伽玛治疗术后顽固性肿瘤周围脑水肿的结构和分子变化以及促肾上腺皮质激素的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察经立体定向放射外科技术(旋转式伽玛)治疗后常规脱水治疗无效的继发性顽固性肿瘤周围脑水肿(PTBE)的组织结构及相关分子变化,观察了促肾上腺皮质激素(ACTH)对伽玛治疗术后常规脱水治疗无效的顽固性PTBE患者的治疗作用;同时,初步探索伽玛治疗术后继发性顽固性PTBE形成机制。
     方法:收集浙江省人民医院神经外科和伽玛治疗中心收治的79例接受伽玛治疗后发生继发性PTBE且常规脱水治疗无效的脑肿瘤患者的临床资料,并对其中在接受伽玛治疗前曾行肿瘤部分切除术、PTBE治疗过程中出现明显的脱水药物依赖现象,或停药后短期内即出现严重PTBE,或无法耐受长期静脉注射治疗而进行二次开颅手术的16例患者的组织学标本,进行详细的组织学和分子生物学对比研究。
     HE染色观察接受二次手术的顽固性PTBE患者伽玛术前与术后组织病理学变化,透射电镜观察顽固性PTBE患者肿瘤组织及血管超微结构变化,免疫组化法观察顽固性PTBE患者伽玛术前与术后肿瘤组织增殖细胞核抗原(PCNA)、血管内皮生长因子(VEGF)及水通道蛋白(AQP)表达,分析上述分子与继发性顽固性PTBE发生的相关性,结合组织结构变化初步探讨伽玛治疗术后继发性顽固性PTBE形成机制。
     观察ACTH对伽玛术后发生继发性顽固性PTBE的治疗作用,比较ACTH与地塞米松(DXM)、甲基泼尼松龙(MPD)等临床一线治疗药物对继发性顽固性PTBE患者水肿指数(PTBE-EI)影响的差异,同时检测ACTH治疗对患者血液生化指标的影响,初步评价ACTH作为伽玛治疗术后继发性顽固性PTBE治疗替代药物的潜力。
     结果:
     1.HE染色光镜下检查发现,伽玛治疗术后继发性顽固性PTBE患者中转移性脑肿瘤的病灶明显坏死并伴有炎性细胞浸润,脑膜瘤主要表现为肿瘤间质显著增生;星形细胞瘤的病理变化呈多样性,可见肿瘤坏死、间质增生和囊性病变,血管壁纤维样坏死变性,偶可见血管内血栓形成;海绵状血管瘤均表现为部分管腔闭塞、微小血栓形成和毛细血管增生,偶可见少量瘤内出血。
     2.透射电镜检查结果表明伽玛治疗术后继发性顽固性PTBE患者的肿瘤血管内皮细胞大多变扁平、皱缩,窗孔明显,胞质内吞噬小体数量增多,部分内皮细胞间连接处缝隙增大,偶可见连接中断,部分肿瘤新生血管内皮细胞呈类圆形,胞体内可见数量不等的棒状小体,细胞排列杂乱。
     3.免疫组化检测表明:16例伽玛治疗术后继发性顽固性PTBE患者伽玛治疗前PCNA染色阳性13例,其中11例PCNA-PI≥1%,2例PCNA-PI<1%,其余阴性;伽玛治疗后PCNA染色阳性11例,其中4例PCNA-PI≥1%,7例PCNA-PI<1%,其余阴性;卡方检验结果表明伽玛治疗前后PCNA表达无显著差异。
     16例伽玛治疗术后继发性顽固性PTBE患者伽玛治疗前VEGF染色阳性9例,其中4例呈低水平的阳性表达,其余阴性;伽玛治疗后VEGF染色5例阳性细胞数≥5%,但呈低水平的阳性表达,其余阴性;卡方检验结果表明伽玛治疗前后VEGF表达无显著差异。
     6例星形细胞瘤伽玛治疗术后继发性顽固性PTBE患者伽玛治疗前AQP-1、AQP-4和AQP-9的表达分别为5.66±0.78,3.89±0.43和1.32±0.20,伽玛治疗后分别为4.99±0.57,4.01±0.57和1.66±0.31;伽玛治疗前后AQP-1、AQP-4和AQP-9表达无显著差异(P>0.05,t-test)。
     4.79例接受伽玛治疗后发生继发性PTBE且常规脱水治疗无效的脑肿瘤患者中,39例接受DXM治疗:治疗前PTBE-EI为3.3~4.9(3.17±1.39),治疗后头痛等症状有明显改善,但PTBE-EI增高至5.1~9.8(7.16±1.91)。DXM治疗前后PTBE-EI有显著差异(P<0.01,t-test),其原因可能与肿瘤病灶伽玛治疗后病灶缩小、相应时间放射性脑水肿的出现以及因药物副作用而停药,或减小药物剂量等因素有关。
