环境与力学因素协同作用下的航空铝合金性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超硬铝合金是重要的航空结构材料,广泛用于军用飞机和民用飞机的大梁、桁条、隔框等承力部位。由于环境腐蚀介质的侵蚀不可能完全避免,因此,有关超硬铝合金构件的腐蚀损伤,仍然是航空领域中十分重要的研究内容。
     超硬铝合金在环境中的损伤,绝大多数情况下属于剥离腐蚀。超硬铝合金表面状态、环境条件的变化,均可能改变剥蚀的发展过程,为此,本文提出在恒温条件下,用电位法、电阻法定量研究铝合金的剥蚀性能。实验结果显示了LC4CS铝合金的自腐蚀电位与时间的关系,和腐蚀速率与时间的关系有着十分相似的规律,两者均在120分钟前后有不同的变化。从自腐蚀电位的变化规律可以推断,在腐蚀的初期阶段,铝合金表面自然生成的钝化膜逐渐溶解,使铝合金腐蚀速率快速增加。当腐蚀浸泡的时间大于120分钟后,腐蚀产物在铝合金表面产生了明显的位阻作用,从而使腐蚀速率逐渐下降,直至48小时后,腐蚀速率趋于一相对稳定的数值。
     铝合金受外力作用,有可能裸露出新鲜金属,新鲜金属与其余已钝化的部分之间,存在耦合作用。实验结果显示,新鲜金属的自腐蚀电位随时间的增加而逐渐增大,如果时间足够长,自腐蚀电位将趋于稳定的数值。耦合状态下,新鲜金属的耦合电位正向移动的速率极快,在40秒钟后已接近于铝合金稳定的自腐蚀电位。根据耦合作用理论,获得了耦合电位、裸露的新鲜金属腐蚀速率的数学表达式,数学模拟所得的耦合电位与时间的关系,和实验结果有较好的一致性。
     将上述耦合理论应用于铝合金的裂纹尖端,并据此研究裂尖的电化学行为,发现铝合金新鲜表面的溶解速率随应变速率的增加而增大。应变速率愈大,耦合电流随时间增大的速率也愈快,但几乎均在应变量为0.04左右时,耦合电流呈急剧增大的趋势。
     腐蚀减少了铝合金构件总的承载能力,也对其强度产生影响。环境介质的组成、形态是影响腐蚀疲劳裂纹扩展的重要因素。3.5%NaCl溶液和3.5%NaCl薄液层的化学组成几乎完全相同,只是薄液层中氧的传质速率较快。实验结果显示了在薄液层中,LC4CS铝合金的湿腐蚀疲劳裂纹扩展速率,大于在3.5%NaCl溶液中的速率。实验还发现其疲劳断口的形貌,也与3.5%NaCl溶液中的有明显区别。阳极氧化是提高铝合金耐蚀能力的常用方法,如果从疲劳性能的角度考虑,经硫酸阳极氧化的铝合金腐蚀疲劳性能比铬酸阳极氧化的更好一些。
     再将“耦合作用”的猜想,引入铝合金的腐蚀疲劳裂纹扩展过程中,用电化学的方法测定耦合电流与加载时间的关系,并从理论上导出LC4CS铝合金应力腐蚀裂纹扩展速率的数学表达式,数学模拟的结果与实验值具有较好的一致性。
Super-duralium that is widely used for the longerons, frames, stringers of military and civil aeroplanes, is an important aeronautic material. Because fully avoiding of environmental erosion is difficult, the research on the corrosion damage of the super-duralium is still one of the affairs of the first magnitude.
    The damage of super-duralium caused in environment is mostly exfoliation corrosion. The variations of the surface state and environment conditions could change the procedure of exfoliation, therefore, the potentiometry and electric resistance methods in this paper are used to measure the exfoliation rate of Aluminum alloys in a constant temperature, the experimental results show that relations of natural corrosion potential vs time have a resemblance to those of corrosion rate vs time, both relations are all at the different change rates in the front and back of 120 minutes. From the varieties of the natural corrosion potential of Aluminum alloys, it is deduced that the gradual dissolution of natural passive state film of the alloys brings about high-speed enhancement in the corrosion rate of the alloys. Because of the place obstruction of corrosion products in the surface of the alloys, while corrosion time is at 120 minutes above, the corrosion rate descends to the stable value in 48 hours.
