大鼠弥漫性脑创伤中JNK介导的P53通路对神经元自噬的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑创伤的发病率逐年升高,如何降低致死率和致残率就显得尤为重要。TBI引起的一系列生化生理和病理方面反应可以导致神经元持续数天到数周时间的细胞死亡和神经功能障碍。以前在TBI引发的神经功能障碍与细胞坏死和凋亡方面研究较为深入。自噬作为神经细胞死亡的一种形式,近期越来越受到关注,但是在TBI中的作用机制研究不足。目前国内外研究焦点集中于创伤后的神经元自噬过程中信号转导通路和标志性基因方面。
     细胞内外的很多刺激可以诱导自噬的激活,其是一系列细胞分子事件的级联反应的结果。近来研究发现MAPK家族的JNK基因在神经元自噬发生后表达升高,同时其下游因子p53同时表达也升高,这是否与外伤导致神经元自噬的激活有关,目前不得而知。文献报道在研究肺癌肿瘤细胞的自噬之中发现,自噬基因DRAM是p53的靶基因,对于癌细胞的自噬存在调节作用,同时p53对于自噬标志基因beclin-1与bcl-2/bcl-xl复合体的解聚存在调节作用。说明肿瘤抑制因子p53在肺癌中可以调控自噬。我们前期的实验提示在TBI后存在自噬的激活,自噬标志因子LC3、 beclin-1表达升高。那么JNK通路是否能通过对p53的调节来激活神经元自噬,在TBI中是这条通路是否成立这也是本研究的目的,本论文分三部分来阐述。
     第一部分大鼠弥漫性脑创伤后自噬相关蛋白的表达
     目的:本部分研究应用雄性SD大鼠复制Marmarou闭合性弥漫性颅脑创伤模型,检测大鼠弥漫性脑创伤后是否存在神经元自噬。
     方法:采用本实验室改良Marmarou方法。大鼠随机分成:①假手术组(n=48),②脑创伤组(n=48),取伤后1h、6h,12h、24h、48h、72h6个时间点。检测①HE染色;②免疫组学法检测beclin-1的蛋白表达;③Western-blot法检测LC3II/LC3I的比值和beclin-1的蛋白表。应用Image Proplus6.0和Gel-Doc分析系统定量分析测定。实验中所得数据均用x±s表示,用SPSS11.5统计软件进行重复方差分析,以单侧P<0.05,表示差异有统计学意义。
     结果:
     1光镜下观察大鼠脑创伤模型切片
     1.1伤后大鼠脑组织大体观察伤后可见蛛网膜下腔出血,伴随少量脑室出血;点状出血于脑实质多见,多低位脑干的背侧,脑表面的血管充血明显,未见局部脑挫伤。
     1.2HE染色观察组织形态学的改变Sham组脑组织结构正常,血管管腔正常,管壁光滑,神经细胞数量多,形态完整;TBI组神经元胞体皱缩呈三角形,胞浆嗜色性染色减弱,核仁皱缩浓染,细胞周围出现间隙,出现神经元细胞变性坏死改变。
     2海马和皮层部位beclin-1免疫组化检测结果beclin-1定位于神经元细胞的胞质,Sham组偶见阳性细胞,着色浅淡,免疫反应性不随时间发生变化。TBI组与sham组比较,伤后6h beclin-1阳性细胞显著增多,着色加深,免疫反应性增强(P<0.05),伤后48h达高峰(P<0.05),72h开始下降(P<0.05),TBI组24h和72h的结果与48h结果比较差异有统计学意义(P<0.05)。
     3海马和皮层部位LC3的Western blot检测结果Sham组LC3Ⅱ/LC3Ⅰ的比值和LC3Ⅰ与LC3Ⅱ的蛋白表达量在各时间点无变化;TBI组LC3Ⅱ和LC3II/LC3I的比值随着时间点依次升高,TBI组与Sham组比较,伤后6h开始LC3II/LC3I的比值显著升高(P<0.05),伤后表达持续升高,高表达状态持续至伤后72h(P<0.05)。
     4海马和皮层部位beclin-1的Western blot检测结果Sham组beclin-1蛋白表达量在各时间点无变化;TBI组与Sham组比较,伤后6h beclin-1蛋白量显著增高(P<0.05),伤后48h达高峰,高表达状态持续至伤后72h(P<0.05),伤后72h开始下降(P<0.05);TBI组24h和72h的结果与48h结果比较差异有统计学意义(P<0.05)。
     5LC3和PI的共聚焦检测结果
     在TBI组中神经元细胞胞浆中可见大量绿色和红色荧光聚集,此时细胞核和胞浆清晰可见;TBI组伤后12h中LC3在神经元细胞胞浆中阳性细胞数量明显增多,阳性强度增强,此时细胞核仁清晰。
     小结:改良的Marmarou弥漫性脑创伤模型满足了本实验对神经元自噬的研究;大鼠脑创伤后,beclin-1和LC3持续升高证明存在神经元自噬。
     第二部分JNK介导p53通路在TBI中对大鼠海马神经元自噬的影响
     目的:本部分实验通过应用JNK抑制剂SP600125,检测INK、p-p53、 DRAM和beclin-1的表达来证明JNK介导p53通路在TBI中调控大鼠海马神经元自噬是否成立。
     方法:大鼠模型同上,将296只成年雄性SD大鼠随机分成4组:①假手术组(n=74),②脑创伤组(n=74)③DMSO组(n=74)④抑制剂组(n=74)。术后时间点同上。取80只大鼠行水迷宫测试,每组划分为伤后7d、8d、9d及10d四个时间点。检测①HE染色;②免疫组化法和共聚焦法检测p53、 beclin-1和DRAM的蛋白表达定位情况;③Western-blot法检测JNK. p53. beclin-1和DRAM的蛋白表达量。定量分析和统计同上
     结果:
     1HE染色组织形态学改变光镜下伤后24h可见Sham组和TBI组脑组织结构同前TBI+SP600125组病理形态改变较TBI组有不同程度减轻,可见神经元数量多,排列整齐,形态完整,核质均匀,核仁清晰;TBI+DMSO组与TBI组比较变化不大。
     2JNK的Western blot检测结果Sham组JNK蛋白表达量在各时间点无变化;TBI组与Sham组比较,伤后1h JNK蛋白量显著增高(P<0.05),伤后12h达高峰,高表达状态持续至伤后24h(P<0.05),伤后24h开始下降(P<0.05); TBI组与TBI+DMSO组比较有差异无统计学意义(P>0.05);TBI+SP600125组JNK蛋白表达时程与TBI组相似,但表达量减少,与TBI组比较,以伤后6h、12h和24h差异有统计学意义(P<0.05)。
     3p-P53和DRAM的Western blot检测结果Sham组p-p53和DRAM蛋白表达量在各时间点无变化;TBI组与Sham组比较,伤后1h p-P53蛋白量显著增高(P<0.05),伤后24h达高峰,高表达状态持续至伤后48h(P<0.05),伤后48h开始下降(P<0.05);TBI组与TBI+DMSO组比较有差异无统计学意义(P>0.05); TBI+SP600125组p-p53和DRAM蛋白表达时程与TBI组相似,但表达量减少,与TBI组比较,以伤后12h、24h、48h和72h差异有统计学意义(P<0.05)。
     4Beclin-1的Western blot检测结果Sham组beclin-1蛋白表达量在各时间点无变化;TBI组与Sham组比较,伤后1h beclin-1蛋白量显著增高(P<0.05),伤后48h达高峰,高表达状态持续至伤后48h(P<0.05),伤后72h开始下降(P<0.05); TBI组与TBI+DMSO组比较有差异无统计学意义(P>0.05); TBI+SP600125组beclin-1蛋白表达时程与TBI组相似,但表达量减少,与TBI组比较,以伤后6h、12h、24h、48h和72h差异有统计学意义(P<0.05)。
     5DRAM和beclin-1免疫组化检测结果光镜下DRAM和beclin-1标记为棕黄色颗粒,定位于胞浆。Sham组偶见阳性细胞,着色浅淡,免疫反应的数量和强度不随时间点发生变化。TBI组与Sham组比较,伤后6h DRAM和beclin-1阳性细胞显著增多,着色加深,免疫反应性增强(P<0.05),伤后分别于24h和48h达高峰(P<0.05); TBI组与TBI+DMSO组比较有差异无统计学意义(P>0.05); TBI+SP600125组DRAM和beclin-1免疫阳性反应性时间点与TBI组相似,但是免疫反应性减弱,以12h、24h、48h和72h,差异有统计学意义(P<0.05)。
     6p-P53与DRAM和beclin-1的激光共聚焦检测结果
     p-P53阳性细胞胞浆为FITC标记的绿色荧光,DRAM和beclin-1阳性细胞胞浆为TRITC标记的红色荧光。TBI组可见p-p53与DRAM和beclin-1在神经元细胞胞浆中可见大量绿色和红色荧光聚集,此时细胞核清晰可见;TBI+SP600125组中p-p53与DRAM和beclin-1在神经元细胞胞浆中阳性细胞数量明显减少,阳性强度减弱,此时细胞核仁清晰度降低。
     7神经功能评分结果
