PAS-Na对锰暴露大鼠基底核GABA能神经递质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰(Mn)是人体必需微量元素,是某些正常细胞动态平衡金属酶的必需辅酶。然而,长期吸入较高浓度的锰烟尘可引起中毒,出现帕金森病(PD)样临床表现。磁共振成像(MRI)和氢质子磁共振波谱(1H-MRS)研究发现,锰暴露工人苍白球锰蓄积明显,丘脑及其邻近基底核GABA-感兴趣区(VOI)γ-氨基丁酸(GABA)水平明显升高。锰暴露可改变动物纹状体及其所在基底核的GABA浓度改变,改变脑内GAD、GABA-T活性及GABA受体与转运载体的mRNA及蛋白表达。我室的较早系列研究显示,对氨基水杨酸钠(PAS-Na)有促排锰作用,可使染锰4周的大鼠轻度受损的神经细胞病理改变恢复正常,PAS-Na对锰致海马神经元损害有拮抗作用。广西医科大学纪淑琴等率先在临床上应用PAS-Na治疗锰中毒患者取得较好疗效(临床表现基本恢复正常或改善、尿锰排泄增加、不良反应较少等),贵州、江西、包头、上海和重庆也有类似的临床报道。但是,PAS-Na防治锰中毒机制尚未清楚。因此,本研究旨在探讨PAS-Na对短期及亚慢性锰暴露大鼠GABA能神经元损伤是否有拮抗作用,以期为锰中毒防治提供科学依据。
     目的:探讨PAS-Na对短期及亚慢性锰暴露大鼠生长发育、学习记忆、基底核超微结构、GABA能神经递质及其有关代谢过程的影响。
     材料与方法:
     1.动物分组及处理:雄性SD大鼠适应性喂养1周后,①短期实验:随机分为染锰组、低、高剂量PAS-Na (L-、H-PAS)治疗组和正常对照组(对照组),共4组。观察期为7周(染锰4周+PAS治疗3周)或10周(染锰4周+PAS治疗6周),每期每组15只大鼠(后同)。染锰、PAS治疗组腹腔注射(ip) MnCl2·4H2015mg/kg,对照组ip等容量生理盐水,每日1次,每周5天,连续4周。然后,PAS治疗组大鼠背部皮下注射(sc)PAS-Na100或200mg/kg,其余组背部sc等容量生理盐水,每日1次,连续3周或6周。②亚慢性实验:随机分为对照、染锰、PAS-Na预防性干预(预防组)和低、中、高剂量PAS-Na (L-、M-、H-PAS)治疗组,观察期为4、8、12、18周。给染锰、预防、PAS治疗组ip MnCl2·4H2015mg/kg,对照组ip等容量生理盐水,每日1次,每周5天,连续4、8、12周,其中预防组在染锰的同时,每天背部sc PAS-Na200mg/kg(每周3天),连续8、12周。然后,给L-、M-、H-PAS治疗组分别sc PAS-Na100、200、300mg/kg,其余组背部sc等容量生理盐水,每日1次,连续6周。
     2.实验指标测定:①生长发育指标检测:每周末称动物体重1次;实验结束时,处死动物,取心、肝、脾、肺、肾、睾丸等脏器,并称其重量,算其脏体比;②学习记忆能力检测:实验结束前1周,每组10只动物进行Morris水迷宫实验以测试其学习记忆能力改变;③基底核超微结构观察:实验结束时,每组取5只动物进行2%多聚甲醛、2.5%戊二醛混合固定液经心脏内灌注固定,后分离基底核,进行透射电镜观察基底核超微结构改变;④GABA能神经递质改变检测:实验结束时,每组取10只动物,处死动物,取基底核迅速于液氮速冻,并于-80℃冰箱保存,高效液相色谱荧光检测法检测GABA、Glu、Gln、Gly氨基酸类神经递质含量,高效液相色谱法及荧光分光光度计法检测其GAD与GABA-T活性;实时荧光定量PCR(RT-PCR)与蛋白免疫印迹(WB)检测GABA转运载体(GAT-1)及GABA受体(GABAAR) mRNA与蛋白表达。
     结果:
     1. PAS-Na对锰暴露大鼠生长发育的影响
     (1)锰暴露第一至第四周、第八周、第十周,大鼠体重比对照组轻,差异具统计学意义;预防组大鼠在第一致第三周较染锰组重,差异具统计学意义。
     (2)观察期4周,染锰组脾脏与睾丸脏体比比对照组大,差异具统计学意义;观察期8周,染锰组脾脏脏体比比对照组大,差异具统计学意义;观察期12周,染锰组脾脏与肝脏脏体比比对着组大,预防组脾脏与肝脏脏体比比染锰组小,差异均具统计学意义;观察期18周,L-与H-PAS组肝脏脏体比比染锰组小,脾脏脏体比比染锰组大,差异均具统计学意义。
     2. PAS-Na对锰暴露大鼠学习记忆能力的影响
     (1)学习能力的影响:在观察期4、10、12、18周,染锰组大鼠的逃避潜伏期和或游泳路程均比对照长。锰暴露4或12周后,给予PAS-Na为期6周的治疗,各治疗剂量组均可恢复锰暴露所延长了的逃避潜伏期及游泳路程。
     (2)记忆能力的影响:观察期7周,染锰大鼠平台所在象限时间或路程除总时间或路程均比对照组长;高-PAS组平台所在象限时间或路程除总时间或路程均比染锰组短。观察期8周,平台所在象限时间或路程除总时间或路程染锰组与对照比较减少,PAS-Na预防组与染锰组比较增多。
     3. PAS-Na对锰暴露大鼠基底核超微结构的影响:短期或亚慢性锰暴露可损伤大鼠脑基底核的神经元、神经毡及星形胶质细胞,使得其神经元出现变性、凋亡及坏死等现象,神经元树突、轴突终末肿胀,星形胶质细胞增生、凋亡退变,且随染锰期限的延长,其损伤越发严重;此外,即使终止染锰这些损伤仍在继续,且随时间的延长而越发严重。与锰中毒病人的临床表现相一致。PAS-Na对染锰大鼠所致的基底核改变都有一定的拮抗作用,会使得神经元变性、凋亡、坏死现象得到好转,突触间隙重变清晰,但对于染锰12周大鼠的基底核改变,改善作用不是特别明显。
     4. PAS-Na对锰暴露大鼠基底核GABA能神经递质的影响
     (1)短期及亚慢性锰暴露对大鼠基底核GABA能神经递质的影响:观察期4周,Glu、Gln与GABA含量,GAD活性及GABAAR mRNA表达均升高。观察期7周,Gly含量减少,GABAAR蛋白表达升高;观察期10周,Glu、Gln与Gly含量,GABAAR与GAT-1mRNA表达均降低。观察期8周,Glu/GABA比值及GABAAR mRNA表达均降低。观察期12周,GABA-T活性及GABAAR蛋白表达升高;观察期18周,基底核Glu、Gln、与GABA含量及GABAAR mRNA表达均降低,而GAD与GABA-T活性及GAT-1mRNA表达均升高。
     (2)PAS-Na对短期及亚慢性锰暴露大鼠基底核GABA能神经递质的预防或治疗效果:①治疗效果观察:观察期10周,L-PAS与H-PAS组的Glu、Gln含量及GAT-1mRNA表达与H-PAS组Gly含量比染锰组升高;观察期18周,M-PAS及H-PAS组的GAD活性与H-PAS组的GABA-T活性及GAT-1mRNA表达降低。②预防效果观察:观察期8周,预防组的Glu/GABA比值与GABAAR mRNA表达比染锰组升高;观察期12周,预防组的GABAAR蛋白表达比染锰组降低。
     结论:
     (1)短期及亚慢性锰暴露使大鼠生长发育迟缓,体重增加较少,脾脏、睾丸及肝脏脏器系数增加,提示锰具生长发育及器官整体毒性,PAS-Na对锰所致的生长发育及器官整体毒性具一定拮抗作用。
     (2)短期及亚慢性锰暴露均可影响大鼠的学习能力,其记忆功能的改变仅出现在亚慢性的锰暴露。PAS-Na治疗或预防均可拮抗锰暴露所致的学习及记忆功能改变。
     (3)短期及亚慢性锰暴露均可对大鼠基底核超微结构产生影响,PAS-Na预防和/或治疗对其病理改变具有一定的拮抗作用,使其改变得到一定的恢复,表现为早期治疗效果较佳,且预防效果优于治疗效果。
     (4)短期及亚慢性锰暴露对大鼠基底核Glu、Gln、Gly与GABA含量,GAD与GABA-T活性,GABAAR mRNA与蛋白表达及GAT-1mRNA表达均有影响。PAS-Na预防及治疗对不同期限锰暴露所致的以上改变均有一定的拮抗作用,PAS-Na对亚慢性锰暴露致GABAAR mRNA或蛋白表达改变有预防性干预作用,对锰致大鼠基底核Glu、Gln及Gly含量、GAD活性与GAT-1mRNA表达改变有治疗性干预作用。
Manganese (Mn) is a naturally occurring element that is an essential nutrient, and cofactor for certain metalloenzymes required for normal cellular homeostasis. Although Mn consumption is necessary in humans, excessive exposure is associated with body's adverse effects, in especial the psychiatric, cognitive, and motor adverse effects. Magnetic resonance imaging studies are in agreement that Mn accumulates to a large extent in the globus pallidus. The globus pallidus and related basal ganglia structures have therefore been a focus of the preponderance of the research efforts on Mn neurotoxicity. it is now believed that the GABAergic system is probably perturbed first in the etiology of manganism. Several reports have linked Mn exposure to decrease or increase in the concentration of brain GABA.Addressing a need for a mechanism to explain the apparent reduction in GABA concentration. Reported decreases in overall brain Glu decarboxylase (GAD) and GABA-transaminase (GABA-T) levels subsequent to intraperitoneal injections of MnCl2, and alterations in expression of GABA transport and receptor proteins.