    In the action of external force, Aluminum alloys could bare out fresh metal, so there are galvanic couple between the fresh metal and rest parts passivated. Electrochemical tests show that the longer time is, the higher natural corrosion potential of the bare metal is. If corrosion time is long enough, the potential will go to a stable value. In the state of galvanic couple, the couple potential of the bare metal quickly shifts towards positive direction, and to approach the stable natural corrosion potential of Aluminum alloys after 40 seconds. On the basis of couple polarization theory, the mathematical expressions of couple potential and corrosion rate of fresh bare metal are inferred, the theory modeling relations of couple potential vs time is corresponding to experimental results.
    The couple theory above-mentioned is applied at the crack tip of Aluminum alloys, on ground of the theory, the experiment on the electrochemical action at the tip shows that the faster the strain rate is, the quicker the dissolution rate of the fresh surface of Aluminum alloys is. the faster the strain rate is, the quicker the increment rate of couple current vs time is, while strain is equal to 0.04 about, the couple currents show the trend of sharp enhancement.
    Corrosion affects not only the loading capacity of Aluminum alloys component, but also the strength. The composition and modality of the environment medium play an
    
    
    
    important role in the crack growth of corrosion fatigue. The formation of 3.5% NaCl solution is almost similar to that of 3.5% NaCl thin electrolyte layer, just the mass transfer rate of the oxygen in the layer is more quicker than in the solution ?The test shows that the crack growth rate of wet-corrosion fatigue of LC4CS Aluminum alloy in the layer is quicker than in the solution, and also shows that morphology of fatigue fracture in the layer is evidently distinguished from in the solution. The corrosion resistance of Aluminum alloys is improved by anodic oxidation, if the fatigue behaviors are taken into account, the behaviors of Aluminum alloys by sulfuric acid anodizing is better than by chromic acid anodizing.
    Furthermore, the supposition of galvanic couple is drawn into the procedure of corrosion fatigue crack growth of Aluminum alloys, the relation of couple current vs loading time is determined with electrochemical methods. A formula in the theory is deduced which expresses the stress corrosion crack growth rate of LC4CS Aluminum alloy, the results of mathematical modeling preferably correspond with examination.
引文
1.朱祖芳.有色金属的耐蚀性及其应用.化学工业出版社,1995,27-29
    2. Dyer C K, et al. Electrochemical Science and Technology. 1981, 300-302
    3.魏宝明.金属腐蚀理论及应用.化学工业出版社,1984,148-153
    4. McCvily A, Bond A. Environments Sensitive Mechanical Behavior, eds Westwood, Stoloff N, 1966, 422-445
    5.许淳淳.LC4铝合金在NaCl溶液中应力腐蚀临界破裂电位及裂尖状态的研究.中国腐蚀与防护学报,1995,15(1):49-53
    6.李荻.电化学原理.北京航空航天大学出版社,1989,46-48
    7.冯端.金属物理(上册).科学出版社,1987,248-250
    8.周如松.金属物理(中册).高等教育出版社,1992,74-105
    9.查全性.电极过程动力学导论.科学出版社,1987,140-150
    10.古德曼.金属力学化学与腐蚀防护.科学出版社,1989,11-18