     Sham组评分为24分;TBI组评分7-9分;TBI+SP600125组评分15-18分。与sham组比较,在TBI组和TBI+SP600125组中,大鼠在后肢抓持反射、触须诱发前肢定位及侧向垫步试验中均表现异常,评分下降,差异有统计学意义(P<0.05); TBI+SP600125组与TBI组比较,评分明显提高(P<0.05)。
     8Morris水迷宫结果
     TBI组和TBI+DMSO组伤后第9天及第10天搜索安全岛潜伏期较sham组明显延长,存在差异有统计学意义(P<0.05)。TBI+SP600125组伤后第9天及第10天搜索安全岛潜伏期较TBI组明显缩短存在差异有统计学意义(P<0.05)。
     小结:大鼠弥漫性脑创伤后JNK通路激活引起p53磷酸化,自噬基因DRAM和beclin-1的表达升高;p-p53对DRAM有显著的调控作用;脑创伤前给予JNK抑制剂SP600125可以降低继发性神经损伤,具有神经保护的作用,改善了脑创伤后大鼠学习和记忆功能。
     第三部分大鼠弥漫性脑创伤后p53的表达对beclin-1和bcl-2的调控机制研究
     目的:本实验应用p53抑制剂PFT-α通过应用激光共聚焦、免疫印迹和免疫共沉淀的检测方法来检测p-p53、 p-bcl-2、 bcl-2、bcl-xl和beclin-1的表达来验证是否脑创伤后p53变化调控复合物解离。
     方法:将240只成年雄性SD大鼠随机分成4组:①假手术组(n=60),②脑创伤组(n=60)③DMSO组(n=60)④抑制剂组(n=60)。每组又分别划分为伤后6h、12h、24h、48h等4个时间点。水迷宫测试同上部分。检测①激光共聚焦方法检测beclin-1与bcl-2和p53的蛋白表达定位情况③IP和Western-blot法检测beclin-1、 bcl-2、 bcl-xl、 p-bcl-2和p-p53的蛋白表达量。分析和统计同前。
     结果:
     1p-bcl-2和p-p53的Western blot检测结果TBI组和TBI+DMSO组各个时间点与Sham组比较,伤后6h p-bcl-2和p-p53蛋白量显著增高(P<0.05),伤后24h达高峰,伤后48h表达量下降(P<0.05); TBI+PFT-α组与Sham组比较p-bcl-2和p-p53蛋白表达量逐渐减弱,以伤后6h、12h和24h差异有统计学意义(P<0.05)。
     2IP及Western blot法检测TBI组和TBI+DMSO组的beclin-1、 bcl-xl和bcl-2的结果Beclin-1的表达在TBI组和TBI+DMSO组各个时间点与Sham组比较,伤后由12h开始beclin-1蛋白量显著降低(P<0.05); Bcl-xl和bcl-2的表达在TBI组和TBI+DMSO组各个时间点与Sham组比较,伤
     后由6h开始bcl-xl和bcl-2蛋白量显著降低(P<0.05);同时实验发现伤
     后12h、24h和48h bcl-2蛋白量变化较bcl-xl蛋白量变化幅度更大,有统
     计学差异(P<0.05)。3IP及Western blot法检测TBI+PFT-a组的beclin-1.bcl-xl和bcl-2
     的结果Beclin-1的表达在TBI+PFT-α组各个时间点与Sham组比较,伤
     后由48h开始beclin-1蛋白量降低有统计学意义(P<0.05);Bcl-xl和bcl-2
     的表达在TBI+PFT-a组各个时间点与Sham组比较,伤后由48h开始bcl-xl
     和bcl-2蛋白量降低统计学意义(P<0.05);同时实验发现伤后48h bcl-2
     蛋白量变化较bcl-xl蛋白量变化幅度更大,有统计学差异(P<0.05)。4Beclin-1与bcl-2和p-p53的激光共聚焦检测结果Bcl-2和p-p53阳
     性细胞胞浆为FITC标记的绿色荧光,beclin-1阳性细胞胞浆为TRITC
     标记的红色荧光。TBI组可见beclin-1与bcl-2和p-p53在神经元胞浆中可
     见大量绿色和红色荧光聚集,此时细胞核清晰可见;TBI+PFT-α组中
     beclin-1与bcl-2和p-p53在神经元胞浆中阳性细胞数量明显减少,阳性强
     度减弱,此时细胞核仁清晰度降低。5神经功能评分结果Sham组评分为24分;TBI组评分在7-10分之间;TBI+PFT-α组评
     分16-20分之间。与TBI组比较在TBI+PFT-a组中,大鼠在后肢抓持反
     射、触须诱发前肢定位及侧向垫步试验中表现均明显改善,评分明显提高,
     差异有统计学意义(P<0.05)6Morris水迷宫结果TBI组和TBI+DMSO组伤后第9天及第10天搜索安全岛潜伏期较
     sham组明显延长,存在差异有统计学意义(P<0.05)。TBI+PFT-α组伤后第
     9天及第10天搜索安全岛潜伏期较TBI组明显缩短存在差异有统计学意
     义(P<0.05).小结:大鼠弥漫性脑创伤后beclin-1-bcl-2/bcl-xl复合物解离,导致神
     经元自噬水平升高;p53调控beclin-1-bcl-2/bcl-xl复合物解离,间接影响
     脑创伤后神经元自噬;脑创伤前给予p53抑制剂PFT-a可以降低继发性神
     经损伤,具有神经保护的作用,改善了脑创伤后大鼠学习和记忆功能。结论:
     在大鼠弥漫性脑创伤中,JNK通路可以通过介导p53的磷酸化调控自噬因子DRAM、 beclin-1的表达,达到调控神经元自噬的目的,同时阻断JNK的传导通路可以有效的抑制脑创伤后神经元的自噬,具有神经保护作用,改善了脑创伤后大鼠学习和记忆功能。
The incidence of traumatic brain injury increased year by year, how to reduce mortality and morbidity is particularly important. A series of chemical, biological, physiological and pathological reactions caused by TBI can lead to cell death and neurological dysfunction of neurons lasted for several days to several weeks. The study in TBI-induced neurological dysfunction, cell necrosis and apoptosis have more in-depth. Autophagy as a form of neuronal cell death, recently more and more attention, but the studies in TBI were poor. The present research focused on the signal transduction pathways and signs gene.
     Intracellular and extracellular stimuli can induce the activation of autophagy, which is the result of a series of cellular and molecular events. Recent studies found that the expression of JNK gene in MAPK family raised after activation of neuron autophagy, while expression of its downstream effectors-p53increased,but the activation of neuron autophagy is currently unknown to be concerned with TBI. The reports in lung cancer cells were found that DRAM, a p53target genes, regulated autophagy and p53regulated depolymerization of beclin-l-bcl-2/bcl-xl complex. Description of the tumor suppressor p53in lung cancer can be modulated by autophagy. Our preliminary experiments suggest that the expression of LC3and beclin-1elevated after TBI, but JNK-medated p53would activate the neuron autophagy after TBI is unknown, which is also the aim of this study. This paper is divided into three parts to elaborate the idea.
