脓毒症患者远期生活质量和核小体早期预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     本研究分析了重症脓毒症患者出院后2到6年的长期生活质量,分析重症脓毒症患者远期生理机能、生理职能、躯体疼痛、一般健康状况、精力、社会功能、情感职能、精神健康以及日常生活能力等各方面的改变,旨在为公共卫生政策的制定、医疗资源的配置、重大研究方向的制定和研究资金的投入提供重要的理论依据。
     研究方法:
     本研究纳入2004年1月至2008年12月,共4家大学附属医院ICU的112例重症脓毒症患者和112例年龄、性别和察尔森合并症指数相匹配的非脓毒症危重病对照者进行随访研究。2010年8月至2010年12月对患者进行随访。共66例重症脓毒症患者(58.9%)和80例非脓毒症危重患者(71.4%)存活,排除失访和拒绝等病例,最终共有75例纳入随访分析并完成了面对面的随访,包括42例重症脓毒症患者和33例非脓毒症对照患者。此外,本研究对126名年龄、性别与重症脓毒症患者匹配的社区人群进行了生活质量随访。采用健康调查简表(SF-36)、焦虑自评量表(SAS)、抑郁自评量表(SDS)和日常生活能力量表(ADL)对患者的生活质量、精神状态和日常生活能力等进行评估。采用Student's t检验等方法对各项生活质量评分进行统计分析。
     研究结果:
     重症脓毒症患者的长期生活质量和非脓毒症危重病对照者相比未发现明显差异。然而,重症脓毒症患者与社区人群相比,表现为SF-36量表多个维度的临床意义和统计学意义的降低,包括:生理机能(P=0.016)、精力(P=0.037)、情感职能(P=0.043)、精神健康(P=0.038)等维度和精神健康指数(P=0.042)。重症脓毒症患者焦虑或抑郁比例与非脓毒症危重病对照者无明显差异(焦虑:9.52%vs.9.09%;抑郁:11.90%vs.9.09%,P>0.05)无明显差异。此外,重症脓毒症患者出院1年后和随访时间点的返回工作比例与非脓毒症危重病对照者无统计学差异(60.5%vs.70.0%,P=0.417;71.1%vs.76.7%,P=0.602)。同时,返回工作的患者在生理机能(P=0.019)、一般健康状况(P=0.003)、社会功能(P=0.034)等维度和躯体健康总评(P=0.001)方面明显优于未返回工作的患者。
     研究结论:
     重症脓毒症患者出院后远期生活质量在生理机能、精力、情感职能、精神健康和精神健康总评等方面较社区人群明显下降。但是,重症脓毒症患者与非脓毒症危重病对照者者的长期生活质量、焦虑、抑郁和日常生活能力等各方面无统计学差异。
     研究目的:
     动态观察Balb/c小鼠脓毒症造模后12h、24h、72h和168h四个时间点脾脏细胞的凋亡指数和血浆IL-10、TNF-α、IL-4和IL-1β等炎症因子的水平,并分析脾脏细胞凋亡指数和血浆炎症因子表达水平的相关性,从而为下一步脓毒症早期预警生物标志物的选择提供一定的理论依据。
     研究方法:
     将健康Balb/c小鼠(20-25g)随机分为脓毒症组和假手术组,采用小鼠盲肠结扎穿孔(CLP)术复制脓毒症模型,假手术组常规开腹但不作盲肠结扎、穿孔操作。分别于12h、24h、72h和168h处死小鼠、留取脾脏和血液标本,采用原位末端标记法(TUNEL)检测脾脏细胞凋亡情况,采用酶联免疫吸附试验(ELISA)检测炎症因子水平动态变化,采用Pearson相关分析法分析凋亡指数与炎症因子表达水平的相关性。
     研究结果:
     CLP模型组小鼠造模后12h、24h、72h和168h死亡率分别为10%、46%、70%和80%,符合脓毒症高死亡率的特点;并且观察到小鼠多脏器的病理改变,提示多器官功能障碍。假手术组小鼠100%存活。12h、24h、72h和168h时,脓毒症小鼠脾脏凋亡水平均明显高于假手术组(P<0.001),并且在24h时达到高峰。进一步分析各时间点炎症因子水平,发现脓毒症小鼠12h时间点血浆IL-10、TNF-α、IL-4和IL-1β等炎症因子水平均明显高于假手术组(P<0.001)。24h时,各炎症因子水平达最高峰,并且脓毒症组小鼠和假手术组小鼠的血浆TNF-α(P=0.046)和IL-1β(P=0.035)水平存在显著性差异。对脓毒症小鼠脾脏凋亡水平和炎症因子水平进行相关性分析,发现脾脏凋亡水平与IL-1β动态变化水平存在相关性(r=0.976,P=0.024)。研究结论:
     小鼠脓毒症造模后,早期即出现脾脏细胞凋亡和血浆炎症因子水平明显升高。同时,脓毒症小鼠脾脏凋亡指数与炎症因子水平动态呈相同的变化趋势,脓毒症小鼠脾脏凋亡水平与血浆IL-1β水平存在相关性。
     第三部分循环核小体在脓毒症患者中的早期预警作用
     研究目的:
     基于目前国内外研究进展和本论文第二部分的研究发现——淋巴细胞凋亡在脓毒症的病理生理改变中发挥着重要作用,虽然Hotchkiss等观察了脓毒症病人死亡后脾脏淋巴细胞凋亡程度,但是,目前脓毒症病人脾脏淋巴细胞凋亡的检测存在其局限性。因此,本部分研究选取与凋亡密切相关的核小体,探讨循环中核小体对于脓毒症患者诊断和预后的相关性,明确循环核小体在脓毒症中的早期预警作用
     研究方法:
     将2009年1月至9月入住2家大学附属医院外科ICU长于48小时的74名患者纳入为研究组1,同期入住另外2家浙江大学附属医院外科ICU长于48小时的91名外科术后患者为研究组2。排除化疗、AIDS、激素治疗和器官移植等患者。研究组1和研究组2所有纳入病人在入住ICU24小时内均抽取全血检测血清中核小体水平。同时,研究组1在第3天、第5天、第7天和观察终点(出ICU当天/死亡)时抽取全血。所有患者在入住ICU24小时内进行APACHE Ⅱ (Acute Physiology and Chronic Health Evaluation Ⅱ)评分,并且每天进行SOFA (Sequential Organ Failure Assessment)评分,并且以细胞因子水平作为脓毒症炎症反应严重程度指标。检测研究组1中患者血清循环核小体水平并分析其与脓毒症发生的相关性,并且在研究组2中进行验证。
     研究结果:
     两组研究组中,脓毒症组患者入住ICU时血清循环核小体水平较非脓毒症对照组均明显升高,研究组1中循环核小体鉴别脓毒症与非脓毒症的受试者工作特征曲线(ROC)下面积为0.70(95%可信区间为0.59-0.83),研究组2循环核小体鉴别脓毒症与非脓毒症的ROC曲线下面积为0.66(95%可信区间为0.51-0.81),将两组研究组所有患者合并后分析ROC曲线下面积为0.67(95%可信区间为0.55-0.79)。多元Logistic回归分析后表明循环核小体是脓毒症独立危险预测因素。同时,研究发现入住ICU24小时内的血清循环核小体水平与炎症反应严重程度和多器官功能障碍存在相关性。死亡患者入住ICU24小时内的血清循环核小体水平明显高于存活患者。
     研究结论:
     本研究显示循环核小体水平与脓毒症的发生、炎症反应严重程度、多器官功能障碍及预后存在相关性。因此,循环核小体能作为脓毒症早期预警的有效生物标志物。
Part1Long-term quality of life in severe sepsis survivors:up to6years multicenter study in China
     Objectives:
     The present study was undertaken to evaluate the long-term health-related quality of life (including physical functioning; role-physical; bodily pain; general health; vitality; social functioning; role-emotional and mental health) in survivors of severe sepsis up to6years. Additionally, returning to work/school was assessed.
     Methods:
     From January2004to December2008,112severe sepsis and112age-, gender-and Charlson comorbidity index-matched non-septic critically ill patients from4university hospital ICUs were enrolled. Totally66(58.9%) severe sepsis and80(71.4%) non-septic critically ill patients survived during the long-term follow-up time. Between August and December2010, a total of75patients, including42survivors of severe sepsis and33critically ill controls completed the face-to-face interview. Meanwhile,126age-and gender-matched community residents were interviewed as community control group.
     Results:
     There was no difference in the long-term HRQOL in terms of Short-Form36between severe sepsis and non-septic critically ill survivors. However, when compared with that in community controls, HRQOL in survivors of severe sepsis showed a significantly and clinically meaningful decrease, with a lower physical functioning (P=0.016), vitality (P=0.037), role-emotional (P=0.043), mental health (P=0.038) and mental component score (P=0.042). No difference was found with respect to anxiety or depression between severe sepsis and critical ill control (anxiety:9.52%vs.9.09%; depression:11.90%vs.9.09%). In addition, returning to work at1year and by the time of interview in severe sepsis were similar with that in critical illness (60.5%vs.70.0%, P=0.417,71.1%vs.76.7%, P=0.602). The patients who returned to work/school had better HRQOL in physical and mental domains than the patients who didn't.
     Conclusions:
     The HRQOL in severe sepsis was impaired even up to6years after hospital discharge and the employment status was related to the HRQOL. However, no difference was found between severe sepsis and non-septic critically ill survivors in the long-term HRQOL, anxiety, depression, or return to work.