     Sodium para-aminosalicylic acid (PAS-Na) is effective in reducing Mn concentrations in body fluids and brain to physiological level, thus acting as a Mn-chelating agent. In clinical studies and obtained animal studies have found that the PAS-Na can get rid of brain manganese, repair manganese-induced brain damage and ultrastructural changes, the body's enzymes returned to normal, the antagonistic manganese-induced learning and memory changes, oxidative stress change, neural microfilament protein(NF) positive cells of the dentate gyrus granulosa cells and the glial fiber acid protein (GFAP) positive in the hippocampus.Meanwhile the PAS-Na used in the treatment of clinical manganism patients were also found in patients with a variety of symptoms and signs such asneurasthenic symptoms, eyes closed, elite refers to nose test, refer to the test write barriers have improved markedly, and the efficacy of the consolidation of follow-up after17years of clinical effect is still good. However,The mechanism of PAS-Na for manganese exposure caused the GABAergic damage still unknowed. This study intends to explore the intervention mechanism of PAS-Na exposed to manganese for the basal ganglia GABAergic by short-term and subchronic Mn exposed rats in vivo.
     [Objective] To study the role of sodium aminosalicylate (PAS-Na) on growthing development, learning and memory, the ultrastructure of the basal ganglia and the concentration of GAB A, activity of GAD and GABA-T, GABA A receptor (GABAAR) and GABA transporter (GAT) expression in basal ganglia of short-term and subchronic Mn exposed rats.
     [Methods and materials]
     (1) Animals grouping and exposure. Sprague-Dawley male rats received daily intraperitoneally (i.p.) injections of15mgMn/kg,5days/week for4weeks, followed by a daily subcutaneously (s.c.) dose of PAS-Na (100and200mg/kg as the PAS-L and PAS-H group, respectively) for another3or6weeks. Sprague-Dawley rats received daily i.p. injections of15mg Mn/kg,5days/week for4,8orl2weeks, followingby a daily s.c. dose of PAS-Na200mg/kg as the PAS-P group,3days/week at the same time for8and12weeks, followed by a daily s.c. dose of PAS-Na (100,200and300mg/kg as the PAS-L, PAS-M and PAS-H group, respectively) for another6weeks. the rest of the groups sc an equal volume of saline.
     (2) determination of indicators
     ①Growthing development indicators detection. Weighing the anminal weight one time every week. Obtaining the organ of heart, liver,spleen,lungs,kidneys,testis, and weighing the weight of them,than calculate its organ body ratio.②The learning and memory ability test. Before the anatomy, Morris water
     maze test lasting for6days was used to detect learning and memory ability of rats.③The Ultrastructural of the basal ganglia observation. The end of the
     experiment, five animals of each group perfused the mixed liquor of2%paraformaldehyde and2.5%glutaraldehyde through the heart, than separated the basal ganglia, observed ultrastructure changs by transmission electron microscopy④GABAergic neurotransmitters detection. At the end of the experiment,
     the animals were sacrificed to take the basal ganglia rapidly and froze in liquid nitrogen and stored at-80℃. To survey the content of GAB A, Glu, Gln and Gly by high performance liquid chromatography (HPLC) with fluorescence detection.To examine the activity of GAD and GABA-T by high performance liquid chromatography and fluorescence spec trophotometer detection.To probe the mRNA and protein expression of GABA transporters and GABA receptors (GABAAR) by real-time fluorescent quantitative PCR (RT-PCR) and Western blot (WB).
     [Results]
     1. Effects of PAS-Na to growthing development of Mn exposure rats.
     ①Weight gain changes. The weight of the rats in each group with time growthing in all of our experimental period. Manganese exposed rats growth slower than the control rats. From exposed to manganese to the fourth week, eighth and tenth week, the manganese exposed rats body weight growed signafiance slower than the control rats. The weight of preven rats growed signafiance faster than Mn exposure rats from the first to the third week. There are no no significant change in rats bod's weight by the remedy of PAS-Na after Mn exposure, have nothing to do with the length of the period of PAS-Na treatment and Mn exposure.
     ②The ratio of organ to body. Regardless of the length of period exposed to manganese, the rat showed the increasing of spleen quality. The rat exposed to manganese for4weeks, not only caused the increasesing of spleen quality but also the testis. When menganese exposure for12weeks, in addition to the spleen quality significantly increased, the quality of liver also significantly increased. Prevention with PAS-Na for12weeks to12weeks manganese-exposed rats, may recove the quality of liver and spleen. Treatment with L-PAS and H-PAS for6weeks to12weeks manganese-exposed may restore the liver body ratio.