     31例(包括14例DXM治疗后停药发生严重PTBE患者)接受MPD治疗:治疗前PTBE-EI为3.8~7.4(5.26±1.93),治疗后降至2.7~5.1(3.88±1.56),MPD治疗前后PTBE-EI有显著差异(P<0.05,t-test)。但停药两周后又升高至4.1~8.2(6.24±1.76)。
     46例(包括治疗停药后再次出现严重PTBE的17例DXM患者和6例MPD患者)接受ACTH治疗:治疗前PTBE-EI为4.7~9.6(7.01±1.83),治疗后一月为1.1~2.9(2.07±0.62),治疗前后的PTBE-EI有显著差异(P<0.05,t-test),三月后可能因病灶缩小PTBE-EI略有升高,为1.7~3.2(2.23±0.90),与治疗前相比仍有显著差异(P<0.05,t-test)。
     三组疗效比较:DXM组有效率为20.5%(8/39),分别有14例和17例患者在完全停药后1个月内再次出现严重脑水肿反应而接受MPD和ACTH治疗。MPD组有效率为61.3%(19/31),但12例患者完全停药后再次出现严重脑水肿反应时间较短,仅约2周。ACTH组有效率与MPD组近似,为67.4%(31/46),其中22例(47.8%)患者因病灶基本消失、局部软化灶形成或因水肿基本消退,而无法测算PTBE-EI;9例(19.6%)患者因停药后再次出现严重PTBE给予原剂量ACTH治疗无法耐受进行开颅病灶切除手术;15例(32.6%)出现严重头痛等症状给予ACHT治疗1~2个月后,逐渐减量至临床上症状缓解,或影像学检查脑水肿基本消退后停药。卡方检验结果表明,ACTH疗效强于DXM,差异具有显著性(P<0.01);ACTH疗效与MPD无显著性差异(P>0.05)。
     结论:
     1.伽玛术后继发性顽固性PTBE组织病理变化包括:与立体定向放射外科技术直接相关的血管壁纤维样坏死变性、血栓形成以及肿瘤间质和微小血管增生,导致局部微循环紊乱和受阻;血脑屏障本身的形态结构和功能受损,导致肿瘤病灶及其内皮细胞的基质(基底膜)与血液成分(包括一些血管活性物质)以及浸润的炎性细胞产生直接接触,从而进一步加剧PTBE,这可能是伽玛治疗术后继发性顽固性PTBE的形成机制之一。
     2.伽玛治疗术后继发性顽固性PTBE组织PCNA、VEGF、AQP-1、AQP-4以及AQP-9的表达与伽玛治疗术前无显著性差异,提示伽玛治疗术后继发性顽固性PTBE有其特有的形成机制,与上述分子表达相关性甚小,不同于一般肿瘤源性脑水肿的形成机制。
     3.ACTH可迅速降低患者的PTBE-EI,疗效显著,并且治疗剂量的外源性ACTH对垂体日常内源性ACTH的分泌及其生理作用,并无太大的干扰和影响,提示可作为治疗伽玛治疗术后继发性顽固性PTBE的替代药物。
Objective:We investigated the secondary peritumoral brain edema(PTBE) afterγ-radiotherapy,which had been unaffected by the routine dehydrate therapy.The therapeutic effect of adrenocorticortropic hormone(ACTH) in treating the secondary PTBE was observed to evaluate the possibility whether ACTH can be used as a substitute dehydration instead of conventional treatments of PTBE.The changes in biomolecules and histological structures were also investigated to explore the mechanisms of PTBE.