     Part2Dynamic changes of apoptosis and inflammatory factors in sepsis
     Objectives:
     Sepsis is a leading cause of death in critically ill patients, and apoptosis plays a major role in the pathophysiology of sepsis. The aim of this study was to evaluate the apoptosis of spleen tissue and the level of inflammatory factors in sepsis.
     Methods:
     Balb/c mice were randomly divided into sepsis group and sham group. In sepsis group, mice received cecal ligation and puncture (CLP) to induce sepsis. In the sham group, the cecum is exteriorized but neither ligated nor punctured. Mice of both groups were sacrificed at12,24,72,168hours after CLP. Spleens and blood were collected from every mouse. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL). The plasma levels of IL-10、 TNF-α、IL-4and IL-β were determined by enzyme-linked immunosorbent assay (ELISA).
     Results:
     At12,24,72and168hours, the mortalities were10%,46%,70%and80%, meeting the death rate requirements for sepsis models. Pathological changes were observed in the multiple organs of septic mice.. In the sham group, at168hours, the survival rate was100%. The apoptosis index (AI) of spleen cells significantly increased at12,24,72and168hours after CLP (P<0.001). The plasma level of IL-10. TNF-α、 IL-4and IL-1(3were significantly increased12hours after CLP (P<0.001). In addition, the plasma level of TNF-a (P=0.046) and IL-1β (P=0.035) were still significantly increased24hours after surgery in the septic mice than the sham group. The apoptosis index of spleen cells was associated with the plasma level of IL-1β(r=0.976, P=0.024).
     Conclusions:
     In the early stage of sepsis, the apoptosis index of spleen cells and the plasma level of IL-10、TNF-α、IL-4and IL-β were significantly increased in the septic mice than the sham controls. The variation tendency of apoptosis index was similar with the plasma level of IL-10、TNF-α、IL-4and IL-β.In addition, the variation tendency of apoptosis index was consistent with the change of IL-1β.
     Part3Circulating Nucleosomes as a Predictor of Sepsis and Organ Dysfunction in Critically Ⅲ Patients
     Objectives:
     Sepsis is a leading cause of death in critically ill patients, and apoptosis plays a major role in the pathophysiology of sepsis. Elevated levels of circulating nucleosomes released by apoptotic cells have been detected in patients with severe sepsis and septic shock. The aim of this study was to evaluate the diagnostic/prognostic value of circulating nucleosomes in sepsis.
     Methods:
     Seventy-four newly admitted patients who were estimated to stay for more than48hours in intensive care unit were prospectively enrolled as Cohort1. The second independent cohort consisted of91post-surgery patients. Patients with chemotherapy, AIDS, steroids treatment, or transplants were excluded. Levels of circulating nucleosomes within24-hour of admission in both of the cohorts, and on the3rd,5th,7th day and a last time-point at ICU discharge or at imminent death in Cohort1were measured and analyzed for the capacity of predicting sepsis. Severity of inflammatory response and organ dysfunction was assessed by cytokine levels and sepsis scores.
     Results:
     The nucleosomes levels on admission in septic patients were significantly higher than those in non-septic controls in both of the cohorts. The area under the receiver-operating-characteristic curve for admission nucleosomes levels to differentiate the septic patients from non-septic patients was0.70(95%confidence interval [CI]0.59-0.83) in Cohort1and0.66(95%CI0.51-0.81) in Cohort2, and0.67(95%CI0.55-0.79) in all of the subjects. After multiple logistic regression analysis, circulating nucleosomes remained as an independent predictor for sepsis. Furthermore, the levels of circulating nucleosomes on admission were significantly correlated with the inflammatory response and organ dysfunction in sepsis. Meanwhile, a trend that the admission levels of circulating nucleosomes in non-survivors were higher than those in survivors was observed.
     Conclusions:
     Serum circulating nucleosomes has a predictive value for sepsis and organ dysfunction, and may serve as a candidate biomarker for diagnosis/prognosis of sepsis. Further studies are warranted to confirm the present findings.
     Sepsis, a systemic inflammatory reaction to infections, is associated with substantial morbidity and mortality. During the infection, the innate immune response plays a crucial role in satisfactory host resolution of infection. As we know, neutrophils are important effector cells in the immune system's arsenal against invading pathogens. In addition to the phagocytosis and killing microbes upon phagolysosomal fusion, activated neutrophils release granule proteins and chromatin to form fibres called neutrophil extracellular traps (NETs). NETs are abundant at inflammatory sites and can efficiently bind, engulf, and kill both Gram-positive and Gram-negative bacteria, fungi and parasites extracellularly. Interestingly, some pathogens are captured, but not killed in NETs through DNases damaging the structure of the NETs as well as an antiphagocytic capsule. During sepsis, both neutrophils and platelets are actived, and together they cooperate to fomating NETs, which trapping bacterials in the vasculature and also inducing damage in tissue.