     2. Effects of PAS-Na to learning and memory abilities of Mn exposure rats.
     ①The effect on learning capability.The rats whether exposed to Mn for4weeks,8weeks,12weeks or were Mn-exposed for4weeks then stop3weeks,6weeks and were Mn-exposed for12weeks then stop6weeks, their incubation period and swimming journey increased compare with control. The effects of PAS-Na on learning and memory capabilities in Mn-exposed rats Whether in exposed to Mn for4weeks then treated with PAS-Na for3weeks or6weeks,or were Mn-exposed and PAS-Na prevented at the same time for8weeks or12weeks,or exposed to Mn for12weeks then treated with PAS-Na for6weeks the incubation period and swimming journey were decreased.
     ②The effect on memory capability. The platform quadrant time or distance to total time or total distance ratio. With4weeks of Mn-expose then PAS treated for3weeks increased compare with control; contrary, in H-PAS group decreased compare with Mn-exposed rats. Mn-exposed and PAS-Na prevented at the same time for8weeks, the platform quadrant time or distance to total time or total distance ratio in Mn-exposed group rats decreased compare with control,and PAS-prevented group increased compare with Mn-exposed group rats.
     3. Effects of PAS-Na on basal ganglion ultrastructure of Mn-exposed rats.
     Short-term and subchronic Mn-exposed may induced basal ganglion damaged, neuropil, astroglia cells damaged. caused the neurons appeared degeneration, apoptosis and necrosis, that neurons dendritic and axon terminal swelling, astroglia cells appeared hyperplasia and apoptosis degeneration, and with the extension of Mn-expose, the damage become more serious. PAS-Na could against the alteration of basal ganglion in Mn-exposed rats, restored the degeneration, apoptosis and necrosis in neurons, synaptic cleft clear, but there was no significant in the basal ganglion of rats were exposed to Mn for12weeks.
     4. Effects of PAS-Na on GABAergic neurotransmitter in basal ganglion of Mn-exposed rats
     (1)The effects of Short-term and subchronic Mn-exposed on GABAergic neurotransmitters in basal ganglion. Mn-exposed for4weeks, the concentrations of Glu,Gln and GABA, the GAD activity and GABAAR mRNA expression significant increased in basal ganglion. Mn-exposed for4weeks and then stop for3weeks, the concentrations of Gly decreased and GABAAR protein expression increased significantly. When stop exposure to Mn for6weeks, the concentrations of Glu,Gln,Gly and GABAAR and GAT-1mRNA expression significant decreased. Mn-exposed for8weeks, the ratio of Glu/GABA and GABAAR mRNA expression decreased significantly. When stop exposure to Mn for12weeks, GABA-T activity and GABAAR protein expression increased, and stop Mn-exposed for6weeks, the concentrations of Glu,Gln,GABAand the expression of GABAAR mRNA decreased, and GAD and GABA-T activities, GAT-1mRNA expression increased.
     (2) The prevention and/or treatment effects on Short-term and subchronic Mn-exposed rats in basal ganglion.
     ①The effect of treatment with PAS-Na. After Mn-exposed for4weeks then used L-PAS and H-PAS treated for3weeks, the concentrations of Gly and GABAAR protein expression alterations no recovery. When for6weeks treatment, the changes of the concentrations of Glu, Glu and GAT-1mRNA protein expression were restored by L-PAS and H-PAS, H-PAS may returned the Gly concentration, but no effects on GABAAR mRNA expression no matter by L-PAS or H-PAS. When Mn-exposed for12weeks rats than treatment withL-PAS、M-PAS and H-PAS for6weeks, the alteration of GAD activity recovered by M-PAS and H-PAS, the alterations of GABA-T activity and GAT-1mRNA expression both restored by H-PAS,but Glu, Gln and GABA content and GABAAR protein expression did not recovered by any PAS-Na dose treatment.
     ②The effects of prevention with PAS-Na. Mn-exposed and PAS-Na prevented at the same time for8weeks, the changes of Glu/GABA ratio and GABAAR mRNA expression recovered. Mn-exposed and PAS-Na prevented at the same time for12weeks, the alter of GABAAR protein expression restored, but no the GABA-T activity.
     [Conclusion]
     (1) Short-term and subchronic Mn-exposed could lead to the slower growth of weight vs the control. Results showed that Mn has the growthing development toxicity. Prevention with PAS-Na in early period of manganese exposure, could restore the weight changing caused by manganese exposure.
     (2) Exposure manganese in short-term could affect the rat testes quality and the quality of the spleen, and in long-term exposure not only affect the spleen quality, but also the liver quality,l ead to its organ body ratio rising. The prevention of PAS-Na in organ quality changed caused by manganese exposure is good.
     (3) Short-term and subchronic manganese exposure all could affect the rat learning ability, and the memory fuction change only appeares in the long term period of manganese exposure. Treatment and prevention with PAS-Na for manganese exposure made an antagonism effect in learning and memory fuction.
     (4) Short-term and subchronic manganese exposure all could affect basal nuclear ultrastructure. Treatment and prevention with PAS-Na for manganese exposure made an antagonism effect in basal nuclear ultrastructure.And the treatment effect is better in the early period manganese exposure,the prevention effect better than the treatment.
     (5) Short-term and subchronic manganese exposure could affect the content of Glu, Gln, Gly and GAB A, GAD and GABA-T activity, GABAAR mRNA and protein expression and GAT-1mRNA in basal nuclear. Treatment and prevention with PAS-Na for manganese exposure made an antagonism effect in that alteration. PAS-Na plays a prevention effect in GABAAR mRNA or protein expression of subchronic Mn-exposed rats, and a treatment effect in the content of Glu, Gln and Gly, GAD and GABA-T activity and GAT-1mRNA expression of Mn-exposed rats.
引文
[1]Gerdin B, McCann E, Lundberg C, et al. Selective tissue accumulation of manganese and its effect on regional blood flow and haemodynamics after intravenous infusion of its chloride salt in the rat[J]. Int J Tissue React.1985,7 (5):373-80.
    [2]Aschner M. Manganese homeostasis in the CNS[J]. Environ Res. 1999,80(2 Pt 1):105-109.
    [3]Josephs KA, Ahlskog J E, Klos K J, et al. Neurologic manifestations in welders with pallidal MRI T1 hyperintensity[J]. Neurology. 2005,64(12):2033-9.
    [4]王旭霞,英霞,方芳,等.外源性锰在大鼠脑内选择性沉积的磁共振成像研究[J].中国医学影像技术,2006,22(10):1538—1542.
    [5]Hill J M, Switzer R C 3rd. The regional distribution and cellular localization of iron in the rat brain[J]. Neuroscience. 1984,11(3):595-603.
    [6]Scheuhammer A M, Cherian MG. The influence of manganese on the distribution of essential trace elements. I. Regional distribution of Mn, Na, K, Mg, Zn, Fe, and Cu in rat brain after chronic Mn exposure[J]. oxicol Appl Pharmacol.1981,61 (2):227-33.