    11.徐芝纶.弹性力学(上册).高等教育出版社,1978,343-350
    12.同10,60-62
    13.左景伊,刘幼平,许淳淳.应力对腐蚀裂缝内闭塞区腐蚀行为的影响.中国腐蚀与防护学报,1991,11(1):55-65
    14.曹楚南.腐蚀电化学.化学工业出版社,1994,38-41
    15. Ebersbach U, Schwabe K, and Ritter K. Electrochem. Acta, 1967, 12:927-932
    16. 同14, 150-153
    17. Moshtev R V. Ber, Bunsenges, Phys. Chem., 1967, 71:1079-1086
    18. Sato N, Cohen M. J. Electrochem. Soc., 1963, 111:52-58
    19. Novak S R. Corrosion Fatigue-Mechanics, Metallurgy, Electrochemistry and Engineering, eds Crooker Leis, ASTM, SIP801, 1983
    20. Duquette, D J. Corrosion Fatigue-Chemistry, Mechanics and Microstructure, eds McEvily A J, Staehle R W, NACE, 1972
    21. Barson J M. Effect of Cyclic-Stress form on Corrosion-fatigue Crack Propagation Below K_(ISCC) in A High-yield Strength Steel. Corrosion Fatigue: Chemistry, Mechanics and Microstructure, eds Devereux D F, McEvily A J, Staehle R W, NACE-2, 426-436
    22. Aiyama S Skoji, Takahashi H, Suzukim. Corrosion, 1978, 34(10): 325
    23. Kawakubo I, Hishid M, Amono K, Katsuta M. Corrosion, 1980, 36(11): 638
    24. Nakasa K, Takai H, Kajiwara K. Eng, Fract. Mech., 1981, 14(3): 507
    
    
    25. Kawai S, Koibuchi K. Fat. Engng. Mater. Struct., 1979, 1(4):395
    26. Andresen L, Fork F P. Mater. Sci. Engng., 1988, 103(1):107
    27.路民旭,刘晓坤,王建军,郑修麟.腐蚀疲劳波形效应的裂尖析氢、输氢模型与试验验证.中国腐蚀与防护学报,1994,14(4):255-263
    28. Ford F P, Silverman M, Mechanistic Aspects of Environment-Controlled Crack Propagation in Steel/aqueous Environment Systems, Report, No HTGE-451-8-12, Schenectady N Y, General Electric Company
    29. 1985
    30. Brown, B F, et al. J. Electrochem. Soc., 1969, 2:218
    31. Smith J A, et al. Corrosion, 1970, 12:539
    32.肖纪美.应力作用下的金属腐蚀.化学工业出版社,1990,45-32
    33. Brown B F. The Theory of Stress Corrosion Cracking in Alloys. NATO, 1971
    34. Congleton J, Craig I H. Corrosion Processes. eds Parkins R N, 1982
    35. Hartt W H, et al. Corrosion Fatigue Technology. ASTM, STP642, 1978
    36. Gangloff R P. Res Mechanica-lett. 1, 1981, 299
    37. Tanaka K, Wei R P. Engng. Fract. Mech., 1985, 21(2): 293
    38. Meng Zhang, Ping Sheng Yang, Yuxu Tan. International Journal of fatigue, 1999, 21:823
    39. Duquette D J. Fatigue and Microstructure. ASTM, 1979
    40. Hirth J P, Lothe J. Theory of Dislocation, 2nd, 1982
    41. Jaske C E, et al. Corrosion Fatigue of Metals in Marine Environments. Springer-Verlay and Battelle Press, 1981, 16-24
    42.刘晓坤.环境条件下高强度钢的疲劳与断裂特性研究.西北工业大学博士学位论文,1989
    43.王栓柱,王兴国等.环境对低循环疲劳的影响.第二届全国疲劳学术会议文集,1984
    44. Oriani R A, Josephic P H. Acta Metallurgica, 1974, 22:1065
    45. Naif S V, Jencen R R, Tien J K. Metall. Trans., 1983, A 14:385
    46. Oriani R A. Ann. Rev. Mater. Sci., 1978, 8:327
    47. McEvily A J Wei R P. Fracture Mechanics and Corrosion Fatigue, Corrosion: Chemistry Mechnics and Microstructure, eds, Devereux D F, McEvily A J, Staehle R W, NACE-2, 381
    48. Austin I M, Walker E F. Proc. Inst. Conf. on The Effect of Environment on fatigue. Inst. Mech. Eng. Conf., Publ, 1977, 4
    49. Ketcham S J, Shaffer I S. Exfoliation Corrosion of Aluminum Alloys. Localized Corrosion-Cause of Metal Failure, ASTM, STP516, 1972, 3-16
    
    