引文
[1]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/ Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [2]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31:1250-1256
    [3]Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303-1310
    [4]Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546-1554
    [5]Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med 2007; 35:2538-2546
    [6]Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34:344-353
    [7]Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock:2008. Crit Care Med 2008; 36:296-327
    [8]Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345:1368-1377
    [9]Huang DT, Clermont G, Dremsizov TT, et al. Implementation of early goal-directed therapy for severe sepsis and septic shock:A decision analysis. Crit Care Med 2007; 35:2090-2100
    [10]Pearse R, Dawson D, Fawcett J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 2005; 9:R687-693
    [11]Puskarich MA, Marchick MR, Kline JA, et al. One year mortality of patients treated with an emergency department based early goal directed therapy protocol for severe sepsis and septic shock:a before and after study. Crit Care 2009; 13:R167
    [12]Rivers EP. Early goal-directed therapy in severe sepsis and septic shock: converting science to reality. Chest 2006; 129:217-218
    [13]Wolf SJ, Tebb ZD, Byyny RL. Clinical effectiveness and early goal-directed therapy for severe sepsis and septic shock. Chest 2008; 133:584; author reply 584-585
    [14]Levy MM, Dellinger RP, Townsend SR, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 2010; 38:367-374
    [15]Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients:results of a three-year follow-up quasi-experimental study. Crit Care Med 2010; 38:1036-1043
    [16]Dernaika TA, Kinasewitz GT. Life after sepsis:Quantity, quality, or both? Crit Care Med 2009; 37:1495-1496
    [17]Vincent JL. Endpoints in sepsis trials:more than just 28-day mortality? Crit Care Med 2004; 32:S209-213
    [18]Angus DC, Carlet J. Surviving intensive care:a report from the 2002 Brussels Roundtable. Intensive Care Med 2003; 29:368-377
    [19]Dowdy DW, Eid MP, Dennison CR, et al. Quality of life after acute respiratory distress syndrome:a meta-analysis. Intensive Care Med 2006; 32:1115-1124
    [20]Granja C, Dias C, Costa-Pereira A, et al. Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness. Crit Care 2004; 8:R91-98
    [21]Heyland DK, Hopman W, Coo H, et al. Long-term health-related quality of life in survivors of sepsis. Short Form 36:a valid and reliable measure of health-related quality of life. Crit Care Med 2000; 28:3599-3605
    [22]Hofhuis JG, Spronk PE, van Stel HF, et al. The impact of severe sepsis on health-related quality of life:a long-term follow-up study. Anesth Analg 2008; 107:1957-1964
    [23]Karlsson S, Ruokonen E, Varpula T, et al. Long-term outcome and quality-adjusted life years after severe sepsis. Crit Care Med 2009; 37:1268-1274
    [24]Korosec Jagodic H, Jagodic K, Podbregar M. Long-term outcome and quality of life of patients treated in surgical intensive care:a comparison between sepsis and trauma. Crit Care 2006; 10:R134
    [25]Xiang YT, Chiu HF, Ungvari GS. Quality of life and mental health in Chinese culture. Curr Opin Psychiatry 2010; 23:43-47
    [26]Myhren H, Ekeberg O, Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients:a 1-year follow-up study. Crit Care Med 2010; 38:1554-1561
    [27]Ringdal M, Plos K, Ortenwall P, et al. Memories and health-related quality of life after intensive care:a follow-up study. Crit Care Med 2010; 38:38-44
    [28]Garcia Lizana F, Peres Bota D, De Cubber M, et al. Long-term outcome in ICU patients:what about quality of life? Intensive Care Med 2003; 29:1286-1293
    [29]Ringdal M, Plos K, Lundberg D, et al. Outcome after injury:memories, health-related quality of life, anxiety, and symptoms of depression after intensive care. J Trauma 2009; 66:1226-1233
    [30]Scragg P, Jones A, Fauvel N. Psychological problems following ICU treatment. Anaesthesia 2001; 56:9-14
    [31]Fukuzuka K, Edwards CK,3rd, Clare-Salzler M, et al. Glucocorticoid-induced, caspase-dependent organ apoptosis early after burn injury. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1005-1018
    [32]Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+T lymphocytes in humans. J Immunol 2001; 166:6952-6963
    [33]Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348:138-150
    [34]盛志勇,姚咏明.加强对脓毒症免疫功能障碍及其检测的研究.解放军医学杂志2011;36:8-10
    [35]Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6:813-822
    [36]Oberholzer C, Oberholzer A, Bahjat FR, et al. Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis. Proc Natl Acad Sci U S A 2001; 98:11503-11508
    [37]Marshall JC, Reinhart K. Biomarkers of sepsis. Crit Care Med 2009; 37:2290-2298
    [38]Gibot S, Kolopp-Sarda MN, Bene MC, et al. Plasma level of a triggering receptor expressed on myeloid cells-1:its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 2004; 141:9-15
    [39]Meisner M, Tschaikowsky K, Palmaers T, et al. Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care 1999; 3:45-50