    [7]Cowan D M, Zheng W, Zou Y, et al. Manganese exposure among smelting workers:relationship between blood manganese-iron ratio and early onset neurobehavioral alterations [J]. Neurotoxicology. 2009,30(6):1214-22.
    [8]Lucchini R G, Martin C J, Doney B C. From manganism to manganese-induced parkinsonism:a conceptual model based on the evolution of exposure[J]. Neuromolecular Med.2009;11 (4):311-21.
    [9]JEffrey G P, Battaglia M M. Metabotropic glutamate receptors in the basal ganglia motor circuit [J]. Nature Rev Neuroscience,2005, (6):787-798.
    [10]Kaeser M, Wyss A F, Bashir A S, et al. Effects of unilateral motor cortex lesion on ipsilesional hands reach and grasp performance in monkeys:relationship with recovery in the contralesional hand[J]. J Neurophysiol,2010,103(3):1630-1645.
    [11]侯莉娟,刘宏强,乔德才.纹状体神经细胞分型及其功能构建[J].中国临床康复,2004,8(10):1928-1929.
    [12]金梅,刘晓加,陆兵勋,等.基底神经节与皮层脑损害致汉语失写症对比研究[J].中国行为医学科学.2005,14(10):872-874.
    [13]刘晓加,金梅,昊湖炳,陆兵勋,尹文刚.基底神经节的书写功能[J].中国行为医学科学,2006,15(4):294—296.
    [14]刘晓加,戴蓉,邵明,等.基底节病变时语言障碍的书写特点[J].中国神经精神疾病杂志,2009,32(5):418-422.
    [15]宋瑗宏,高溪,李冬冬,等.偏侧帕金森病大鼠基底神经节亚区GABA能神经元的免疫组织化学研究[J].神经解剖学杂志.2002,18(3):232-234.
    [16]Fitsanakis V A, Au C,Erikson K M, et al. The effects of manganese on glutamate, dopamine and gamma-ami nobutyric acid regulation [J]. Neurochem Int.2006,48(6-7):426-33
    [17]Defazio G,Soleo L, Zefferino R, et al. Manganese toxicity in serumless dissociated mesencephalic and striatal primary culture. Brain Res Bull[J].1996;40(4):257-62
    [18]Gwiazda R H, Lee D, Sheridan J, et al. Low cumulative manganese exposure affects striatal GABA but not dopamine[J]. Neurotoxicology.2002,23 (1):69-76.
    [19]Burton N C, Schneider J S, Syversen T, et al. Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain[J]. Toxicol Sci,2009,111(1):131-139.
    [20]Fitasnakis V A, Aschner M. The importance of glutamate, glycine,and γ-aminibutyric acid transport and regulation in manganese, mercury and lead neurotoxicity[J]. Toxicol Appl Pharmacol,2005,204(3):343-354.
    [21]Gianutsos G,Murray M T. Alterations in brain dopamine and GABA following inorganic or organic manganese dministration[J]. Neurotoxicology,1982,3(3):75-81.
    [22]Lai J C, Minski M J, Chan A W, et al. Manganese mineral interactions in brain[J]. Neurotoxicology.1999,20(2-3):433-44.)
    [23]Gwiazda R H, Lee D, Sheridan J, Smith, D. R. Low cumulative manganese exposure affects striatal GABA but not dopamine[J]. Neurotoxicology.2002,23(1):69-76.
    [24]Lipe G W, Duhart H, Newport G D, et al. Effect of manganese on the concentration of amino acids in different regions of the rat brain [J]. J Environ Sci Health B.1999,34(1):119-32.
    [25]Reaney S H, Bench G, Smith D R. Brain accumulation and toxicity of Mn(II) and Mn(III) exposures [J]. Toxicol Sci. 2006,93(1):114-124.
    [26]Brouillet E P, Shinobu L, McGarvey U, et al. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism[J]. Exp Neurol.1993,120(1):89-94.
    [27]Seth P K, Hong J S, Kilts C D, et al. Alteration of cerebral neurotransmitter receptor function by exposure of rats to manganese [J]. Toxicol Lett.1981,9(3):247-54.
    [28]Zwingmann C, Leibfritz D,Hazell A S. Nmr spectroscopic analysis of regional brain energy metabolism in manganese neurotoxicity [J]. Glia.2007,55(15):1610-7.
    [29]Anderson JG, Fordahl SC, Cooney PT, et al. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain[J]. Neurotoxicol,2008,29 (6):1044-1053.
    [30]Chandra S V, Malhotra K M, Shukla G S. GABAergic neurochemistry in manganese exposed rats[J]. Acta Pharmacol Toxicol (Copenh). 1982,51(5):456-458.
    [31]Tomas-Camardiel M, Herrera A J, Venero J L, et al. Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats [J]. Brain Res Mol Brain Res.2002,103 (1-2):116-29.
    [32]Tandon SK, Chandra SV, Singh J, et al. Chelation in metal intoxication. Ⅰ. In vivo effect of chelating agents on liver and testis of manganese administered rats[J]. Environ Res 1975,9:18-25.
    [33]Crawford S, Davis K, Saddler C, et al.. The Ability of PAS, Acetylsalicylic Acid and Calcium Disodium EDTA to Protect Against the Toxic Effects of Manganese on Mitochondrial Respiration in Gill of Crassostrea virginica[J]. In Vivo.2011,33(1):7-14.
    [34]Santos A P, Lucas R L, Andrade V, et al. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity [J]. Toxicol Appl Pharmacol, 2012,258 (3):394-402.
    [35]Zheng W, Jiang YM, Zhang Y, et al. Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats[J]. Neurotoxicol,2009,30(2):240-248.
    [36]欧超燕,黄明立,姜岳明,罗海兰,邓祥发,王禅,等.对氨基水杨酸钠对染锰大鼠基底核氨基酸类神经递质的影响[J].中华预防医学杂志,2011,45(5):422—425.
    [37]吴飞盈,邓祥发,姜岳明,王芳,王禅,刘栩,等.PAS-Na对染锰大鼠学习记忆及海马神经微丝蛋白表达的影响[J].环境与职业医学,2011,28(1):29—31,34.
    [38]刘翃,罗海兰,钟祥海,邓祥发,吴飞盈,王禅,等.对氨基水杨酸钠对染锰大鼠学习记忆及海马GFAP阳性细胞表达的影响[J].工业卫生与职业病,2011,37(2):86—89.
    [39]Nelson M, Huggins T, Licorish R, et al. Effects of p Aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica [J]. Comp Biochem Physiol C Toxicol Pharmacol,2010,151(2):264-270.
    [40]Yoon H, Kim DS, Lee GH, et al. Protective effects of sodium para amino salicylate on manganese-induced neuronal death:the involvement of reactive oxygen species [J]. J Pharmacy Pharmacol, 2009,61(11):1563-1569.
    [41]Jiang YM, Mo XA, Du FQ, et al. Effective treatment of manganese-induced occupational parkinsonism with PAS-Na:A case of 17-year follow-up study[J]. J Occup Environ Med,2006,48(6): 644-649.
    [42]黄世文,郭松超,陆彩玲.牛磺酸对染锰大鼠海马神经毒性的影响[J].中国职业医学,2008,35(5):374-377.