    50. Haidemenopoulos G N, Hassiotis N, Papapolymerou G. Hydrogen Absorption into Aluminum Alloy 2024-T3 During Exfoliation and Alternate Immersion Testing. Corrosion, 1998, 54(1):73-78
    51.李荻,左尚志,郭宝兰.LY12铝合金剥蚀行为的研究.中国腐蚀与防护学报,1995,15(3):203-209
    52.王若涛.六二一所、六一一所内部资料,1980年
    53.李金桂主编.航空产品腐蚀及其控制手册(上册).航空工业部第六二一研究所内部资料,1984,227-233
    54.张宝昌.有色金属及其热处理.西北工业大学出版社,1993,62-66
    55. Pearlstein F Teitell L. Proceedings 7th Annual National Conference on Envirorunemtal Effects on Aircraft and Propulsion Systems, 1967
    56. Liddiard E A G, Witaker J A, Farmery H K. J. Insitute of Metals, 1960-1961, 89:377
    57. Sprowls D O, Summerson T J, Romans H B, Sansonetti S J. Aluminum Association Report, issued 1969
    58. Galvele J R, Micheli S M. Corrosion Science, 1970, 10:795
    59. Shaffer I S, Sebastian J C, Rosenfeld M S, Ketcham S J. J. Materials, JMLSA, 1968, 3(2):400
    60.贺斌.环境对铝合金疲劳性能的影响.南京航空航天大学博士学位论文,1989,88-90
    61.将金龙,赵名泮.预腐蚀对LY12CZ挤压件疲劳寿命的影响.飞机结构腐蚀疲劳学术研讨会文集,1995,34
    62.姜军,贾国荣.沿海地区歼八飞机机体结构腐蚀情况及分析.飞机结构腐蚀疲劳学术研讨会文集,1995,157
    63.雷文生,褚兰根.歼八飞机机体的腐蚀及预防.飞机结构腐蚀疲劳学术研讨会文集,1995,150
    64.何建平等.“民用机腐蚀防护与控制”技术鉴定报告.南京航空航天大学内部资料,2000,4-6
    65.吴荫顺.腐蚀试验方法与防腐蚀检测技术.化学工业出版社,1996,26
    66.SX1931型数字式微欧计技术说明书.苏州电讯仪器厂,1989
    67.HB5455-90铝合金剥层腐蚀试验方法,1999年9月18日颁布
    68.ASTM G34-79 2×××和7×××系列铝合金剥蚀敏感性试验方法,1994颁布
    69.王祝堂,田容璋.铝合金及其加工手册.中南工业大学出版社,1989,
    70.同1,21
    
    
    71.张琦,李荻,丁学谊.LC4铝合金晶间腐蚀电化学机理.材料保护,1996,29(8):6-8
    72. Sukamto J P H, et al. Material Science and Engineering A198, 1995, 177
    73.陈世朴,王永瑞.金属电子显微分析.机械工业出版社,1982,156
    74.顾睿祥.现代物理研究方法及其在腐蚀科学中的应用.化学工业出版社,1990,87
    75.任怀亮.金相实验技术.冶金工业出版社,1986,155
    76.曹楚南.腐蚀电化学原理.化学工业出版社,1985,57
    77. Alavi A, Miller C D, Wei R P. A Technique for Measuring the Kinetics of Electrochemical Reactions With Bare Metal Surfaces. Corrosion, 1987, 43(4):204-207
    78.黄子勋,何业东,侯力.LC-4铝合金应力腐蚀裂纹内的电化学行为.中国腐蚀与防护学报,1984,4(1):30-39
    79. Pourbaix M. The Theory of SCC in Alloys, eds Scully J C, 1971, 39
    80. Pourbaix M, C. Corrosion, 1970, 26, 431
    81.左景伊,金志强.腐蚀裂缝内化学和电化学状态之探索.化工学报,1982,4:291-300
    82. Tumbull A, Dolphin A S, Rackley F A. Experimental determination of The E.lectrochemistry in Corrosion fatigue Cracks in Structural Steel in Artificial Seawater. Corrosion, 1988, 44(1): 55-61
    83.韩恩厚.腐蚀疲劳裂纹扩展规律与机理.东北工学院博士学位论文,1990,
    84.牛林,林海潮,曹楚南.环境促进开裂中裂纹扩展速度的测定方法述评.中国腐蚀与防护学报,1998,18(3):214-220
    85. Ford F P. Quantitative Predication of Environmentally Assisted Cracking. Corrosion, 1996, 52(5): 375-395
    86. Tumbull A, et al. Corrosion Science, 1993, 34:921
    87. Ford F P, et al. J. Electrochem. Soc., 1980, 127:6
    88. Hagyard T, et al. J. Electrochem. Soc., 1968, 115:623
    89. Less D J, Hoar T P. Corrosion Science, 1980, 20:723
    90. Newman R C, Burstein G T. Corrosion Science, 1981, 21:119
    91. Diegle R B, Lineman D M. J. Electrochem. Soc., 1984, 131:106
    92. Diegle R B, Vermilyea D A. J. Electrochem. Soc., 1975, 122:180
    93. Ford F P, Silvermen M. Corrosion, 1980, 36:558
    94. Beck T R. J. Electrochem. Soc., 1982, 129:2500