    [40]Reith HB, Mittelkotter U, Wagner R, et al. Procalcitonin (PCT) in patients with abdominal sepsis. Intensive Care Med 2000; 26 Suppl 2:S 165-169
    [41]Tsokos M, Reichelt U, Nierhaus A, et al. Serum procalcitonin (PCT):a valuable biochemical parameter for the post-mortem diagnosis of sepsis. Int J Legal Med 2001; 114:237-243
    [42]Holdenrieder S, Nagel D, Schalhorn A, et al. Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 2008; 1137:180-189
    [43]Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 2009; 46:1-24
    [44]Ward TH, Cummings J, Dean E, et al. Biomarkers of apoptosis. Br J Cancer 2008; 99:841-846
    [45]Geiger S, Holdenrieder S, Stieber P, et al. Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol 2007; 254:617-623
    [46]Lindau D, Decker P. Nph, DC and chromatin-mediated pathogenesis in systemic lupus erythematosus. Autoimmunity 2009; 42:254-256
    [47]Zeerleder S, Zwart B, Wuillemin WA, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med 2003; 31:1947-1951
    [1]Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546-1554
    [2]Haraldsen P, Andersson R. Quality of life, morbidity, and mortality after surgical intensive care:a follow-up study of patients treated for abdominal sepsis in the surgical intensive care unit. Eur J Surg Suppl 2003:23-27
    [3]Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34:344-353
    [4]Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med 2006; 173:256-263
    [5]Russell JA. Management of sepsis. N Engl J Med 2006; 355:1699-1713
    [6]Dernaika TA, Kinasewitz GT. Life after sepsis:Quantity, quality, or both? Crit Care Med 2009; 37:1495-1496
    [7]Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients:results of a three-year follow-up quasi-experimental study. Crit Care Med 2010; 38:1036-1043
    [8]Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med 2007; 35: 2538-2546
    [9]Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303-1310
    [10]Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348:138-150
    [11]Vincent JL. Endpoints in sepsis trials:more than just 28-day mortality? Crit Care Med 2004;32:S209-213
    [12]Angus DC, Carlet J. Surviving intensive care:a report from the 2002 Brussels Roundtable. Intensive Care Med 2003; 29:368-377
    [13]Winters BD, Eberlein M, Leung J, et al. Long-term mortality and quality of life in sepsis:a systematic review. Crit Care Med 2010; 38:1276-1283
    [14]Heyland DK, Hopman W, Coo H, et al. Long-term health-related quality of life in survivors of sepsis. Short Form 36:a valid and reliable measure of health-related quality of life. Crit Care Med 2000; 28:3599-3605
    [15]Karlsson S, Ruokonen E, Varpula T, et al. Long-term outcome and quality-adjusted life years after severe sepsis. Crit Care Med 2009; 37:1268-1274
    [16]Xiang YT, Chiu HF, Ungvari GS. Quality of life and mental health in Chinese culture. Curr Opin Psychiatry 2010; 23:43-47
    [17]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/ Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [18]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31:1250-1256
    [19]Knaus WA, Draper EA, Wagner DP, et al. APACHE Ⅱ:a severity of disease classification system. Crit Care Med 1985; 13:818-829
    [20]Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286:1754-1758
    [21]Zung WW. A rating instrument for anxiety disorders. Psychosomatics 1971; 12:371-379
    [22]Zung WW. A Self-Rating Depression Scale. Arch Gen Psychiatry 1965; 12:63-70
    [23]Chrispin PS, Scotton H, Rogers J, et al. Short Form 36 in the intensive care unit: assessment of acceptability, reliability and validity of the questionnaire. Anaesthesia 1997; 52:15-23
    [24]McHorney CA, Ware JE, Jr., Lu JF, et al. The MOS 36-item Short-Form Health Survey (SF-36):III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care 1994; 32:40-66
    [25]Li L, Wang HM, Shen Y. Chinese SF-36 Health Survey:translation, cultural adaptation, validation, and normalisation. J Epidemiol Community Health 2003; 57:259-263
    [26]Lawton MP, Brody EM. Assessment of older people:self-maintaining and instrumental activities of daily living. Gerontologist 1969; 9:179-186
    [27]Granja C, Dias C, Costa-Pereira A, et al. Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness. Crit Care 2004; 8:R91-98
    [28]Oeyen SG, Vandijck DM, Benoit DD, et al. Quality of life after intensive care:a systematic review of the literature. Crit Care Med 2010; 38:2386-2400
    [29]Davidson TA, Caldwell ES, Curtis JR, et al. Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA 1999; 281:354-360
    [30]Myhren H, Ekeberg O, Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients:a 1-year follow-up study. Crit Care Med 2010; 38:1554-1561
    [31]Skinner EH, Warrillow S, Denehy L. Health-related quality of life in Australian survivors of critical illness. Crit Care Med 2011; 39:1896-1905
    [32]Hofhuis JG, Spronk PE, van Stel HF, et al. The impact of severe sepsis on health-related quality of life:a long-term follow-up study. Anesth Analg 2008; 107:1957-1964