     Methods:A total of 79 patients suffered from brain tumors with stubborn PTBE afterγ-radiotherapy were studied in this series,who were admitted inγ-radiotherapy Center, Zhejiang Provincial People's Hospital.Among them,brain tumors were partially removed in 16 patients beforeγ-radiotherapy for the tumor volume adaptation ofγ-radiotherapy.Craniatomy was re-performed afterγ-radiotherapy because of dehydrate therapy dependence and intolerable intravenous transfusion during the treatment of stubborn PTBE.Biological molecules and histological changes in these tumor samples were observed comparably.
     The pathological observations of patients with stubborn PTBE before and afterγ-radiotherapy were investigated by HE staining.The fine structure of tumors and the tumoral vessels were observed by transmission electric microscopy.The expression of proliferating cell nuclear antigen(PCNA),vascular endothelial growth factor(VEGF) and aquaporins(AQP) were immunohistochemically stained.The results of these observations were analyzed to reveal the correlation to the PTBE and its possible mechanisms.
     The therapeutic effect of ACTH on secondary stubborn PTBE was investigated and compared with those of dexamethasone(DXM) and methylprednisolone(MPD) using PTBE-EI as the indicator.The dynamics of anterior pituitary hormones(APHs),thyroid function(TF) and genital hormones(GnH) in patients with stubborn PTBE during the ACTH therapy were also detected to evaluate the usefulness of ACTH as a substitute dehydration.
     RESULTS:
     1.By light microscopy,the main pathological changes in brain samples from metastasis patients with stubborn PTBE afterγ-radiotherapy were necrosis and infiltration of inflammatory cells.Tumor interstitial hyperplasia was observed obviously in meningioma patients.Necrosis,interstitial hyperplasia,cystic formation,fibrinoid necrosis and occasionally thrombosis in small vessel were more common in glioma samples.In cavernous angioma,embolism,thrombosis and capillary hyperplasia were presented.
     2.Under the transmission electric microscope,endothelia often showed thin and flat appearance,increased numbers of pinocytotic vesicles and surface infoldings.Widely separation,even disconnecting between endothelial cells was also detected in patients with stubborn PTBE afterγ-radiotherapy.Weibel-Palade body was often detected in plasma of round proliferated endothelium.
     3.In immunohistochemical studies,PCNA immunohistochemical stain was positive in 13 of 16 patients beforeγ-radiotherapy.Proliferating cell ratio above 1%happened in 11 patients,below 1%in 2 patients and negative in another 3 patients.Afterγ-radiotherapy, 11 patients were positive.Proliferating cell ratio above 1%happened in 4 of 11 patients, below 1%in 7 patients and negative in another 5 patients.Immunohistochemical staining for VEGF showed that VEGF protein was positive beforeγ-radiotherapy in 9 patients,among them,4 patients were weakly expressed.Another 7 patients were negative.Afterγ-radiotherapy,VEGF was weakly expressed in 5 patients and negative in other 11 patientss.There was no statistically significant difference in the PCNA and VEGF expressions in the patients with stubborn PTBE before and afterγ-radiotherapy.
     AQP-1,AQP-4 and AQP-9 expressions were 5.66±0.78,3.89±0.43 and 1.32±0.20 in 6 patients of star-shaped cell tumor beforeγ-radiotherapy,and 4.99±0.57,4.01±0.57 and 1.66±0.31,respectively afterγ-radiotherapy in patients with refractory PTBE induced byγ-radiotherapy.There were no significant differences in AQP-1, AQP-4 and AQP-9 expressions before and afterγ-radiotherapy(P>0.05,t-test).
     4.In 79 patients with refractory PTBE induced byγ-radiotherapy and resistance to conventional dehydration,39 patients received DXM treatment.Their pre-treatment PTBE-EI was 3.3~4.9(3.17±1.39).After treatment,headache and other symptoms were significantly improved,but PTBE-EI increased to 5.1~9.8(7.16±1.91). PTBE-EI was significantly increased(P<0.01,t-test) after DXM treatment;the reason might be related to reduced tumor size,corresponding time of the appearance of radiation-induced cerebral edema,and decrease of the drug dose because of adverse after theγ-radiotherapy.
     In 31 patients(including 17 patients with serious PTBE after withdrawal of DXM treatment) received MPD treatment,their pre-treatment PTBE-EI was 3.8~7.4(5.26±1.93),and 2.7~5.1(3.88±1.56) after treatment.PTBE-EI was significantly decreased (P<0.05,t-test) after MPD treatment.However,PTBE-EI was increased to 4.1~8.2 (6.24±1.76) two weeks after drug withdrawal.