     Objective:According to Marmarou's falling model in1994, this part of study detects whether there is autophagy in neuron.
     Method:A total of96male Sprague-Dawley (SD) rats (300-350g) were used in this study. By randomized block method rats were randomly divided into four groups:sham-operated (n=48), TBI (n=48). Each group was further divided into1h,6h,12h,24h,48h and72h. LC3II/LC3I and Beclin-1, were evaluated by Western blotting analysis. H&E staining observes morphological changes. The cellular localization and expression of Beclin-1was observed by immunohistochemistry.The comparisons of two groups were conducted using analysis of variance (ANOVA). P values of less than0.05were considered statistically significant. Immunohistochemical stained sections were analyzd with IOD/Area values detected by Image proplus6.0digital medical image analysis system. The films of western blot were scanned and quantified using the Gel-Doc image analysis software.
     Result:
     1Pathological changes:After injury, the majority of rats had a transient decerebration and respiration suppression. Light microscopy level of H&E indicated that brain tissue was normal in sham group while there were severe changes in TBI group,such as hemorrhage, yellow-stained, brain tissue edema, vascular congestion. In addition, there were signicant swollen, necrotic and denaturaious neurons in brain tissue after trauma, Which were correspondenced with the pathological changes in Marmarou model.
     2Beclin-1result in immunochemistry The production of beclin-1, located in the cytoplasm of neural cells, was stained yellow and brown in immunochemistry. In sham group, we can seldom see a positive cell, and the positive cell we see was light stained, there was significant difference between TBI group and sham groups(P<0.05):in the TBI group there is the peak of48h, which compares with the expression of24h and72h (P<0.05).
     3LC3and beclin-1result in western blot In sham group, we can seldom see the positive change of beclin-1and LC3II/LC3I in all points of time. The value of LC3II/LC3I is gradually raising and peak of beclin-1is 48h(P<0.05), which compares with data of sham group. In the TBI group the peak of beclin-1at48h compares with the expression of24h and72h about which there is statistically significant(P<0.05).
     4LC3and PI result in immunofluorescence. The green fluorescent of LC3positive cells labeled by FICT accumulated in the cytoplasm and the red fluorescent of nucleus labeled by PI in TBI group, and the form of the nucleus was regular,and the nucleolus was clearly visible. At24h after TBI, compared with the sham group, LC3positive expression in numbers and immune strength were increased.
     Conclusion:Marmarou's model modified fits this study; this part of study detects that there is autophagy in neuron.
     The second part JNK-mediated p53phosphorylation enhancing neuron autophagy after TBI
     Objective:This part of study apply with SP600125of JNK inhibitor and detect the expression of JNK, p-p53, DRAM and beclin-1, which would show whether JNK-mediated p53phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI.
     Method:A total of296male SD rats were used in this study. By randomized block method rats were randomly divided into four groups:sham group (n=74), TBI group(n=74), TBI+DMSO(n=74), and TBI+SP600125(n=74). Each group was further divided into1h,6h,12h,24h,48h and72h. JNK was treated with SP600125, a specific JNK inhibitor. JNK, p-p53, beclin-1and DRAM were evaluated by Western blotting analysis. The cellular localization and expression of p53, Beclin-1and DRAM were observed by immunofluorescence and immunohistochemistry. Another80rats undergo morris water maze test. Quantitative analysis and statistics are the same mentioned previously.