    [33]Hofhuis JG, van Stel HF, Schrijvers AJ, et al. Health-related quality of life in critically ill patients:how to score and what is the clinical impact? Curr Opin Crit Care 2009; 15:425-430
    [34]Korosec Jagodic H, Jagodic K, Podbregar M. Long-term outcome and quality of life of patients treated in surgical intensive care:a comparison between sepsis and trauma. Crit Care 2006; 10:R134
    [35]Cuthbertson BH, Roughton S, Jenkinson D, et al. Quality of life in the five years after intensive care:a cohort study. Crit Care 2010; 14:R6
    [36]Dowdy DW, Eid MP, Sedrakyan A, et al. Quality of life in adult survivors of critical illness:a systematic review of the literature. Intensive Care Med 2005; 31:611-620
    [37]Eddleston JM, White P, Guthrie E. Survival, morbidity, and quality of life after discharge from intensive care. Crit Care Med 2000; 28:2293-2299
    [38]Mirabel M, Luyt CE, Leprince P, et al. Outcomes, long-term quality of life, and psychologic assessment of fulminant myocarditis patients rescued by mechanical circulatory support. Crit Care Med 2011; 39:1029-1035
    [39]Ringdal M, Plos K, Ortenwall P, et al. Memories and health-related quality of life after intensive care:a follow-up study. Crit Care Med 2010; 38:38-44
    [40]Garcia Lizana F, Peres Bota D, De Cubber M, et al. Long-term outcome in ICU patients:what about quality of life? Intensive Care Med 2003; 29:1286-1293
    [1]Fukuzuka K, Edwards CK,3rd, Clare-Salzler M, et al. Glucocorticoid-induced, caspase-dependent organ apoptosis early after burn injury. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1005-1018
    [2]Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+T lymphocytes in humans. J Immunol 2001; 166:6952-6963
    [3]Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348:138-150
    [4]Efron PA, Tinsley K, Minnich DJ, et al. Increased lymphoid tissue apoptosis in baboons with bacteremic shock. Shock 2004; 21:566-571
    [5]Schmidt MV, Paulus P, Kuhn AM, et al. Peroxisome proliferator-activated receptor gamma-induced T cell apoptosis reduces survival during polymicrobial sepsis. Am J Respir Crit Care Med 2010; 184:64-74
    [6]Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 2009; 4:31-36
    [7]Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis:setting the stage. Nat Rev Drug Discov 2005; 4:854-865
    [8]Deitch EA. Animal models of sepsis and shock:a review and lessons learned. Shock 1998; 9:1-11
    [9]Schultz MJ, van der Poll T. Animal and human models for sepsis. Ann Med 2002; 34:573-581
    [10]Lustig MK, Bac VH, Pavlovic D, et al. Colon ascendens stent peritonitis梐 model of sepsis adopted to the rat:physiological, microcirculatory and laboratory changes. Shock 2007; 28:59-64
    [11]Maier S, Traeger T, Entleutner M, et al. Cecal ligation and puncture versus colon ascendens stent peritonitis:two distinct animal models for polymicrobial sepsis. Shock 2004; 21:505-511
    [12]Remick D, Manohar P, Bolgos G, et al. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock 1995; 4:89-95
    [13]Bone RC. Sepsis and controlled clinical trials:the odyssey continues. Crit Care Med 1995; 23:1313-1315
    [14]Bone RC. Sepsis, sepsis syndrome, and the systemic inflammatory response syndrome (SIRS). Gulliver in Laputa. JAMA 1995; 273:155-156
    [15]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [16]Bone RC, Grodzin CJ, Balk RA. Sepsis:a new hypothesis for pathogenesis of the disease process. Chest 1997; 112:235-243
    [17]Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6:813-822
    [18]Hotchkiss RS, Chang KC, Swanson PE, et al. Caspase inhibitors improve survival in sepsis:a critical role of the lymphocyte. Nat Immunol 2000; 1:496-501
    [19]Hotchkiss RS, Chang KC, Grayson MH, et al. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci U S A 2003; 100:6724-6729
    [20]Bommhardt U, Chang KC, Swanson PE, et al. Akt decreases lymphocyte apoptosis and improves survival in sepsis. J Immunol 2004; 172:7583-7591
    [21]Schwulst SJ, Muenzer JT, Peck-Palmer OM, et al. Bim siRNA decreases lymphocyte apoptosis and improves survival in sepsis. Shock 2008; 30:127-134
    [22]Coopersmith CM, Stromberg PE, Dunne WM, et al. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 2002; 287:1716-1721
    [23]Iwata A, de Claro RA, Morgan-Stevenson VL, et al. Extracellular administration of BCL2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One 2011; 6:e14729
    [24]Annane D, Cavaillon JM. Corticosteroids in sepsis:from bench to bedside? Shock 2003; 20:197-207
    [25]Cohen SB, Crawley JB, Kahan MC, et al. Interleukin-10 rescues T cells from apoptotic cell death:association with an upregulation of Bcl-2. Immunology 1997; 92:1-5
    [26]Oberholzer C, Oberholzer A, Bahjat FR, et al. Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis. Proc Natl Acad Sci U S A 2001; 98:11503-11508
    [27]Keel M, Ungethum U, Steckholzer U, et al. Interleukin-10 counterregulates proinfiammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 1997; 90:3356-3363
    [1]Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004; 32:858-873