    [43]姜岳明,葛利辉,陆继培,等.对氨基水杨酸钠对锰中毒大鼠体内锰、铜水平的影响[J].中国药理学与毒理学杂志,1992,6(3):185-188.
    [44]邓宇,徐兆发,田雅文,等.利鲁唑对氯化锰致大鼠神经兴奋毒性的影响[J].环境与健康杂志,2009,26(6):478-481.
    [45]钟华敏,李孜.锰接触对大鼠生长发育的毒性影响[J].热带医学杂志,2008,8(12):1213—1216.
    [46]吴燕明,张德兴,贺新红,陆志根.亚慢性饮水锰染毒对大鼠血液系统的影响[J],环境与健康杂志,2008,25(11):973-975.
    [47]刘军,陈爱敬,胡先勤,汪明,黄峰,荣克明.化合物对鲫鱼躯体生化组成、脏器指数及白细胞数目的影响[J].饲料工业,2009,30(24):34-37.
    [48]朱圣陶,傅春玲.某些营养素对短期染毒铅镉汞在小鼠体内分布的影响[J].工业卫生与职业病,2005,(5):307.
    [49]李国华,席小平,贾继峰,等.Wistar大鼠主要脏器系数与体重相关性的探讨[J].山西医药杂志,2005,34(8):661—662.
    [50]张瑞超,登攀,王加启,等.富共轭亚油酸乳脂对小鼠免疫特性的影响[J],中国畜牧兽医2006,33(6):30-32.
    [51]李积胜,汪超,王静,等.锰对大鼠海马神经微丝蛋白表达的影响[J]. 武警医学院学报,2000,9(4):236-238
    [52]谭国鹤,杨伯宁,谭国富,等.锰中毒对小鼠海马神经干细胞增殖的影响[J].中华劳动卫生职业病杂志,2007,25(5):282-285
    [53]张德兴,贺新红,黄绍明,等.锰中毒对新生小鼠脑发育的影响[J].卫生研究,2001,30(5):260-262.
    [54]薛丹,徐淑萍,刘进修,等.水迷宫实验中三种品系小鼠学习记忆能力的比较[J].中国实验动物学报,2010,18(2):149.
    [55]刘万里,薛茜,曹明芹,马金凤.用SPSS实现完全随机设计多组比较秩和检验的多重比较.地方病通报.2007,22(2):27—29.
    [56]朱道立.学习与记忆机制研究的简介[J].四川动物,1997,16(2):87—89.
    [57]黄鹏良,覃尚忠.关于记忆机制的探索[J].广西教育学院学报.1999,5:133-136.
    [58]陆彩玲,吴元桢,唐付华,等.牛磺酸对急性染锰大鼠空间学习记忆能力的改善作用[J].中国药理学与毒理学杂志,2011,25(3):254-257.
    [59]Rahul A, Ethika T, Rakesh S, et al. A study of brain insulin receptors, AChE actiivty and oxidative stress in rat model of ICV STZ induced dementia[J].Neuropharmacology,2009,56:779-787.
    [60]薛承景,李建民.学习和记忆研究的行为学方法论述[J].河北医药,2007,29(1):77—78.
    [61]封敏,卢圣锋,张承舜,余曙光.国内大鼠Morris水迷宫实验现状与分析[J].辽宁中医杂志,2011,38(11):2170-2172.
    [62]Charles V Vorhees, Michael T Williams. Morris water maze:procedures for assessing spatial and related foms of learning and memory [J]. Nature Protocols,2006,1(2):848-858.
    [63]邓祥发,陈海滨,姜岳明,等.PAS-Na对亚急性锰暴露大鼠学习记忆及海马超微结构的影响[J].毒理学杂志,2010,24(1):5-9.
    [64]Perl DP, Olanow CW. The Neuropathology of Manganese-Induced Parkinsonism[J]. J Neuropathol Exp Neurol,2007,66(8)675-682.
    [65]黄波,胡万达,纪淑琴,等.PAS-Na治疗锰中毒大鼠中枢神经系统病变的观察[J].中华劳动卫生职业病杂志,1994,12(4):205-208.
    [66]Aschner M, Erikson KM, Herrero Hernandez E, et al. Manganese and its role in Parkinson's disease:from transport to neuropathology [J]. Neuromolecular Med.2009,11(4):252-266.
    [67]唐竹吾主编.中枢神经系统解剖学[M].上海科学技术出版社,上海,1986:253-257.
    [68]陈立南,徐群渊.人及大鼠基底神经节的三维重构及形态比较[J].神经解剖学杂志,2000,16(3):217-221.
    [69]Dydak U, Jiang YM, Long LL, et al. In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese [J]. Environ Health Perspect,2011,119(2):219-24.
    [70]Bonilla E, Arrieta A, Castro F, et al. Manganese toxicity:free amino acids in the stiatum and olfactory bulb of the mouse [J]. Invest Clin,1994,35(4):175-181. PMID:7734520
    [71]朱夏燕,姜岳明,胡万达.对氨基水杨酸钠治疗锰中毒研究近况[J].环境与职业医学,2006,23(6):516-519.
    [72]桂莉,田洪,郑健,等.高效液相色谱荧光法同时测定小鼠脑组织中4种氨基酸类神经递质[J].第三军医大学学报,2009,31(8):675—678.
    [73]Takeda A, Sotogaku N, Oku N. Manganese influences the levels of neurotransmitters in synapses in rat brain[J]. Neuroscience. 2002,114(3):669-74.
    [74]Takeda A, Sotogaku N, Oku N. Influence of manganese on the release of neurotransmitters in rat striatum[J]. Brain Res. 2003,965(1-2):279-282.
    [75]Struve M F, McManus B E, Wong B A, et al. Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation[J]. Am J Ind Med. 2007,50 (10):772-778.
    [76]Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, et al. Roles of glutamine in neurotransmission[J]. Neuron Glia Biol.2011,1-14.
    [77]Xu B, Xu Z F, Deng Y. Manganese exposure alters the expression of N-methyl-D-aspartate receptor subunit mRNAs and proteins in rat striatum[J]. J Biochem Mol Toxicol.2010,24(1):1-9.
    [78]Garcia S J, Gellein K, Syversen T, Aschner M. A manganese-enhanced diet alters brain metals and transporters in the developing rat[J]. Toxicol Sci.2006,92(2):516-25.
    [79]Lucchini R G, Martin CJ, Doney BC. From manganism to manganese-induced parkinsonism:a conceptual model based on the evolution of exposure[J]. Neuromolecular Med,2009, 11(4):311-321.
    [80]Zheng W, Fu SX, Dydak U, et al. Biomarkers of manganese intoxication[J]. Neurotoxicol,2011,32(1):1-8.
    [81]雷琦,闫剑群,施京红,等.GABA在摄食和味觉机制中的作用[J].世界华人消化杂志,2006,14(19):1906-1911.
    [82]董晓华,张丹参,孟宪勇.Glu/GABA水平相关性对学习记忆的影响[J].中国老年学杂志,2006,2(26):283-285.
    [83]Daniel R C, Nicholas W, Donald R S, et al. Low-level manganese exposure alters glutamate metabolism in GABAergic AF5 cells NeuroToxicology,2007, (28):548-554.