     Result:
     1Pathological changes:Light microscopy level of H&E indicated that brain tissue was normal in sham group while there were severe changes in TBI group. There were signicant swollen, necrotic and denaturaious neurons in brain tissue at24h after trauma. When treated with sp600125, these changes were weakened in TBI groups at difference time points(P<0.05).
     2JNK and beclin-1result in western blot In sham group, we can seldom see the positive change of beclin-1and JNK in all points of time. The peak of beclin-1and JNK were repectively the48h and12h, which compares with data of sham group(P<0.05). The comparison of datas in TBI group and TBI+SP600125group are not statistically significant(P>0.05). Expression of beclin-1in TBI+SP600125group compared with that of TBI group are statistically significant (P<0.05) at6h,12h,24h,48h and72h. The same comparison about expression of JNK is at6h,12h and24h.
     3DRAM and p-p53result in western blot In sham group, we can seldom see the positive change of DRAM and p-p53in all points of time. The peak of DRAM and p-p53were the24h, which compares with data of sham group(P<0.05). The comparison of datas in TBI group and TBI+DMSO group are not statistically significant(P>0.05). Expression of beclin-1in TBI+SP600125group compared with that of TBI group are statistically significant(P<0.05) at12h,24h,48h and72h.
     4DRAM and beclin-1result in immunochemistry The production of DRAM and beclin-1, located in the cytoplasm and nucleus of neural cells, were stained yellow and brown. In TBI group, the peak of DRAM and beclin-1were repectively the24h and48h(P<0.05). The comparison of datas in TBI group and TBI+DMSO group are not statistically significant(P>0.05). When treated with SP600125, these changes were weakened in TBI+SP600125group at12h,24h,48h and72h (P<0.05).
     5p-P53, DRAM and beclin-1result in immunofluorescence. The green fluorescent of p-p53positive cells labeled by FICT accumulated in the cytoplasm and the red fluorescent of DRAM and beclin-1labeled by TRITC accumulated in the cytoplasm in TBI group, and the form of the nucleus was regular,and the nucleolus was clearly visible. But their expression in the TBI+SP600125group, positive expression in numbers and immune strength were decreased.
     6Recommending score of neural function:sham group, TBI group and SP600125group each had a score of24,7-9,15-18respectively. As a result, there was significant difference between TBI group, SP600125group and sham group (P<0.05); there was also significant difference between TBI group and SP600125group (P<0.05).
     7Morris water maze result Morris water maze tests showed that obvious space leaming and memorizing obstruction existed in rats after injury, delitescence prolonged obviously9to10days later. Search moving tracks shows that search strategy altered more ideally with time in the TBI+SP600125group than in TBI group(P<0.05).
     Conclusion:This part of study detect that SP600125could raise learning and memorizing dysfunction in rats after injury; JNK-mediated p53phosphorylation might be an important mechanism for enhancing expression of DRAM and beclin-1in response to TBI.
     The third part The study of p53phosphorylation regulating beclin-1and bcl-2after TBI
     Objective:This part of study apply with PFT-aof p53inhibitor and detect the expression of JNK, p-p53, p-bcl-2, bcl-2, bcl-xl and beclin-1, which would show whether p53phosphorylation might be an important mechanism for dissociating the compound of beclin-1-bcl-2/bcl-xl after TBI.
     Method:A total of240male SD rats were used in this study. By randomized block method rats were randomly divided into four groups:sham group (n=60), TBI group(n=60), TBI+DMSO(n=60), and TBI+PFT-a (n=60). Each group was further divided into6h,12h,24h and48h. P53was treated with PFT-a, a specific PFT-ainhibitor. Beclin-1, p-p53, p-bcl-2, bcl-2and bcl-xl were evaluated by Western blotting analysis. Expression of p53, Beclin-1and DRAM were observed by immunoprecipitation and Western blot. The cellular localization and expression of beclin-1, p53and bcl-2were detected by immunofluorescence. Another80rats undergo morris water maze test. Quantitative analysis and statistics are the same mentioned previously.
     Result:
     1p-bcl-2and p-p53result in western blot The peaks of p-bcl-2and p-p53were the24h, which compare with data of sham group(P<0.05). Their expression in TBI+PFT-agroup are gradually decreasing compared with sham group and there are statistically significant P<0.05) at6h,12h and24h.
     2Beclin-1, bcl-2and bcl-xl result in TBI group and TBI+DMSO group by immunoprecipitation and Western blot Expression of beclin-1in TBI group and TBI+DMSO group is gradually decreasing compared with sham group and there are statistically significant P<0.05) at12h,24h and48h. Expression of bcl-2and bcl-xl are gradually decreasing from6h. At the same time we find that the changed quantity of bcl-2is the more great than that of bcl-xl (P<0.05).
     3Beclin-1, bcl-2and bcl-xl result in TBI+PFT-agroup by immunoprecipitation and Western blot Expression of beclin-1in TBI+PFT-agroup is decreasing compared with sham group and there are statistically significant P<0.05) at48h. Expression of bcl-2and bcl-xl are the same. At the same time we also find that the changed quantity of bcl-2is the more great than that of bcl-xl (P<0.05).
     4Beclin-1, bcl-2and p-p53result in immunofluorescence. The green fluorescent of bcl-2and p-p53positive cells labeled by FICT accumulated in the cytoplasm and the red fluorescent of beclin-1labeled by TRITC accumulated in the cytoplasm in TBI group, and the form of the nucleus was regular,and the nucleolus was clearly visible. But their expression in the TBI+PFT-agroup, positive expression in numbers and immune strength were decreased.
     5Recommending score of neural function:sham group, TBI group and TBI+PFT-a group each had a score of24,7-10,16-20respectively. As a result, there was significant difference between TBI group, TBI+PFT-agroup and sham group (P<0.05); there was also significant difference between TBI group and TBI+PFT-a group (P<0.05).
     6Morris water maze result Morris water maze tests showed that obvious space learning and memorizing obstruction existed in rats after injury, delitescence prolonged obviously9to10days later. Search moving tracks shows that search strategy altered more ideally with time in the TBI+PFT-a group than in TBI group(P<0.05).
     Conclusion:This part of study detect that PFT-a could raise learning and memorizing dysfunction in rats after injury; p53phosphorylation might be an important mechanism for dissociating the compound of beclin-1-bcl-2/bcl-xl after TBI.
     Conclusion:JNK-mediated p53phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI.