    [2]Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348:138-150
    [3]Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008; 8:776-787
    [4]Jacobi J. Pathophysiology of sepsis. Am J Health Syst Pharm 2002; 59 Suppl 1:S3-8
    [5]Russell JA. Management of sepsis. N Engl J Med 2006; 355:1699-1713
    [6]Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med 2007; 35:2538-2546
    [7]Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546-1554
    [8]Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34:344-353
    [9]Marshall JC, Reinhart K. Biomarkers of sepsis. Crit Care Med 2009; 37:2290-2298
    [10]Meisner M, Tschaikowsky K, Palmaers T, et al. Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care 1999; 3:45-50
    [11]Reith H B, Mittelkotter U, Wagner R, et al. Procalcitonin (PCT) in patients with abdominal sepsis. Intensive Care Med 2000; 26 Suppl 2:S165-169
    [12]Tsokos M, Reichelt U, Nierhaus A, et al. Serum procalcitonin (PCT):a valuable biochemical parameter for the post-mortem diagnosis of sepsis. Int J Legal Med 2001; 114:237-243
    [13]Gibot S, Kolopp-Sarda MN, Bene MC, et al. Plasma level of a triggering receptor expressed on myeloid cells-1:its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 2004; 141:9-15
    [14]Holdenrieder S, Nagel D, Schalhorn A, et al. Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 2008; 1137:180-189
    [15]Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 2009; 46:1-24
    [16]Zeerleder S, Zwart B, Wuillemin WA, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med 2003; 31:1947-1951
    [17]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [18]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31:1250-1256
    [19]Knaus WA, Draper EA, Wagner DP, et al. APACHE II:a severity of disease classification system. Crit Care Med 1985; 13:818-829
    [20]Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286:1754-1758
    [21]Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. N Engl J Med 2009; 361:1570-1583
    [22]Hotchkiss RS, Tinsley KW, Swanson PE, et al. Endothelial cell apoptosis in sepsis. Crit Care Med 2002; 30:S225-228
    [23]Hotchkiss RS, Swanson PE, Cobb JP, et al. Apoptosis in lymphoid and parenchymal cells during sepsis:findings in normal and T-and B-cell-deficient mice. Crit Care Med 1997; 25:1298-1307
    [24]Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6:813-822
    [25]Coopersmith CM, Stromberg PE, Dunne WM, et al. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 2002; 287:1716-1721
    [26]Ward TH, Cummings J, Dean E, et al. Biomarkers of apoptosis. Br J Cancer 2008; 99:841-846
    [27]Holdenrieder S, Stieber P, Chan LY, et al. Cell-free DNA in serum and plasma: comparison of ELISA and quantitative PCR. Clin Chem 2005; 51:1544-1546
    [28]Antonelli M, Azoulay E, Bonten M, et al. Year in review in Intensive Care Medicine 2009:I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control. Intensive Care Med; 36:196-209
    [29]Bouchon A, Dietrich J, Colonna M. Cutting edge:inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164:4991-4995
    [30]Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol 2006; 7:1266-1273
    [31]Gibot S, Cravoisy A, Kolopp-Sarda MN, et al. Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)-1, procalcitonin, and C-reactive protein plasma concentrations during sepsis. Crit Care Med 2005; 33:792-796
    [32]Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001; 410:1103-1107
    [33]Castelli GP, Pognani C, Meisner M, et al. Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care 2004; 8:R234-242
    [34]Meynaar IA, Droog W, Batstra M, et al. In Critically Ill Patients, Serum Procalcitonin Is More Useful in Differentiating between Sepsis and SIRS than CRP,11-6, or LBP. Crit Care Res Pract 2011; 2011:594645
    [35]Rey C, Los Arcos M, Concha A, et al. Procalcitonin and C-reactive protein as markers of systemic inflammatory response syndrome severity in critically ill children. Intensive Care Med 2007; 33:477-484
    [36]Luzzani A, Polati E, Dorizzi R, et al. Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med 2003; 31:1737-1741
    [37]Rhodes A, Wort SJ, Thomas H, et al. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care 2006; 10:R60
    [38]Saukkonen K, Lakkisto P, Pettila V, et al. Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem 2008; 54:1000-1007
    [39]Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13:463-469
    [40]Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15:1318-1321
    [1]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/ Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [2]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31:1250-1256
    [3]Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303-1310
    [4]Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546-1554
    [5]Nathan C. Neutrophils and immunity:challenges and opportunities. Nat Rev Immunol 2006; 6:173-182
    [6]Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005; 23:197-223
    [7]Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303:1532-1535