    95. Wei R P, Alavi A. A 4-Electrode Analogue for Estimating Electrochemical Reactions With Bare Metal Surfaces at The Crack Tip. Scrip. Metall., 1988, 22:969-974
    
    
    96. Thomas, J P, Alavi A, Wei R P. Correlation Between Electrochemical reactions With Bare Surfaces and Corrosion Fatigue Crack in steels. Scrip. Metall., 1986, 20:1015-1018
    97. Jones D A. Localized Surface Plasticity During Stress Corrosion Cracking. Corrosion Science, 1996, 5:356-362
    98. Parkins R N. Brit. Corrosion J., 1979, 14:5
    99. Parkins R N. Environment-induced Cracking of Metals, eds Gangloff R P, et al, NACE, 1990, 1
    100. Parkins R N. Corrosion Science, 1980, 20:147
    101. Knott J F. Effects of Environment on Crack Growth Under monotonic and Cyclic Loading, Corrosion Fatigue, eds Parkins R N, et al, 1980, 9-23
    102. Su Fang Teng. A Theortical Approach to Galvanic Corrosion, Allowing for Cathode Dissolution. Corrosion Science, 1988, 28(7): 649-655
    103. Tumbull A, Saenz M, Santa Maria. Predicating The Kinetics of Hydrogen Generation at Tips of Corrosion Fatigue Cracks. Metallergical Transaction A, 1988, 19A(7): 1795-1806
    104.克舍.H.金属腐蚀(吴荫训译).化学工业出版社,1984,97—123
    105. Leu K N, Helle J N. Corrosion, 1958, 14(2): 244
    106. Dean S W. Review of Recent Studies on The Mechanism of Stress Corrosion Cracking in Austenitic Stainless Steels. Stress Corrosion-New Approaches, ASTM STP610, 1976, 308
    107. Pyle T, Rollins V, Howard D. The Influence of Cyclic Plastic Strain on The Transient Dissolution Behavior of 18/8 Stainless in 3.7M H_2SO_4. J. Eletrochem. Soc., 1976, 122(11): 1445-1453
    108. Magnin T, Coudreuse L. Corrosion Fatigue Mechanisms in B. C. C. Stainless Steels. Acta Metall., 1987, 35(8): 2105-2113
    109. Li Y F, Farrington G C, Laird C. C. Cyclic Response-Electrochemical Interaction in Mono-and Polycrystalline AISI 316L Stainless Steel in H_2SO_4 Solution-I. Acta Metall. Mater., 1993, 41(3):693-708
    110.韩光炜,宋余九.腐蚀疲劳过程中裂尖阳极溶解对裂纹扩展的作用.中国腐蚀与防护学报,1991,11(4):297-308
    111.郝凌.18—8 奥氏体不锈钢应力腐蚀裂纹扩展过程中拉应力的作用机理探讨.南京化工学院硕士学位论文,1987,
    112.铁摩辛柯.材料力学.科学出版社,1979,363-365
    113. Braun R. Slow Strain rate Testing of Aluminum Alloy 7050 in Different Tempers Using Various Synthetic Environments. Corrosion, 1997, 53(6): 467-474
    
    
    114.刘晓坤,王建军,金石.用慢拉伸法研究 GC-4 超高强度钢的应力腐蚀开裂敏感性.航空学报,1989,A10(9):471-486
    115. Parkins R N. Development Of Strain-Rate Testing and Its Implications. Ugiansky/Payer eds, Stress Corrosion Cracking-The Slow Strain Rate Technique, STP665 ASTM, 1979, 5-25
    116. Scully J C. Propagation of Stress Corrosion Cracks Under Constant S.train-Rate Conditions. Ugiansky/ Payer eds, Stress Corrosion Cracking-The Slow Strain Rate Technique, STP665 ASTM, 1979, 237-253
    117.王政富,李劲,王俭秋.工业纯铁在3.5%NaCl水溶液中裂尖材料溶解速率与裂纹扩展速率的关系.腐蚀科学与防护技术,1995,7(1):35-41
    118. Lee C S, Park C G, Chang Y W. Materials Science and Engineering A. 1996, 216:131-138
    119.张波,李劲,韩恩厚.LY12CZ 铝合金在NaCl溶液中腐蚀疲劳应变电流的分析.腐蚀科学与防护技术.2000,6:337-340
    120. Bubar S F, Vermiyea D A. J. Electrochem. Soc., 1966, 113:892-899
    121.何建平,李士嘉,杜心荣.改进的线性极化法测定锌镀层的腐蚀速率.电镀与环保.1993,13(3):22-24
    122.刘永辉.电化学测试技术.北京航空航天大学出版社,1987,336-338
