trans. on Comm., 2003, 51(3): 416~427
    [102] Liu Z., Ma X., Giannakis G. B. Space-time coding and Kalman filtering for time-selective fading channels, IEEE Trans. on Comm., 2003, 51(3): 416~427
    [103] Proakis J. G. Digital Communications. New York: McGraw-Hill, 1999.
    [104] Giannakis G. B., Ma X., Leus G. et al. Space-time-Doppler coding over time-selective fading channels with maximum diversity and coding gains. in: IEEE ICASSP, 2002. 2217~2220
    [105] Tran T. A., Sesay A. B. A generalized simplified ML decoder of orthogonal space-time block code for wireless communications over time-selective fading channels. in: IEEE VTC, 2002. 1911~1915
    [106] Lin D., Chiang B., Yu J. Space-time block codes in Doppler spread channel. in: IEEE Antennas and Propagation Society International Symposium, 2002. 660~663
    [107] Hwang H. C., Kwak K. S. Space-time MMSE multiuser receiver for space-time coded DS/CDMA systems in frequency selective fading channels. in: IEEE VTC-spring, 2003. 759~763
    [108] Li H. Semi-blind multiuser receiver for space-time coded CDMA systems. in: IEEE ICASSP, 2002. 2401~2404
    [109] Ma J., Tugnait J. K. Blind multiuser receiver for space-time coded cdma signals in frequency-selective channels. in: The Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002. 1647~1652
    [110] Iraji S., Lilleberg J. Performance of EM-based multiuser detection for space-time block coded WCDMA systems over multipath fading channels. in: IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, 2002. 707~711
    [111] Corral-Briones G., Rodriguez C., Marques C. Non-iterative joint decoding of space-time codes and multiuser interference in asynchronous DS-CDMA systems. in: IEEE WCNC, 2002. 94~98
    [112] Li H., Lu X., Giannakis G. B. Capon multiuser receiver for CDMA systems with space-time coding. IEEE Trans. on Signal Processing, 2002, 50(5): 1193~1204
    [113] Yang Z., Lu B., Wang X. Bayesian Monte Carlo multiuser receiver for space-time coded multicarrier CDMA systems. IEEE J. on Sel. Areas in Comm., 2001, 19(8): 1625~1637
    [114] Zhang Y., Blum R. S. Multistage multiuser detection for CDMA with space-time coding. in: The Tenth IEEE Workshop on Statistical Signal and Array Processing, 2000. 1~5
    [115] Naguib A. F., Seshadri N., Calderbank A. R. Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems. in: The Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1998. 1803~1810
    [116] Stamoulis A., Al-Dhahir N., Calderbank A. R. Further results on interference cancellation and space-time block codes. in: The Thirty-Fifth Asilomar Conference on Signals, Systems & Computers, 2001. 257~261
    [117] Lu B., Wang X. Iterative receivers for multiuser space-time coding systems. IEEE J. on Sel. Areas in Comm., 2000, 18(11): 2322~2335
    [118] Lu B., Wang X., Li Y. Iterative receivers for space-time block coded OFDM systems in dispersive fading channels. in: IEEE Globecom, 2001. 514~518
    [119] Bauch G. Concatenation of space-time block codes and ‘Turbo’-TCM. in: IEEE ICC, 1999. 1202~1206
    [120] Tran T. A., Sesay A. B. A robust and low-complexity transceiver for space-time block coding multiuser wireless communications systems. in: IEEE VTC-spring, 2002. 1589~1593
    [121] Tran T. A., Sesay A. B. Combined space-time trellis-coded modulation and group multiuser detection. in: IEEE VTC-spring, 2002. 1369~1373
    [122] Dai L., Sfar S., Letaief K. B. An efficient detector for combined space-time coding and layered processing. IEEE Trans. Commun., 2005, 53(9): 1438~1442
    [123] Zhuang X. Y., Vook F. W., Rouquette-Leveil S. et al. Transmit diversity and spatial multiplexing in four-transmit-antenna OFDM. in: IEEE ICC, May 2003. 2316~2320
    [124] Jakes W. C. Microwave Mobile Communications. New Jersey: IEEE Press, 1993.