引文
1 Martinez-Borra J, Lopez-Larrea C. Autophagy and self-defense. Adv Exp Med Biol.2012;738:169-84.
    2 Huang WP, Klionsky DJ. Autophagy in yeast:A review of the molecular machinery. Cell Struct Funct.2002;27:409-20
    3 Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes:De novo formation of a membrane structure. Trends Cell Biol.2002;12:231-35
    4 Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med.2003;9:65-76
    5 Klionsky DJ, Cregg JM, Dunn WAJ. et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell.2003;5:539-45
    6 Kabeya Y, Mizushima N, Ueno T. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000; 19:5720-28
    7 Laura Berliocchil, Rossell a Russo, Maria Maiaru, Alessandra Levato, Giacinto Bagetta and Maria Tiziana Corasaniti. Autophagy impairment in a mouse model of neuropathic pain. Molecular Pain.2011;7:83-91
    8 Kihara A, Kabeya Y, Ohsumi Y. et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports. 2001:2:330-35
    9 Tassa A, Roux MP, Attaix D. et al. Class III phosphoinositide 3-kinase-beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J Sep 11.2003;376:577-586
    10 Shimizu S. Apoptosis and non-apoptotic cell death. Rinsho Ketsueki. 2011;52(10):1669-76.
    11 Zhu J-H, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol.2003; 13:473-81
    12 Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease:An immuno-electron microscopy study. J Neuropathol Exp Neurol.2005;64:113-22
    13 Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I:Pathophysiology and biomechanics. J Neurosurg,1994,80:291-300
    14萨姬布鲁克.分子克隆实验指南,第二版,北京:科学出版社,1999,873-89
    15 Zhao JB, Zhang Y, Li GZ, Su XF, Hang CH. Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. Neuroscience letters 2011; 498:147-52
    16 Tomita Y, Sawauchi S, Beaumont A, Marmarou A. The synergistic effect of acute subdural hematoma combined with diffuse traumatic brain injury on brain edema. Acta Neurochir Suppl.2000;76:213-6
    17 Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model. J Neurotrauma.2011;28(9):1767-82
    18 Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation after transient cerebral ischemia. J Neurosci;2000(20):3191-9
    19 Hu, BR. Co-translational protein folding and aggregation after brain ischemia. Handbook of neurochemistry and molecular neurobiology. 2006.23(6):321-322
    20 Ciechanover A. The ubiquitin proteolytic system:from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 2006,66(Suppl 1):S7-19
    21 Nixon RA. Autophagy in neurodegenerative disease:friend, foe or turncoat? Trends Neurosci,2006;29:528-35
    22 Klionsky DJ. Neurodegeneration:good riddance to bad rubbish. Nature 2006;441:819-20
    23 Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating. Cell Death Differ 2005;2 (Suppl):1542-52
    24 Huang WP, Klionsky DJ. Autophagy in yeast:A review of the molecular machinery. Cell Struct Funct.2002;27:409-20
    25 Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes:De novo formation of a membrane structure. Trends Cell Biol.2002; 12:231-35
    26 Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med.2003;9:65-76
    27 Klionsky DJ, Cregg JM, Dunn WAJ. et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell.2003;5:539-45
    28 Kabeya Y, Mizushima N, Ueno T. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBOJ.2000; 19:5720-28
    29 Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE 16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117:2805-12
    30 Mizushima N, Yamamoto A, Hatano M. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol.2001;152:657-67
    31 Mizushima N, Sugita H, Yoshimori T. et al. A new protein conjugation system in human. The counterpart of the yeast Apgl2p conjugation system essential for autopagy. J Biol Chem.1998;273:33889-92
    32 Mizushima N, Kuma A, Kobayashi Y. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apgl2-Apg5 conjugate. J Cell Sci.2003; 116:1679-88
    33 Mizushima N, Yoshimori T, Ohsumi Y. Role of the Apg12 conjugation system in mammalian autophagy. Int J Biochem Cell Biol.2003;35:553-61
    34 Kouroku Y, Fujita E, Tanida I,et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.2007 Feb;14(2):230-9
    35 Kihara A, Kabeya Y, Ohsumi Y et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports. 2001;2:330-35
    36 Tassa A, Roux MP, Attaix D. et al. Class III phosphoinositide 3-kinase-beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J Sep 11.2003;376:577-586
    37 Liang C, et al. Autophagy and tumour suppressor activity of a novel Beclin-binding protein UVRAG. Nat Cell Biol,2006,8(7):688-699
    38 Rikiishi H. Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol.2012;2012:3176-45
    39 Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2011;12:162-76
    40 Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 2011;96:1016-27
    41 Adhami F, Schloemer A, Kuan CY. The roles of autophagy in cerebral ischemia. Autophagy 2009;3:42-4
    42 Lai Y, Hickey RW, Chen Y, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2011;28(3):540-550
    1 Adil H, MPH; David C, David T, Elliott R, Marie C, Edward E. Cornwe. Race and Insurance Status as Risk Factors for Trauma Mortality. Arch Surg.2008;143:945-949
    2 Turkoglu OF, Eroglu H, Okutan O, et al. Atorvastatin efficiency after traumatic brain injury in rats. Surg Neurol.2009 Aug;72(2):146-52
    3 T.Borsello, K.Croquelois, J.P.Hornung, P.G.Clarke. N-methyl-d-aspartate triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway, Eur.J. Neurosci.2003; 18:473-485
    4 D.C.Rubinsztein, J.E.Gestwicki, L.O.Murphy, D.J.Klionsky, Potential. Therapeutic applications of autophagy, Nat. Rev. Drug Discov.2007; 6:304-312
    5 L.Yu,A.Alva,H.Su,P.Dutt,E.Freundt,S.Welsh,E.H.Baehrecke,MJ.Lenar do,Regulation of an ATG7-Beclin-1 program of autophagic cell death by caspase-8. Science 2004;304:1500-1502
    6 Salvatore J, Cherra III, Charleen T, Chu. Autophagy in neuroprotection and neurodegeneration:A question of balance. Future Neurol. 2008;3:309-323
    7 Y.Wei, S.Pattingre, S.Sinha, M.Bassik, B.Levine, JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy, Mol Cell, 2008; 30:678-688
    8 D.D.Li, L.L.Wang, R.Deng, J.Tang, Y.Shen, J.F.Guo,et al. The pivotal role of c-JunNH2-terminal kinase mediated Beclin-1 expression during anticancer agents-induced autophagy in cancer cells, Oncogene 2009;28: 886-898
    9 Crighton D,Wilkison S,OPrey J,Syed N,Smith P,Harrison PR,et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121-134