    123.何建平,陈文理,樊蔚勋.LC4CS铝合金裂纹尖端腐蚀行为的实验研究.南京航空航天大学学报,2000,32(5):288-293
    124. Griffith A A. The Phenomenon of Rupture and Flow in Solids. Philosophical Transactions of The Royal Society, 1921, A221: 163-197
    125. Gilman J J. Bull. Am. Phy. Soc., 1970, 15:374
    126. Thompson R, Hseih C, Rana V. J. Appl. Phys., 1971, 42:3154
    127. Billy B A, Cottrell A H. Proc. Roy. Soc. 1963, A272:304
    128.冯端等.金属物理学第三卷金属力学性质.科学出版社,1999,495-500
    129. Averbach B L, Felbech D K, Hahn G T, Fracture, 1959
    130. Andrade E N, TsienLC. Proc. Roy. Soc.. 1937, A159:346
    131. 1954
    132.苏晓燕,郭洪全.LY12-CZ和LC4-CS铝合金在多种环境中的腐蚀疲劳裂纹扩展材料工程,1991,1:48-51
    133. Coffin L F. Fatigue in Machines and Structures Power Generation. Fatigue and Microstructures, 1978, 4-7
    134.郑修麟,张钢柱.应变疲劳公式的研讨.西北工业大学学报,1984,2(2):223-229
    
    
    135.郑修麟.金属疲劳性能与拉伸性能之间的关系.中国兵工学会学术会议文集,1988
    136. GB6398-86 金属材料疲劳扩展速率试验方法,1986年5月19日颁布
    137. Paris P C, Erdogan F. J. Basic.. 1963, 85(2): 528
    138.路民旭,郑修麟,邓彦平.极化电位对GC-4钢腐蚀疲劳裂纹扩展特性的影响.中国腐蚀与防护学报,1993,13(1):35-40
    139. Wei R P, Landes J. Correlation Between Sustained-Load and Fatigue Crack Growth in High Strength Steels. Materials Research Standards, 1970, 9:25-27, 44-46
    140. Wei R P, Shim G. Corrosion Fatigue Mechanics Metallurgy, Electrochemistry and Engineering, eds Crooker and Leis, ASTM STP 801, 1983
    141. Austen I M, Walker E F. The Influence of Environment on Fatigue, Mechanical Engineering Publications Limited, London, 1977, 1-10
    142. Austen I M, Mclntyre P. Corrosion-Fatigue of High-Strength Steel in Low-Pressure hydrogen gas. Metal Science, 1979, 13:420-428
    143. Parkins R N. Corrosion. 1987, 43(3):130
    144. Pearson G L. Acta Metal, 1957, 5:181-
    145.柯伟,李劲.腐蚀疲劳裂尖材料损伤研究.腐蚀与防护,1999,20(3):103-107
    146. Gunchoo Shim, Wei R P. Corrosion Fatigue and Electrochemical Reactions in Modified Hy130 Steel. Materials Science and Engineering, 1987, 86(1): 121-135
    147. Troiano A R. Trans. Am. Soc. Met., 1969, 52:54-62
    148. Ateya B G, Picketing H W, In Bemstein and Thompson A M (eds), Hydrogen in Metals American Society for Metals, Metals Park, OH, 1979, 207-212
    149. Picketing H W Byme P J. J. Electrochem. Soc., 1973, 120:607-613
    150. Ateya B G, Picketing H W. J. Electrochem. Soc., 1973, 122:607-615
    151. Harris D, Picketing H W. In Bemstein and Thompson A M(eds), Hydrogen Effects on Behavior of Materials AIME, New York, 1976, 229-332
    152. Doig P, Flewitt P E J. Metall. Trans. A, 1978, 9:357-361
    153. Mohammed I, et al. Effect of The Applied Potential on The Potential and Current Distributions Within Crevices in Pure Nickel. Corrosion Science, 1999, 41:351-372
    154.刘幼平,周培君,张洁等.外部电位对蚀孔或裂缝扩展阶段闭塞区腐蚀行为的影响.中国腐蚀与防护学报,1995,15(1):43-48
    155. Scott P M, Thorpe T W, Silverster D R V. Corrosion Science, 1983, 23(6): 559-675
    
    
    156. Zhang X L, Hirt M A. Eng. Fract. Mech., 1983, 18(5) : 965-973
    157. Pokhmurskii V I, Krohmalnyi A M. Electrochemical Aspects of Corrosion Fatigue of Metals. Corrosion fatigue, eds Pakins R N, et al, 1984,54-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700