    [84]陶云海.Y-氨基丁酸(GABA)代谢酶抑制剂的研究,博士学位论文,2006年.
    [85]Chandra S V, Malhotra K M, Shukla G S. GABAergic neurochemistry in manganese exposed rats[J]. Acta Pharmacol Toxicol (Copenh). 1982,51 (5):456-458.
    [86]邓祥发.对氨基水杨酸钠(PAS-Na)对锰致大鼠大脑边缘系统损伤的干预机制研究.博士学位论文,2010年.
    [87]黎军,胡万达.对氨基水杨酸钠对大鼠脑混合功能氧化酶的作用[J].中华预防医学杂志,1998,32(6):368.
    [88]韩济生主编.《神经科学原理》[M],第二版.上册.北京:北京医科大学出版社1999年:539—551.
    [89]来艳萍,刘燕强.Y-氨基丁酸A型受体在神经精神性疾病发生发展中的意义[J].中国临床药理学与治疗学,2008,13(2):208-211.
    [90]Chandra SV, Shukla GS. Concentrations of striatal catecholamines in rats given manganese chloride through drinking water[J]. J Neurochem,1981,36(2):683-687.
    [91]Marreilha DOS Santos AP, Lucas RL, Aadrade V, et al. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity[J]. Toxicol Appl Pharmacol,2012,258(3):394-402.
    [92]Meldrum B S, Rogawski M A. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007,4(1):18-61.
    [93]严蓉,朱姗姗,聂鑫,等.鞘内注射巴氯芬对神经病理性痛大鼠的镇痛作用及其对脊髓-氨基丁酸转运体-1的影响[J].《国外医学》麻醉学与复苏分册,2005,26(3):133-138.
    [94]胡桂华,费俭,郭礼和.γ-氨基丁酸(GABA)转运蛋白的结构、功能和调控[J].细胞生物学杂志.2003,25(3):129-133.
    [95]纪之莹,石年.哺乳动物中枢神经系统Y-氨基丁酸转运体的研究进展[J].国外医学药学分册.2001,28(4):205-208.
    [96]Bae JH, Jang BC, Suh SI, et al. Manganese induces inducible nitric oxide synthase (iNOS) expression via activation of both MAP kinase and PI3K/Akt pathways in BV2 microglial cells[J]. Neurosci Lett,2006,398(1-2):151-154.
    [97]覃卫平,梁天佳,姜岳明,等.对氨基水杨酸钠治疗慢性中度锰中毒-例[J].中华劳动卫生职业病杂志,2011,29(8):619—620.
    [1]唐竹吾主编,中枢神经系统解剖学[M],上海科学技术出版社,上海,1986:253-257.
    [2]Torrey EF, Barci B M, ebster M J, Bartko J J, Meador-Woodruf f J H, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains[J]. Biol Psychiatry.2005,57(3):252-60.
    [3]Stokes A H, Lewis D Y, Lash LH, Jerome W G, etal. Dopamine toxicity in neuroblastoma cells:role of glutathione depletion by L-BSO and apoptosis[J]. Brain Res.2000,858(1):1-8.
    [4]Fitsanakis VA, Aschner M. The importance of glutamate, glycine, and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity[J]. Toxicol Appl Pharmacol. 2005,204(3):343-54.
    [5]Conn PJ, Battaglia G, Marino M J, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit[J]. Nat Rev Neurosci.2005,6(10):787-98.
    [6]侯莉娟,刘宏强,乔德才.纹状体神经细胞分型及其功能构建[J].中国临床康复,2004,8(10):1928-1929.
    [7]刘晓加,金梅,昊湖炳,陆兵勋,尹文刚.基底神经节的书写功能[J].中国行为医学科学,2006,15(4):294-296.
    [8]张志杰,黄希庭.时间认知的脑机制研究[J].心理科学进展.2003,11(1):44-48.)
    [9]刘晓加,戴蓉,邵明,等.基底节病变时语言障碍的书写特点[J].中国神经精神疾病杂志,2009,32(5):418-422.
    [10]Busatto GF, Kerwin R W. Schizophrenia, psychosis, and the basal ganglia[J]. Psychiatr Clin North Am.1997,20(4):897-910.
    [11]韩济生主编.《神经科学原理》[M],第二版,上册.北京,北京医科大学出版社,1999年,539-551.
    [12]来艳萍,刘燕强.γ-氨基丁酸A型受体在神经精神性疾病发生发展中的意义[J].中国临床药理学与治疗学,2008,13(2):208-212.
    [13]Meldrum B S, Rogawski M A. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007,4(1):18-61.
    [14]严蓉,朱珊珊,聂鑫,等.鞘内注射巴氯芬对神经病理性痛大鼠的镇痛作用及其对脊髓γ-氨基丁酸转运体-1的影响[J].《国外医学》麻醉学与复苏分册.2005,26(3):133-137.
    [15]胡桂华,费俭,郭礼和.γ-氨基丁酸(GABA)转运蛋白的结构、功能和调控[J].细胞生物学杂志.2003,25(3):129-133.
    [16]纪之莹,石年.哺乳动物中枢神经系统γ-氨基丁酸转运体的研究进展[J].国外医学药学分册.2001,28(4):205-208.
    [17]Gerdin B, McCann E, Lundberg C, Arfors K E. Selective tissue accumulation of manganese and its effect on regional blood flow and haemodynamics after intravenous infusion of its chloride salt in the rat[J]. Int J Tissue React.1985,7(5):373-80.
    [18]Aschner M. Manganese homeostasis in the CNS. Environ Res [J].1999 Feb;80(2 Pt 1):105-9.
    [19]Josephs KA, Ahlskog J E, Klos K J, et al. Neurologic manifestations in welders with pallidal MRI T1 hyperintensity[J]. Neurology.2005,64(12):2033-9.
    [20]王旭霞,英霞,方芳,et al.外源性锰在大鼠脑内选择性沉积的磁共振成像研究[J].中国医学影像技术,2006,22(10):1538—1542.
    [21]Hill J M, Switzer R C3rd. The regional distribution and cellular localization of iron in the rat brain[J]. Neuroscience. 1984,11(3):595-603.
    [22]Scheuhammer A M, Cherian MG. The influence of manganese on the distribution of essential trace elements. I. Regional distribution of Mn, Na, K, Mg, Zn, Fe, and Cu in rat brain after chronic Mn exposure[J]. oxicol Appl Pharmacol.1981,61 (2):227-33.
    [23]Gulson B, Mizon K, Taylor A, et al. Changes in manganese and lead in the environment and young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl in gasoline-preliminary results[J]. Environ Res.2006 J,100(1):100-114.
    [24]Cersosimo MG, Koller W C. The diagnosis of manganese-induced parkinsonism[J]. Neurotoxicology.2006,27 (3):340-6.
    [25]Deschamps F J, Guillaumot M, Raux S. Neurological effects in workers exposed to manganese[J]. J Occup Environ Med. 2001,43 (2):127-32.
    [26]Lander F, Kristiansen J, Lauritsen J M. Manganese exposure in foundry furnacemen and scrap recycling workers[J]. Int Arch Occup Environ Health.1999,72(8):546-50.