    10 Santiago LA, Oh BC, Dash PK, et al. A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj.2012;26:107-25.
    11 Kamada H, Nito C, Endo H, et al. Bad as a converging signaling molecule bet ween survival PI3K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 2007;27:521-533
    12 Liu Y, Wang H, Zhu Y, et al. The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway. Brain Res,2012;1445:73-81
    13 Davies C, Toumier C. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans,2012; 40:85-89
    14 Da Costa CR, Villadiego J, Sancho R, et al. Bagl-L is a phosphorylation-dependent coactivator of c-Jun during neuronal apoptosis. Molecular and cellular biology Molecular and cellular biology 2010; 30: 3842-52
    15 Hagiwara S, Kudo M, Chung H, et, al. Activation of c-Jun N-terminal kinase in non-cancerous liver tissue predicts a high risk of recurrence after hepatic resection for hepatocellular carcinoma. Hepatoloy research:the official journal of the Japan Society of Hepatology 2012; 42:394-400
    16 William M Armstead, J Willis Kiessling, John Riley, et al. tPA contributes to impaired NMDA cerebrovasodilation after traumatic brain injury through activation of JNK MAPK. Neurological Research, 2011;33;726-733
    17 Fridman JS,Lowe SW.Control of apoptosis by p53.Oncogene 2003;22: 9030-9040
    18 Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004;303:1010-1014
    19 Sultana H,Kigawa J,Kanamori Y.Chemosensitivity and p53-Bax pathway mediated apoptosis in patient with uterine cervical cancer[J]. Ann Oncol,2003;14:214-219
    20 Wang Y, Dong XX, Cao Y, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci,2009;30:2258-2270
    21 Mah LY, Prey J, Baudot AD, et al. DRAM-1 encodes multiple isoforms that regulate autophagy. Autophagy,2012;8:18-28
    22 Lorin S, Pierron G,Ryan KM,et al.Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy,2010;6:153-154
    23 Crighton D, Wilkinson S, Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell,2006;126:121-34
    24 Li DD, Wang LL, Deng R, et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene,2009 28(6):886-98
    25 Xu P, Das M, Reilly J, et al. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev.2011;25:310-22
    26 Livesey KM, Kang R, Vernon P, p53/HMGB1 Complexes Regulate Autophagy and Apoptosis. Cancer Res.2012 Apr 10. [Epub ahead of print]
    27 Niu YL, Li C, Zhang GY Blocking Daxx trafficking attenuates neuronal cell death following ischemia/reperfusion in rat hippocampus CAl region. Archives of biochemistry and biophysics 2011; 515:89-98
    1 Y. Kondo, T. Kanzawa, R. Sawaya, S. Kondo. The role of autophagy in cancer development and response to therapy, Nat. Rev. Cancer.2005; 5:726-734
    2 M.C. Maiuri, E. Zalckvar, A. Kimchi, G. Kroemer. Self-eating and self-killing:crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol.2007;8:741-752
    3 Y. Wei, S. Pattingre, S. Sinha, M. Bassik, B. Levine, JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy, Mol. Cell,2008;30:678-688
    4 Smith DH, Okiyama K, Thomas MJ, et al. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma,1994;8:259-269
    5 Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J. Virol. 2008; 72:8586-8596
    6 Maiuri MC, Zalckvar E, Kimchi A,et al. Self-eating and self-killing:cross talk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol. 2007;8:741-752
    7 Maiuri MC, LeToumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domainin Beclin-1. EMBO J.2007;26:2527-2539
    8 Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H & Levine B Induction of auto-phagy and inhibition of tumorigenesis by beclin 1. Nature,1999;402:672-676
    9 Maiuri MC, Le Toumelin G, Criollo A, Rain JC,Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K,Tavernarakis N et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J,2007;26:2527-2539
    10 Maiuri MC, Zalckvar E, Kimchi A & Kroemer G. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol,2007;8;741-752
    11 Ravikumar B, Futter M, Jahreiss L, et al. Mammalian macroautophagy at a glance. J Cell Sci,2009; 122:1707-1711
    12 Topisirovic I & Sonenberg N Cell biology Burn out or fade away? Science,2010;327:1210-1211
    13 Takahasi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UV-RAG and regulates autophagy and tumorigenesis. NatCell Biol;2007;9:1142-1151
    14 Noble CG, Dong JM, Manser E & Song H Bcl-xL and UVRAG cause a monomer-dimer switch in Beclinl. J Biol Chem,2008;283:26274-26282
    15 Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclinl-dependent autophagy. Cell,2005;122:927-939
    16 Altman BJ, Wofford JA, Zhao Y, et al. Autophagy provides nutrients but can lead to Chop-dependent induction of Bim to sensitize growth factor-deprived cells to apoptosis. Mol Biol Cell,2009;20:1180-1191
    17 Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell sur-vival and restricts necrosis, inflammation, and tumori-genesis. Cancer Cell,2006; 10:51-64
    18 Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol,2004;6:1221-1228
    19 Livesey KM, Kang R, Vernon P, p53/HMGB1 Complexes Regulate Autophagy and Apoptosis. Cancer Res.2012 Apr 10 [Epub ahead of print]
    20 Nijboer CH, Heijnen CJ, van der Kooij MA, Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol.2011;70:255-64
    21 Tu YF, Lu PJ, Huang CC, et al. Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke.2012;43:491-498
    22 Yan JH, Khatibi NH, Han HB,et al. p53-Induced Uncoupling Expression of Aquaporin-4 and Inwardly Rectifying K(+) 4.1 Channels in Cytotoxic Edema after Subarachnoid Hemorrhage. CNS Neurosci Ther. 2012;18:334-42
    1 Arstila AU, Trump BF. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol.1968;53:687-733
    2 Ahlberg J, Marzella L, Glaumann H. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest.1982:523-32
    3 Kopitz J, Kisen GO, Gordon PB. et al. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990; 111:941-53
    4 Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science.1996;273:501-03
    5 Glaumann H. Crinophagy as a means for degrading excess secretory proteins in rat liver. Revis Biol Celular.1989;20:97-110
    6 Liou W, Geuze HJ, Geelen MJH. et al. The autophagic and endocytic pathways converge at the nascent autophagic vacuole. J Cell Biol. 1997;136:61-70
    7 Berg TO, Fengsrud M, Stromhaug PE. et al. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem.1998;273:21883-92
    8 Gordon PB, Hoyvik H, Seglen PO. Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J. 1992;283:361-69
    9 Lawrence BP, Brown WJ. Autophagic vacuoles rapidly fuse with preexisting lysosomes in cultured hepatocytes. J Cell Sci. 1992;102:515-26
    10 Dunn WA. Studies on the mechanisms of autophagy:Maturation of the autophagic vacuole. J Cell Biol.1990; 110:1935-45
    11 Punnonen EL, Autio S, Kaija H. et al. Autophagic vacuoles fuse with the prelysosomal compartment in cultured rat fibroblasts. Eur J Cell Biol. 1993;61:54-66
    12 Tooze J, Hollinshead M, Ludwig T. et al. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol.1990;111:329-45