     In 46 patients(including 17 patients with DXM treatment and 6 patients with MPD treatment and occurred serious PTBE) received ACTH treatment,their pre-treatment PTBE-EI was 4.7~9.6(7.01±1.83),1.1~2.9(2.07±0.62) one month after treatment, and 1.7~3.2(2.23±0.90) three months later.PTBE-EI was significantly decreased(P<0.05,t-test) after ACTH treatment.
     In comparison of efficacies of three treatment groups,DXM response rate was 20.5% (8/39),in which 14 patients and 17 patients had received MPD and ACTH treatments because of the serious PTBE within 1 month after stopping DXM treatment.MPD response rate was 61.3%(19/31),but serious PTBE occurred again in 12 patients after MPD withdrawal only about 2 weeks later.ACTH response rate was 67.4%(31/46), which was similar to MPD group.In ACTH group,PTBE-EI in 22 patients(47.8%) was not dissipated because of lesions,disappeared edema or partial softening foci formation; 9 patients(19.6%) received craniotomy excision surgery due to the severe PTBE after ACTH treatment withdrawal,or could not be tolerated;15 patients(32.6%) received ACHT treatment 1 to 2 months later because of the severe headache and other symptoms,till to a gradual reduction and attenuation of the clinical symptoms,or basically dissipated in imaging studies of brain edema after the withdrawal.Chi-square test results showed that ACTH effect was significantly more effective than DXM(P<0.01),and was as effective as MPD(P>0.05).
     Conclusion:
     1.The pathological changes in brain samples from patients with refractory PTBE induced byγ-radiotherapy include the vessel wall fibrinoid necrosis and degeneration, thrombosis,and tumor interstitial and small blood vessel proliferation.This is directly related to stereotactic radiosurgery technology and leads to local micro-circulation disorders and obstructed.Blood-brain barrier structure and function are damaged,which leads to tumor and endothelial cell matrix(basement membrane) and blood components (including some vasoactive substances) as well as infiltration of inflammatory cells in direct contact,thus further exacerbating PTBE.This may be one of the possible mechanisms of the formation of refractory PTBE induced byγ-radiotherapy.
     2.There is no significant difference between pre- and post-γ-radiotherapy in PCNA, VEGF,AQP-1,AQP-4 and AQP-9 expressions in brain samples from patients with refractory PTBE induced byγ-radiotherapy.This suggests that the formation mechanism of refractory PTBE induced byγ-radiotherapy is different from the primary tumor-induced cerebral edema.
     3.ACTH can rapidly reduce the patient's PTBE-EI.Therefore,and the therapeutic dose of exogenous ACTH on the pituitary gland the daily endogenous secretion of ACTH and its physiological role,is not too much interference and influence,ACTH may be used as the alternative medicine in the treatment of refractory PTBE induced byγ-radiotherapy.
引文
[1] Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236-9.
    [2] Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004; 129(4): 1021 -9.
    [3] Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171-4.
    [4] Marmarou A, Portella G, Barzo P, Signoretti S, Fatouros P, Beaumont A, Jiang T, Bullock R. Distinguishing between cellular and vasogenic edema in head injured patients with focal lesions using magnetic resonance imaging. Acta Neurochir Suppl.2000;76:349-51.
    [5] Gu HW, Sohn MJ, Lee DJ, Lee HR, Lee CH, Whang CJ. Clinical analysis of novalis stereotactic radiosurgery for brain metastases. J Korean Neurosurg Soc. 2009 Sep;46(3):245-51.
    [6] Biswas T, Okunieff P, Schell MC, Smudzin T, Pilcher WH, Bakos RS, Vates GE, Walter KA, Wensel A, Korones DN, Milano MT. Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol. 2009 Mar 17;4:11.
    [7] Tsutsumi S, Horinaka N, Mori K, Maeda M. Metastatic brainstem tumor manifesting as hearing disturbance-case report. Neurol Med Chir (Tokyo). 2001 Nov;41(11):561-4.
    [8] Kim YZ, Kim DY, Yoo H, Yang HS, Shin SH, Hong EK, Cho KH, Lee SH. Radiation-induced Necrosis Deteriorating Neurological Symptoms and Mimicking Progression of Brain Metastasis after Stereotactic-guided Radiotherapy. Cancer Res Treat. 2007 Mar;39(1):16-21.