    [27]Bouchard M, Mergler D, Baldwin M, et al. Neurobehavioral functioning after cessation of manganese exposure:a follow-up after 14 years [J]. Am J Ind Med.2007,50(11):831-40.
    [28]Calne D B, Chu N S, Huang C C, Lu C S, Olanow W. Manganism and idiopathic parkinsonism:similarities and differences[J]. Neurology.1994,44 (9):1583-6.
    [29]Mergler D, Baldwin M, Belanger S, et al. Manganese neurotoxicity, a continuum of dysfunction:results from a community based study [J]. Neurotoxicology.1999,20(2-3):327-42.
    [30]Seth P K, Hong J S, Kilts C D, etal. Alteration of cerebral neurotransmitter receptor function by exposure of rats to manganese [J]. Toxicol Lett.1981,9(3):247-54.
    [31]Lipe G W, Duhart H, Newport G D, et al. Effect of manganese on the concentration of amino acids in different regions of the rat brain [J]. J Environ Sci Health B.1999,34(1):119-32.
    [32]Gwiazda R H, Lee D, Sheridan J, et al. Low cumulative manganese exposure affects striatal GABA but not dopamine[J]. Neurotoxicology.2002,23(1):69-76.
    [33]Dydak U, Jiang Y M, Long L L, Zhu H, Chen J, Li W M, et al. In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ Health Perspect[J].2011,119(2):219-24.
    [34]Takeda A, Sotogaku N, Oku N. Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience[J]. 2002,114(3):669-74.
    [35]Takeda A, Sotogaku N, Oku N. Influence of manganese on the release of neurotransmitters in rat striatum[J]. Brain Res. 2003,965 (1-2):279-282.
    [36]Struve M F, McManus B E, Wong B A, et al. Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation[J]. Am J Ind Med. 2007,50(10):772-778.
    [37]Burton NC, Schneider JS, Syversen T, et al. Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain[J].Toxicol Sci,2009,111(1):131-139.
    [38]Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M. Roles of glutamine in neurotransmission[J]. Neuron Glia Biol. 2010,6(4):263-76
    [39]Zwingmann C, Leibfritz D,Hazell A S. Nmr spectroscopic analysis of regional brain energy metabolism in manganese neurotoxicity[J]. Glia.2007,55(15):1610-7.
    [40]Xu B, Xu Z F, Deng Y. Manganese exposure alters the expression of N-methyl-D-aspartate receptor subunit mRNAs and proteins in rat striatum[J]. J Biochem Mol Toxicol.2010,24(1):1-9.
    [41]Garcia S J, Gellein K, Syversen T, Aschner M. A manganese-enhanced diet alters brain metals and transporters in the developing rat[J]. Toxicol Sci.2006,92(2):516-25.
    [42]Slemmer J E, De Zeeuw C I, Weber J T. Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. Prog Brain Res[J].2005,148:367-90.
    [43]Gavin CE, Gunter K K, Gunter T E. Manganese and calcium transport in mitochondria:implications for manganese toxicity[J]. Neurotoxicology.1999,20(2-3):445-53.
    [44]Erikson KM, Aschner M. Manganese neurotoxicity and glutamate-GABA interaction[J]. Neurochem Int. 2003,43(4-5):475-80.
    [45]Normandin L, Hazell A S. Manganese neurotoxicity:an update of pathophysiologic mechanisms[J]. Metab Brain Dis. 2002,17(4):375-87.
    [46]Hazell A S. Astrocytes and manganese neurotoxicity [J]. Neurochem Int.2002,41(4):271-7.
    [47]Spadoni F, Stefani A, Morello M, etal. Selective vulnerability of pallidal neurons in the early phases of manganese intoxication[J]. Exp Brain Res.2000,135(4):544-51.
    [48]Takeda A, Sotogaku N, Oku N. Influence of manganese on the release of neurotransmitters in rat striatum[J]. Brain Res. 2003,965(1-2):279-282.
    [49]Struve M F, McManus B E, Wong B A, et al. Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation[J]. Am J Ind Med. 2007,50(10):772-778.
    [50]Cano G, Suarez-Roca H, Bonilla E. Manganese poisoning reduces strychnine-insensitive glycine binding sites in the globus pallidus of the mouse brain[J]. Invest Clin.1996,37(4):209-19.
    [51]Anderson JG, Fordahl SC, Cooney PT, et al. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain[J]. Neurotoxicol,2008,29 (6):1044-1053.
    [52]Aschner M, Erikson KM, Hernandez EH, et al. Manganese and its role in Parkinson's disease:from transport to neuropathology[J]. Neuromolecular Med,2009,11(4):252-66.
    [53]Wang Q, Liu L, Pei L, et al. Control of synaptic strength, a novel function of Akt[J]. Neuron,2003,38 (6):915-928.
    [54]Bae JH, Jang BC, Suh SI, et al. Manganese induces inducible nitric oxide synthase (iNOS) expression via activation of both MAP kinase and PI3K/Akt pathways in BV2 microglial cells [J]. Neurosci Lett, 2006,398 (1-2):151-154.
    [55]Chandra S V, Malhotra K M, Shukla G S. GABAergic neurochemistry in manganese exposed rats[J]. Acta Pharmacol Toxicol (Copenh). 1982,51 (5):456-458.
    [56]Tomas-Camardiel M, Herrera A J, Venero J L.Cruz Sanchez-Hidalgo, M., Cano, J., Machado, A. Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Brain Res Mol Brain Res. 2002,103(1-2):116-29.
    [57]Crooks D R, Welch N, Smith D R. Low-level manganese exposure alters glutamate metabolism in GABAergic AF5 cells[J]. Neurotoxicology. 2007,28(3):548-54.
    [58]张德兴,贺新红,黄绍明,等.锰中毒对新生小鼠脑发育的影响[J].卫 生研究2001.09.30:30(5)260-262.
    [69]谭国鹤,杨伯宁,谭国富,等.锰中毒对小鼠海马神经干细胞增殖的影响[J].中华劳动卫生职业病杂志.2007,25(5):282-285.
    [60]贺新红,张德兴,吴燕明.生后锰接触对小鼠中脑被盖发育的毒性影响[J].解剖学研究2005,27(1):7—9.
    [61]肖忠新,牛丕业,李慧,等.锰对大鼠空间学习记忆影响[J].中国公共卫生.2010,26(3):381-382.
    [62]杨曦,陆彩玲,郭松超.牛磺酸对锰中毒大鼠学习记忆的影响[J].中国药物与临床.2010,10(2):128-130.
    [63]陆彩玲,吴元桢,唐付华,等.牛磺酸对急性染锰大鼠空间学习记忆能力的改善作用[J].中国药理学与毒理学杂志,2011,25(3):254-257.
    [64]Tandon SK, Chandra SV, Singh J, et al. Chelation in metal intoxication. Ⅰ. In vivo effect of chelating agents on liver and testis of manganese administered rats[J]. Environ Res 1975,9:18-25
    [65]Jiang YM, Mo XA,Du FQ, et al. Effective treatment of manganese-induced occupational parkinsonism with PAS-Na:A case of 17-year follow-up study[J]. J Occup Environ Med,2006,48(6): 644-649.