    [125] Sklar B. Rayleigh fading channels in mobile digital communication systems, part I: Characterization. IEEE Comm. Mag., 1997, 35: 136~146
    [126] Sklar B. Rayleigh fading channels in mobile digital communication systems, part II: Mitigation. IEEE Comm. Mag., 1997, 35: 148~155
    [127] Rappaport T. S. Wireless communications principles and practice. Prentice Hall, 2001.
    [128] Schmidl T. M. Synchronization algorithms for wireless data transmission using orthogonal frequency division multiplexing (OFDM): [PhD thesis]. Stanford University: June 1997.
    [129] Byers G. J., Takawira F. Spatially and temporally correlated MIMO channels: modeling and capacity analysis. IEEE Trans. On Vehicular Technology, 2004, 53: 634~643
    [130] Yu K., Ottersten B. Models for MIMO propagation channels, a review. Wiely J. Wireless Commun. Mobile Comput., 2002, 2(7): 653~666
    [131] Abdi A., Barger J. A., Kaveh M. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Trans. Veh. Technol., 2002, 51: 425~434
    [132] Lee W. C. Y. Level crossing rates of an equal-gain predetection diversity combiner. IEEE Trans. Commun. Technol., 1970, 18: 417~426
    [133] Abdi A. and Kaveh M. A versatile spatio-temporal correlation function for mobile fading channels with nonisotropic scattering. IEEE Workshop Statistical Signal Array Processing, 2000, 58~62
    [134] Younkins L. T., Su Weifeng, and Liu K. J. R. On the robustness of space-time coding for spatially and temporally correlated wireless channels. in: IEEE WCNC, 2004. 587~592
    [135] Aalo V. A. Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment. IEEE Trans. on Commun., 1995, 43: 2360~2369
    [136] Iltis R. A. Joint estimation of PN code delay and multipath using the extended Kalman filter. IEEE Trans. Commun., 1990, 38(10): 1677~1685
    [137] Tran T. A., Sesay A. B. A generalized linear quasi-ML decoder of OSTBCs for wireless communications over time-selective fading channels. IEEE Trans. on Wireless Commun., 2004, 3: 855~864
    [138] Naguib A. F., Seshadri N. Combined interference cancellation and ML decoding of space-time block codes. IEEE J. Sel. Areas Commun., 2000
    [139] Wang X., Poor H. V. Iterative (Turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Commun., 1999, 47(7): 1046~1061
    [140] Suthaharan S., Nallanathan A., Kannan B. Space-time coded MIMO-OFDM for high capacity and high data-rate wireless communication over frequency selective fading channels. in: Int. Conf. Mobile and Wireless Commun. Network, 2002. 424~428
    [141] Li Ye, Seshadri N., Ariyavisitakul S. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE J. Select. Areas Commun., 1999, 17(3): 461~471
    [142] Tarokh V., Naguib A., Seshadri N. Combined Array Processing and Space–Time Coding. IEEE Trans. Inform. Theory, 1999, 45(3): 1121~1128
    [143] Lupas R., Verdu S. Linear multiuser detectors for synchronous code-division multiple-access channels. IEEE Trans. Inform. Theory, 1989, 35: 123~136
    [144] Varanasi M. K. Group detection for synchronous Gaussian codedivision multiple-access channels. IEEE Trans. Inform. Theory, 1995, 41: 1083~1096
    [145] Calderbank A. R., Pottie G., Seshadri N. Co-channel interference suppression through time/space diversity. IEEE Trans. Inform. Theory, submitted for publication
    [146] Winters J., Salz J., Gitlin R. D. The impact of antenna diversity on the capacity of wireless communication systems. IEEE Trans. Commun., 1994, 42: 1740~1751