    [9] Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, Shioura H, Inomata T, Kunieda E, Hayakawa K, Nakagawa K, Kobashi G, Shirato H. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007 Aug 1;68(5): 1388-95.
    [10]Kan P,Liu JK,Wendland MM,Shrieve D,Jensen RL.Peritumoral edema aider stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development.J Neurooncol.2007 May;83(1):33-8.
    [11]Sato S,Toya S,Ohtani M,Suga S,Harada S,Ikeda Y.Effect of blood-brain barrier disruption on the permeability of peritumoral edema.Adv Neurol.1990;52:555.
    [12]Palma L,Bruni G,Fiaschi AI,Mariottini A.Passage of mannitol into the brain around gliomas:a potential cause of rebound phenomenon.A study on 21 patients.J Neurosurg Sci.2006 Sep;50(3):63-6.
    [13]Papangelou A,Lewin JJ 3rd,Mirski MA,Stevens RD.Pharmacologic management of brain edema.Curr Treat Options Neurol.2009 Jan;11(1):64-73.
    [14]Kan P,Liu JK,Wendland MM,Shrieve D,Jensen RL.Peritumoral edema after stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development.J Neurooncol.2007 May;83(1):33-8.
    [15】贝伟红,汪永强等.促肾上腺皮质激素对恶性肿瘤所致脑水肿的影响.中国医药杂志.2004;1(3):124-125.
    [16]Mittelbronn M,Psaras T,Capper D,Meyermann R,Honegger J.ACTH- and prolactin-producing pituitary gland microadenoma with biphasic features of atypia and intermediate filament expression.Neuro Endocrinol Lett.2006Feb-Apr;27(1-2):89-92.
    [17]Adair JC,Baldwin N,Komfeld M,Rosenberg GA.Radiation-induced blood-brain barrier damage in astrocytoma:relation to elevated gelatinase B and urokinase.J Neurooncol.1999;44(3):283-9.
    [18]Nakata H,Yoshimine T,Murasawa A,Kumura E,Harada K,Ushio Y,Hayakawa T.Early blood-brain barrier disruption after high-dose single-fraction irradiation in rats.Acta Neurochir(Wien).1995;136(1-2):82-6.
    [19]Liu HM,Chen HH.Correlation between fibroblast growth factor expression and cell proliferation in experimental brain infarct:studied with proliferating cell nuclear antigen immunohistochemistry.J Neuropathol Exp Neurol.1994Mar;53(2):118-26.
    [20]Kim CH,Cheong JH,Bak KH,Kim JM,Oh SJ.Expression of the proliferating cell nuclear antigen and clinicopathological features in intracranial meningiomas.J Clin Neurosci.2001 May;8 Suppl 1:44-8.
    [21]Ding YS,Wang HD,Tang K,Hu ZG,Jin W,Yan W.Expression of vascular endothelial growth factor in human meningiomas and peritumoral brain areas.Ann Clin Lab Sci.2008 Autumn;38(4):344-51.
    [22]Carlson MR,Pope WB,Horvath S,Braunstein JG,Nghiemphu P,Tso CL,Mellinghoff I,Lai A,Liau LM,Mischel PS,Dong J,Nelson SF,Cloughesy TF.Relationship between survival and edema in malignant gliomas:role of vascular endothelial growth factor and neuronal pentraxin 2.Clin Cancer Res.2007 May 1;13(9):2592-8.
    [23】宁巧明,王祥瑞.水通道蛋白的研究进展.国外医学麻醉学与复苏分册.2005;26(5):271-274.
    [24】陈坚,郝晓伟.VEGF及PCNA与脑膜瘤瘤周脑水肿的相关性研究.中国临床神经外科杂志.2001;6(1):23-29.
    [25]Steven NK.Rona SC.Jianping Z et.Correlation ofvascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema inmeningiomas J Neurosurg.1996;85:1095
    [26]Goldman CK.Bharara S,Palmel C et al.Brain edema in meningiomas with increased vascular endothelialgrowth factor expression.Neurourgy,1997;40(6):1269
    [27 Cron KR.Challa VR,Kute et Relationship between flow cytometrie features an dclinical behavior of meningimas,Neurosurg.1988;23:720
    [28]Longatti PL,Basaldella L'Orvieto E,etal.Choroid plexusand aquapofin-Ⅰ:a novel explan ation of cerebrospinal fluidproduction[J].Pediatr Neurosurg,2004;40(6):277-283.