    [66]Hong L, Jiang W, Pan H, Jiang Y, et al. Brain regional pharmacokinetics of p-aminosalicylic acid and its N-acetylated metabolite:effectiveness in chelating brain manganese[J]. Drug Metab Dispos.2011,39(10):1904-9.
    [67]广西医学院劳动卫生与职业病教研室.对氨基水杨酸钠治疗慢性锰中毒的疗效观察[J].职业医学,1982,(4):8—11
    [68]李艳滔,纪淑琴.对氨基水杨酸钠治疗慢性锰中毒的临床评价[J].工 业卫生与职业病,1986,12(6):363
    [69]姚应林.用对氨基水杨酸钠对锰中毒作诊断性治疗一例报告[J].冶金防护情报,1990,(1,2合期):19-20
    [70]吴萍.对氨基水杨酸钠诊断性治疗轻度锰中毒1例报告[J].工业卫生与职业病,1991,17(3):163.
    [71]董国强,张建余.PAS-Na治疗30例电焊工慢性锰中毒的临床观察[J].职业卫生与伤病,2001,16(2):95-96
    [72]李正化主编.药物化学[M].第一版.北京:人民卫生出版社,1987;232
    [73]薛汉麟.职业病临床指南[M].上海医科大学出版社,1995;555
    [74]潘举升,王晓江,方梅芳,等.高炉锰铁冶炼工人锰中毒的三十五年防治研究与分析[J].中华劳动卫生职业病杂志,2001,19(2):118-120
    [75]郭霏烨,区仕燕,姜岳明,等.对氨基水杨酸钠治疗锰中毒致书写过小征疗效的长期追踪观察:附1例报告[J].广西医科大学学报2007,24(2):300-302.
    [76]杜凤其,莫雪安,姜岳明,等.对氨基水杨酸钠治疗1例慢性锰中毒的17年追踪观察[J].中国职业医学,2008,35(5):398-399.
    [77]纪淑琴,胡万达,姜岳明,等.对氨基水杨酸钠治疗慢性锰中毒机制的研究[J].广西医科大学学报,1995,12(4):477-483
    [78]葛利辉,姜岳明,纪淑琴,等.对氨基水杨酸钠对染锰大鼠行为的影响[J].卫生毒理学杂志.1991,5(3):186-187
    [79]黄波,胡万达,纪淑琴,等.PAS-Na治疗锰中毒大鼠中枢神经系统病变的观察[J].中华劳动卫生职业病杂志,1994,12(4):205-208
    [80]邓祥发,陈海滨,姜岳明,等.PAS-Na对亚急性锰暴露大鼠学习记忆及海马超微结构的影响[J].毒理学杂志,2010,24(1):5-9.
    [81]吴飞盈,邓祥发,姜岳明,等.PAS-Na对染锰大鼠学习记忆及海马神经微丝蛋白表达的影响[J].环境与职业医学,2011,28(1):29-31,34.
    [82]刘翃,罗海兰,钟祥海,等.对氨基水杨酸钠对染锰大鼠学习记忆及海马GFAP阳性细胞表达的影响[J].工业卫生与职业病,2011,37:86-89.
    [83]罗海兰,欧超燕,王禅,等.对氨基水杨酸钠对染锰大鼠学习记忆能力及海马某些基因表达的影响[J].毒理学杂志,2011,25(6):457-460.
    [84]郭建霞,胡万达,纪淑琴,等.氯化锰对小鼠免疫毒性作用的研究[J].职业医学.1991,18(3):136—138
    [85]郭建霞,胡万达,纪淑琴,等.对氨基水杨酸钠对染锰小鼠免疫功能的影响[J].中华劳动卫生职业病杂志,1991,9(4):213-215
    [86]Tandon SK. Chelation in metal intoxication. Ⅵ. Influence of PAS and CDTA on the excretion of manganese in rabbits given MnO2[J]. Toxicology 1978,9:379-385.
    [87]黎军,胡万达.对氨基水杨酸钠对大鼠脑混合功能氧化酶的作用[J].中华预防医学杂志,1998,32(6):368
    [88]韦小敏,胡万达,纪淑琴,等.锰对大鼠肝混合功能氧化酶的影响[J].卫生毒理学杂志.1994,8(1):51-52.
    [89]韦小敏,胡万达,纪淑琴,等.对氨基水杨酸钠对染锰大鼠肝混合功能氧化酶的作用[J].中华劳动卫生职业病杂志,1993,11(1):16—18
    [90]葛利辉,姜岳明,纪淑琴,等.对氨基水杨酸钠对染锰大鼠脑酶的影响[J].中国工业医学杂志,1991,4(4):1—4
    [91]葛利辉,姜岳明,纪淑琴,等.对氨基水杨酸钠对染锰大鼠肝和血清酶的影响[J].职业医学.1991,18(4):196—198.
    [92]鲁力,陆继培,农清清,等.对氨基水杨酸钠对染锰大鼠睾丸细胞内钙离子调节酶的影响[J].中国职业医学,2000,27(2):16—18
    [93]农清清,胡万达,谢佩意,等.锰对大鼠脑钙调素、Ca2+-Mg2+-ATP酶的影响及对氨基水杨酸钠的干预作用[J].中华劳动卫生职业病杂志,1997,15(6):365-366
    [94]洪息君,黄志明,陈家欢,等.锰在染毒大鼠体内的分布及对氨基水杨酸钠对锰体内分布的影响[J].广西医学,1991,13(1):23—24
    [95]姜岳明,葛利辉,陆继培,等.对氨基水杨酸钠对锰中毒大鼠体内锰、铜水平的影响[J].中国药理学与毒理学杂志.1992,6(3):185-188
    [96]姜岳明,葛利辉,石屏,等.对氨基水杨酸钠对氯化锰染毒大鼠脑单胺递质的影响[J].卫生毒理学杂志,1991;5(2):92-94
    [97]Asanuma M, Miyazaki I.Ogawa N. Neuroprotectiv effects of nonsteroidal anti-inflammatory drugs on neurodegenerative disease[J]. Current Pharmaceutical Design,2004,10:659-700.
    [98]Asanuma M, Miyazaki I. Nonsteroidal anti-inflammatory drugs in Parkinson's disease:possible involvement of quinine formation[J]. Expert Rev Neurotherapeutics,2006,6 (9):1313-1325.
    [99]吴卫平,孙瑜,蒋学之,等.锰在小鼠睾丸和脑分布及对氨基水杨酸钠驱锰实验的研究[J].中华劳动卫生职业病杂志,1993,11(3):143-146
    [100]Zheng W, Jiang YM, Zhang Y, et al. Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats[J]. Neurotoxicol,2009,30(2):240-248.
    [101]King C, Myrthil M, Carroll MA, et al. Effects of p-Aminosalicylic acid on the Neurotoxicity of Manganese and Levels of Dopamine and Serotonin in the Nervous System and Innervated Organs of Crassostrea virginica[J]. In Vivo,2008,29(3):26-34.
    [102]Nelson M,Huggins T, Licorish R,et al. Effects of p-Aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica[J]. Comp Biochem Physiol C Toxicol Pharmacol,2010,151(2):264-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700