    13 Dunn WA. Studies on the mechanisms of autophagy:Formation of the autophagic vacuole. J Cell Biol.1990; 110:1923-33
    14 Eskelinen EL, Illert AL, Tanaka Y. et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell.2002; 13:3355-68
    15 Tanaka Y, Guhde G, Suter A. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature.2000;406:902-06
    16 Rez G, Meldolesi J. Freeze-fracture of drug-induced autophagocytosis in the mouse exocrine pancreas. Lab Invest.1980;43:269-77
    17 Fengsrud M, Erichsen ES, Berg TO. et al. Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol.2000;79:871-82
    18 Punnonen EL, Pihakaski K, Mattila K. et al. Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver. Cell Tissue Res.1989;258:269-76
    19 Dunn WA. Autophagy and related mechanisms of lysosomal-mediated protein degradation. Trends Cell Biol.1994;4:139-43
    20 Yamamoto A, Masaki R, Fukui Y. et al. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes. J Histochem Cytochem.1990;38:1571-81
    21 Kim J, Huang WP, Stromhaug PE. et al. Convergence of multiple autophagy and cytoplasm to vacuole components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem. 2002;277:763-73
    22 Suzuki K, Kirisako T, Kamada Y. et al. The preautophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.2001;20:5971-81
    23 Hamasaki M, Noda T, Ohsumi Y. The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct.2003;28:49-54
    24 Purhonen P, Pursiainen K, Reunanen H. Effects of brefeldin A on autophagy in cultured rat fibroblasts. Eur J Cell Biol.1997;74:63-67
    25 Papadopoulos T, Pfeifer U. Regression of rat liver autophagic vacuoles by locally applied cycloheximide. Lab Invest.1986;54:100-07
    26 Aplin A, Jasionowski T, Tuttle DL. et al. Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol.1992;152:458-66
    27 Arstila AU, Nuuja IJ, Trump BF. Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res. 1974;87:249-52
    28 Kabeya Y, Mizushima N, Ueno T. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBOJ.2000; 19:5720-28
    29 Eskelinen EL, Prescott AR, Cooper J. et al. Inhibition of autophagy in mitotic animal cells. Traffic.2002;3:878-893
    30 Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med.1998;76:6-12
    31 Fuertes G, Martin De Llano JJ, Villarroya A. et al. Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J.2003;375:75-86
    32 Talloczy Z, Jiang W, Virgin HW IV. et al. Regulation of starvation and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA.2002;99:190-95
    33 Kanazawa T, Taneike I, Akaishi R. et al. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes J Biol Chem Nov 10 2003 [Epub ahead of print]
    34 Kamada Y, Funakoshi T, Shintani T. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150:1507-13
    35 Blommaart EFC, Luiken JJFP, Blommaart PJE. et al. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem.1995;270:2320-26
    36 Petiot A, Ogier-Denis E, Blommaart EFC. et al. Distinct classes of phosphatidyl-inositol 3'-kinase are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem.2000;275:992-98
    37 Seglen PO, Gordon PB.3-methyladenine:Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA.1982;79:1889-92
    38 Blommaart EFC, Krause U, Schellens JPM. et al. The phosphatidyl-inositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem. 1997;243:240-46
    39 Ogier-Denis E, Codogno P. Autophagy:A barrier or an adaptive response to cancer. Biochim Biophys Acta.2003; 1603:113-28
    40 Petiot A, Pattingre S, Arico S. et al. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct.2002;27:431-41
    41 Rich KA, Burkett C, Webster P. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol.2003;5:455-68
    42 Nishino I, Fu J, Tanji K. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406:906-10
    43 Nishino I. Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep. 2003;3:64-69
    44 Jurilj N, Pfeifer U. Inhibition of cellular autophagy in kidney tubular cells stimulated to grow by unilateral nephrectomy. Virchovs Arch B Cell Pathol Incl Mol Pathol.1990;59:32-37
    45 Liang XH, Jackson S, Seaman M. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature.1999;402:672-76
    46 Qu X, Yu J, Bhagat G. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112:1809-1820
    47 Yue Z, Jin S, Yang C. et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA.2003; 100:15077-82
    48 Bergamini E, Cavallini G, Donati A. et al. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomedicine and pharmacotherapy.2003;57:203-08
    49 Melendez A, Talloczy Z, Seaman M. et al. Autophagy genes are essential for dauer development and lifespan extension in C. elegans. Science. 2003;301:1387-91
    50 Bursch W, Ellinger A, Kienzl H. et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:The role of autophagy. Carcinogenesis. 1996;17:1595-607
    51 Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ.2001;8:569-81
    52 Inbal B, Bialik S, Sabanay I. et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol.2002; 157:455-68
    53 Bauvy C, Gane P, Arico S. et al. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res.2001;15:139-49
    54 Huang WP, Klionsky DJ. Autophagy in yeast:A review of the molecular machinery. Cell Struct Funct.2002;27:409-20
    55 Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes:De novo formation of a membrane structure. Trends Cell Biol.2002; 12:231-35
    56 Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med.2003;9:65-76
    57 Klionsky DJ, Cregg JM, Dunn WAJ. et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell.2003;5:539-45
    58 Ichimura Y, Kirisako T, Takao T. et al. A ubiquitin-like system mediates protein lipidation. Nature.2000;408:488-92
    59 Mizushima N, Yamamoto A, Hatano M. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol.2001;152:657-67
    60 Mizushima N, Sugita H, Yoshimori T. et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autopagy. J Biol Chem.1998;273:33889-92
    61 Mizushima N, Kuma A, Kobayashi Y. et al. Mouse Apgl6L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci.2003; 116:1679-88
    62 Mizushima N, Yoshimori T, Ohsumi Y Role of the Apg12 conjugation system in mammalian autophagy. Int J Biochem Cell Biol.2003;35:553-61
    63 Kihara A, Kabeya Y, Ohsumi Y. et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports. 2001;2:330-35
    64 Tassa A, Roux MP, Attaix D. et al. Class III phosphoinositide 3-kinase-beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J Sep 11.2003;376:577-586
    65 Hoyvik H, Gordon PB, Berg TO. et al. Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine. J Cell Biol. 1991;113:1305-12
    66 Seglen PO, Gordon PB, Tolleshaug H. et al. Use of [3H]raffinose as a specific probe of autophagic sequestration. Exp Cell Res. 1986;162:273-277
    67 Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995:3-14
    68 Munafo DB, Colombo MI. A novel assay to study autophagy:Regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114:3619-29