    [29]Saadoun S,Papadopoulous M,Davies D,et al.Increased aquaporin-1 water channel expresson in human brain tumors[J].Br J Cancer,2002;87:621-623.
    [30]Huang Y,Tola Vicky B,Fang,P K,et al.Partitioning of Aquaporin-4 Water Channel mRNA and Protein in Gastric Glands.Digetive Diseases &Sciences.2003;48(1):2020-2036.
    [31]Scholz M,Cinatl J,Sch(a|¨)del-H(o|¨)pfner M,Windolf J.Neutrophils and the blood-brain barrier dysfunction after trauma.Med Res Rev.2007 May;27(3):401-16.
    [32】吴旭,卢刚,陈书达,赵仲生,历民.脑肿瘤伽玛治疗后顽固性脑水肿的病理分析.浙江医学,2007;29(4):332-35.
    [33]李强,陆兵勋.脑水肿的治疗研究进展.实用医药杂志.2005;22(1):79-81.
    [34】石新东,赵洪洋.地塞米松与甲泼尼龙治疗放射性脑水肿的差异.中华神经外科杂志.2007;23(5):71-73.
    [35]Douglas AJ,Russell JA.Endogenous opioid regulation of oxytocin and ACTH secretion during pregnancy and parturition.Prog Brain Res.2001;133:67-82.
    [36]Yuan XQ,Wade CE.Neuroendocrine abnormalities in patients with traumatic brain injury.Front Neuroendocrinol.1991;12(3):209-30.
    [37]Jezova D,Johansson BB,Oprsalova Z,Vigas M.Changes in blood-brain barrier function modify the neuroendocrine response to circulating substances.Neuroendocrinology.1989 Apr;49(4):428-33.
    [38】刘胜初,杨建雄,黄建斌.促肾上腺皮质激素治疗急性重型颅脑损伤80例.实用医学杂志.2003;19(3):280-282.
    [1]Nag S,Manias JL,Stewart DJ.Pathology and new players in the pathogenesis of brain edema.Acta Neuropathol.2009 Aug;118(2):197-217.
    [2]Kaal EC,Vecht CJ.The management of brain edema in brain tumors.Curr Opin Oneol.2004 Nov;16(6):593-600.
    [3] Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129(4): 1021-9.
    [4] Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171-4.
    [5] Ito U, Reulen HJ, Tomita H, Ikeda J, Saito J, Maehara T. A computed tomography study on formation, propagation, and resolution of edema fluid in metastatic brain tumors. Adv Neurol. 1990;52:459-68.
    [6] Groger U, Huber P, Reulen HJ. Formation and resolution of human peritumoral brain edema. Acta Neurochir Suppl (Wien). 1994;60:373-4.
    [7] Bhasin RR, Xi G, Hua Y, Keep RF, Hoff JT. Experimental intracerebral hemorrhage: effect of lysed erythrocytes on brain edema and blood-brain barrier permeability. Acta Neurochir Suppl. 2002;81:249-51.
    [8] Bruehlmeier M, Roelcke U, Blauenstein P, Missimer J, Schubiger PA, Locher JT, Pellikka R, Ametamey SM. Measurement of the extracellular space in brain tumors using 76Br-bromide and PET. J Nucl Med. 2003 Aug;44(8):1210-8.
    [9] Vargova L, Homola A, Zamecnik J, Tichy M, Benes V, Sykova E. Diffusion parameters of the extracellular space in human gliomas. Glia. 2003 Apr 1;42(1):77-88.
    [10] Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E. Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn Reson Med. 2002 Dec;48(6):994-1003.
    [11] Roitbak T, Sykova E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia. 1999 Oct;28(1):40-8.
    [12] Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009 Sep 16;29(37):11511-22.
    [13] Oh J, Cha S, Aiken AH, Han ET, Crane JC, Stainsby JA, Wright GA, Dillon WP, Nelson SJ. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging. 2005 Jun;21(6):701-8.
    [14] Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008 Nov;32(2):200-19.
    [15] Banks WA. The blood-brain barrier as a cause of obesity. Curr Pharm Des. 2008;14(16):1606-14.
    [16] Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009 Jan;335(1):75-96.