    [8]Krautgartner WD, Vitkov L. Visualization of neutrophil extracellular traps in TEM. Micron 2008; 39:367-372
    [9]Kessenbrock K, Krumbholz M, Schonermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15:623-625
    [10]Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009; 5:el000639
    [11]Jaillon S, Peri G, Delneste Y, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med 2007; 204:793-804
    [12]Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13:463-469
    [13]Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176:231-241
    [14]Gupta AK, Hasler P, Holzgreve W, et al. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol 2005; 66:1146-1154
    [15]Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 2004; 279:44123-44132
    [16]Urban C, Zychlinsky A. Netting bacteria in sepsis. Nat Med 2007; 13:403-404
    [17]Urban CF, Lourido S, Zychlinsky A. How do microbes evade neutrophil killing? Cell Microbiol 2006; 8:1687-1696
    [18]Lippolis JD, Reinhardt TA, Goff JP, et al. Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet Immunol Immunopathol 2006; 113:248-255
    [19]Gupta AK, Joshi MB, Philippova M, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584:3193-3197
    [20]Patel S, Kumar S, Jyoti A, et al. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 2010; 22:226-234
    [21]Abi Abdallah DS, Lin C, Ball CJ, et al. Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps. Infect Immun 2012; 80:768-777
    [22]Juneau RA, Pang B, Weimer KE, et al. Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps. Infect Immun 2011; 79: 431-438
    [23]Wartha F, Beiter K, Normark S, et al. Neutrophil extracellular traps:casting the NET over pathogenesis. Curr Opin Microbiol 2007; 10:52-56
    [24]Kraemer BF, Campbell RA, Schwertz H, et al. Novel anti-bacterial activities of beta-defensin 1 in human platelets:suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7:el 002355
    [25]Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185:7413-7425
    [26]Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE 2007; 2007:pell
    [27]Brinkmann V, Zychlinsky A. Beneficial suicide:why neutrophils die to make NETs. Nat Rev Microbiol 2007; 5:577-582
    [28]Medina E. Neutrophil extracellular traps:a strategic tactic to defeat pathogens with potential consequences for the host. J Innate Immun 2009; 1:176-180
    [29]Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011; 21: 290-304
    [30]Lim MB, Kuiper JW, Katchky A, et al. Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol 2011; 90:771-776
    [31]Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2011; 7:75-77
    [32]Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16:1438-1444
    [33]Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation:implications for innate immunity. Blood 2011; 117:953-959
    [34]Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191:677-691
    [35]Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184:205-213
    [36]Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207: 1853-1862
    [37]Buchanan JT, Simpson AJ, Aziz RK, et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006; 16:396-400
    [38]Urban CF, Reichard U, Brinkmann V, et al. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 2006; 8:668-676
    [39]Guimaraes-Costa AB, Nascimento MT, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 2009
    [40]Gupta A, Hasler P, Gebhardt S, et al. Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia:a link with elevated levels of cell-free DNA? Ann NY Acad Sci 2006; 1075:118-122
    [41]Beiter K, Wartha F, Albiger B, et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 2006; 16:401-407
    [42]Wartha F, Beiter K, Albiger B, et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 2007; 9:1162-1171
    [43]Sumby P, Barbian KD, Gardner DJ, et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 2005; 102:1679-1684
    [44]Walker MJ, Hollands A, Sanderson-Smith ML, et al. DNase Sdal provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med2007; 13:981-985
    [45]Brans S, Kniemeyer O, Hasenberg M, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 2010; 6:el000873
    [46]Gabriel C, McMaster WR, Girard D, et al. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol 2010; 185:4319-4327
    [47]Papayannopoulos V, Zychlinsky A. NETs:a new strategy for using old weapons. Trends Immunol 2009; 30:513-521
    [48]Russell JA. Management of sepsis. N Engl J Med 2006; 355:1699-1713
    [49]Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med 2006; 173:256-263
    [50]Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 2008; 6:415-420
    [51]Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21:99-111
    [52]Lalor P, Nash GB. Adhesion of flowing leucocytes to immobilized platelets. Br J Haematol 1995; 89:725-732
    [53]Wang Y, Rosen H, Madtes DK, et al. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue:an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem 2007; 282:31826-31834

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700