    [147] Fain E. A., Varanasi M. K. Diversity order gain for narrow-band multiuser communications with pre-combining group detection. IEEE Trans. Commun., 2000, 48(4): 533~536
    [148] Sampath H., Paulraj A. Linear precoding for space-time coded systems with known fading correlations. IEEE Commun. Lett., 2000, 6(6): 239~241
    [149] Scaglione A., Stoica P., Barbarossa S. et al. Optimal designs for space-time linear precoders and decoders. IEEE Trans. Sig. Proc., 2002, 50(5): 1051~1064
    [150] Gore D., Nabar R., Paulraj A. Selecting an optimal set of transmit antennas for a low rank matrix channel. in: Proceedings of the ICASSP’00. 2000. 2785~2788
    [151] Heath Jr R. W., Sandhu S., Paulraj A. Antenna selection for spatial multiplexing with linear receivers. IEEE Commun. Lett., 2001, 5: 142~144
    [152] Gorokhov A. Antenna selection algorithms for MEA transmission systems. in: Proceedings of IEEE Int. Conf. Acoust., Speech and Sig., 2002. 2857~2860
    [153] Molisch A. F., Win M. Z., Winters J. H. Capacity of MIMO systems with antenna selection. In: Proceedings of IEEE Int. Conf. on Commun., 2001. 570~574
    [154] Narula A., Lopez M. J., Trott M. D. et al. Efficient use of side information in mulitiple-antenna data transmission over fading channels. IEEE Jour. Select. Areas in Commun., 1998, 16: 1423~1436
    [155] Jongren G., Skoglund M., Ottersten B. Combining beamforming and orthogonal space-time block coding. IEEE Trans. Info. Th., 2002, 48(3): 611~627
    [156] Jongren G., Skoglund M. Utilizing quantized feedback information in orthogonal space-time block coding. in: Proceedings of IEEE Glob. Telecom. Conf., 2000. 995~999
    [157] Love D. J., Heath Jr R. W. Equal gain transmission in multipleinput multiple-output wireless systems. IEEE Trans. Commun., 2003, 51: 1102~1110
    [158] Love D. J., Heath Jr R. W., Strohmer T. Quantized maximum ratio transmission codebook design for multiple-input multiple-output wireless systems. in: Proceedings of 36th Asilomar Conf. on Sig., Sys., and Comp., 2002. 531~535
    [159] Love D. J., Heath Jr R. W., Strohmer T. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. Info. Th., 2003, 49(10): 2735~2747
    [160] Larsson E. G., Ganesan G., Stoica P. et al. On the performance of orthogonal space-time block coding with quantized feedback. IEEE Commun. Lett., 2002, 6(11): 487~489
    [161] Love D. J., Heath Jr R. W. Limited feedback precoding for spatial multiplexing systems using linear receivers. in: Proceedings of IEEE Mil. Comm. Conf., 2003. 627~632
    [162] Chen Runhua, Andrews J. G., Heath Jr R. W. Multiuser space-time block coded MIMO system with downlink precoding. in: Proceedings of IEEE International Conf. on Commun., 2004. 2689~2693
    [163] Wong K. K., Murch R. D., Cheng R. S. et al. Optimizing the spectral efficiency of multiuser MIMO smart antenna systems. in: IEEE WCNC’00, 2000. 426~430
    [164] Choi R. L., Lefaief K. B., Murch R. D. MIMO CDMA antenna systems. in: IEEE ICC’00, 2000. 990~994
    [165] Choi R. L., Murch R. D. A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Trans. Wireless Commun., 2004, 3(1): 20~24
    [166] Buehrer R. M., Kumar N. A. The impact of channel estimation error on space-time block codes. in: IEEE VTC, 2002. 1921~1925
    [167] Hutter A. A., Carvalho E. de., Cioffi J. M. On the impact of channel estimation for multiple antenna diversity reception in mobile OFDM system. in: proceedings of the 34th Asilomar Conference on Signals, Systems and Computers, 2000. 1820~1824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700