    [17] Ma SH, Lepak LA, Hussain RJ, Shain W, Shuler ML. An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip. 2005 Jan;5(1):74-85.
    [18] Romero IA, Radewicz K, Jubin E, Michel CC, Greenwood J, Couraud PO, Adamson P. Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett. 2003 Jun 26;344(2):112-6.
    [19] Lee SW, Kim WJ, Park JA, Choi YK, Kwon YW, Kim KW. Blood-brain barrier interfaces and brain tumors. Arch Pharm Res. 2006 Apr;29(4):265-75.
    [20] Hayashi Y, Edwards NA, Proescholdt MA, Oldfield EH, Merrill MJ. Regulation and function of aquaporin-1 in glioma cells. Neoplasia. 2007 Sep;9(9):777-87.
    [21] Black KL, Ningaraj NS. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control. 2004 May-Jun; 11(3): 165-73.
    [22] Cecchin D, Chondrogiannis S, Puppa AD, Rotilio A, Zustovich F, Manara R, Gardiman M, Berti F, Zucchetta P, Carollo C, Bui F. Presurgical (99m)Tc-sestamibi brain SPET/CT versus SPET: a comparison with MRI and histological data in 33 patients with brain tumours. Nucl Med Commun. 2009 Sep;30(9):660-8.
    [23] Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000 Sep;100(3):323-31.
    [24] Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol. 2008 May;67(5):435-48.
    [25] Park MW, Kim CH, Cheong JH, Bak KH, Kim JM, Oh SJ. Occludin expression in brain tumors and its relevance to peritumoral edema and survival. Cancer Res Treat. 2006 Sep;38(3):139-43.
    [26] Ding YS, Wang HD, Tang K, Hu ZG, Jin W, Yan W. Expression of vascular endothelial growth factor in human meningiomas and peritumoral brain areas. Ann Clin Lab Sci. 2008 Autumn;38(4):344-51.
    [27] Carlson MR, Pope WB, Horvath S, Braunstein JG, Nghiemphu P, Tso CL, Mellinghoff I, Lai A, Liau LM, Mischel PS, Dong J, Nelson SF, Cloughesy TF. Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res. 2007 May 1;13(9):2592-8.
    [28] Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004 Aug;18(11):1291-3.
    [29] Finnie JW, Manavis J, Blumbergs PC. Aquaporin-4 in acute cerebral edema produced by Clostridium perfringens type D epsilon toxin. Vet Pathol. 2008 May;45(3):307-9.
    [30] Hu H, Yao HT, Zhang WP, Zhang L, Ding W, Zhang SH, Chen Z, Wei EQ. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors. J Zhejiang Univ Sci B. 2005 Jan;6(1):33-7.
    [31] Warth A, Kroger S, Wolburg H. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 2004 Apr;107(4):311-8.
    [32] Warth A, Mittelbronn M, Wolburg H. Redistribution of the water channel protein aquaporin-4 and the K~+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol. 2005 Apr;109(4):418-26.
    [33] Kaufmann AM,Cardoso ER. Aggravation of vasogenic cerebral edema by multiplc-dose mannitol.J Neurosurg,1992;77:584-9
    [34] Von-Berenberg P,Unterberg A,Scheider GH,et al.Treatment of traumatic brain edema by multiple dose of mannitol.Acta Neurochir Suppl(Wien),1994;60: 531-3.
    [35] Sato S, Toya S, Ohtani M, Suga S, Harada S, Ikeda Y. Effect of blood-brain barrier disruption on the permeability of peritumoral edema. Adv Neurol. 1990;52:555.
    [36] Palma L, Bruni G, Fiaschi AI, Mariottini A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci. 2006 Sep;50(3):63-6.
    [37] Papangelou A, Lewin JJ 3rd, Mirski MA, Stevens RD. Pharmacologic management of brain edema. Curr Treat Options Neurol. 2009 Jan;11(1):64-73.
    [38] Kan P, Liu JK, Wendland MM, Shrieve D, Jensen RL. Peritumoral edema after stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development. J Neurooncol. 2007 May;83(1):33-8.
    [39] Mittelbronn M, Psaras T, Capper D, Meyermann R, Honegger J. ACTH- and prolactin-producing pituitary gland microadenoma with biphasic features of atypia and intermediate filament expression. Neuro Endocrinol Lett. 2006 Feb-Apr;27(1-2):89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700