    69 De Duve C. The lysosome in retrospectIn:Dingle JT, Fell HB, eds.Lysosomes in Biology and PathologyAmsterdam:North Holland Publ. Co,1969; 3:40-45
    1 Clarke PG. Developmental cell death:Morphological diversity and multiple mechanisms. Anat Embryol,1990; 181:195-213
    2 Kinch G, Hoffman KL, Rodrigues EM, Zee MC, Weeks JC. Steroid-triggered programmed cell death of a motoneuron is autophagic and involves structural changes in mitochondria. J Comp Neurol. 2003;457:384-403
    3 Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997;12:25-31
    4 Zhu J-H, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol.2003; 13:473-81
    5 Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease:An immuno-electron microscopy study. J Neuropathol Exp Neurol.2005;64:113-22
    6 Sapp E, Schwarz C, Chase K, et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann Neurol.1997;42:604-12
    7 Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P. Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease:A brain biopsy study. Int J Biochem Cell Biol.2004;36:2563-73
    8 Koike M, Shibata M, Waguri S, et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease) Am J Pathol.2005; 167:1713-28
    9 Nishino I. Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep. 2003;3:64-9
    10 Suzuki T, Nakagawa M, Yoshikawa A, et al. The first molecular evidence that autophagy relates rimmed vacuole formation in chloroquine myopathy. J Biochem (Tokyo) 2002; 131:647-51
    11 Ohsumi Y. Molecular dissection of autophagy:Two ubiquitin-like systems. Nat Rev Mol Cell Biol.2001;2:211-16
    12 Levine B, Klionsky DJ. Development by self-digestion:Molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463-77
    13 Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1:11-22
    14 Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy.2005;1-2:66-74
    15 Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron.2003;40:401-13
    16 Cuervo AM. Autophagy:Many paths to the same end. Mol Cell Biochem. 2004;263:55-72
    17 Farre JC, Subramani S. Peroxisome turnover by micropexophagy:An autophagy-related process. Trends Cell Biol.2004; 14:515-23
    18 Shelburne JD, Arstila AU, Trump BF. Studies on cellular autophagocytosis. The relationship of autophagocytosis to protein synthesis and to energy metabolism in rat liver and flounder kidney tubules in vitro. Am J Pathol. 1973;73:641-70
    19 Dunn WA., Jr Studies on the mechanisms of autophagy:Maturation of the autophagic vacuole. J Cell Biol.1990; 110:1935-45
    20 Eskelinen E-L. Maturation of autophagic vacuoles in mammalian cells. Autophagy.2005; 1:1-10
    21 Larsen KE, Sulzer D. Autophagy in neurons:A review. Histol Histopathol. 2002;17:897-908
    22 Stromhaug PE, Berg TO, Fengsrud M, Seglen PO. Purification and characterization of autophagosomes from rat hepatocytes. Biochem J. 1998;335(Pt2):217-24
    23 Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J.2000; 19:5720-28
    24 Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101-11
    25 Webb JL, Ravikumar B, Rubinsztein DC. Microtubule disruption inhibits autophagosome-lysosome fusion:Implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol. 2004;36:2541-50
    26 Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and Micro-tubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem.2005;280:40282-92
    27 Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3-14
    28 Niemann A, Takatsuki A, Elsasser HP. The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem.2000;48:251-58
    29 Klionsky DJ, Cregg JM, Dunn WA, Jr, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell.2003;5:539-45
    30 Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct.2002;27:421-29
    31 Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol.2004;36:2503-18
    32 Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy.2005; 1:84-91
    33 Codogno P, Meijer AJ. Autophagy and signaling:Their role in cell survival and cell death. Cell Death Differ.2005; 12 (Suppl 2):1509-18
    34 Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases:a conserved family of signal transducers. Trends Biochem Sci.1997;22:267-72
    35 Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidyli-nositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2:330-35
    36 Tassa A, Roux MP, Attaix D, Bechet DM. Class III phosphoinositide 3-kinase-Beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J.2003;376:577-86
    37 Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 2000;275:992-98
    38 Lehman JA, Gomez-Cambronero J. Molecular crosstalk between p70S6k and MAPK cell signaling pathways. Biochem Biophys Res Commun. 2002;293:463-69
    39 Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem.2000;275:39090-95
    40 Shelburne JD, Arstila AU, Trump BF. Studies on cellular autophagocytosis. cyclic AMP-and dibutyryl cyclic AMP-stimulated autophagy in rat liver. Am J Pathol.1973;72:521-40
    41 Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem.1998;273:3963-66
    42 Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans:Cell survival in the land of plenty. Nat Rev Mol Cell Biol.2005;6:439-48
    43 Kanazawa T, Taneike I, Akaishi R, et al. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem.2004;279:8452-59
    44 Gu Y, Wang C, Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett. 2004;577:357-60
    45 Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol.2004;36:2376-91
    46 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science.2004;305:1292-95
    47 Sullivan PG, Dragicevic NB, Deng JH, et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem. 2004;279:20699-707
    48 Brunk UT, Terman A. Lipofuscin:Mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002;33:611-19
    49 Sulzer D, Bogulavsky J, Larsen KE, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA.2000;97:11869-74
    50 Cataldo AM, Barnett JL, Berman SA, et al. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain:Evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14:671-80
    51 Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307:1282-88
    52 Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol.2005;171:87-98
    53 Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101-11
    54 Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci.2001;21:9549-60
    55 Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. Faseb J.2001; 15:916-26
    56 Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res.2003;73:341-50
    57 Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Meth-amphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22:8951-60
    58 Fornai F, Lenzi P, Gesi M, et al. Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC 12 cells. J Neurochem. 2004;88:114-23
    59 Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord.1998;13(Suppl 1):35-38
    60 Beal MF. Experimental models of Parkinson's disease. Nat Rev Neurosci. 2001;2:325-34
    61 Qin ZH, Wang Y, Kegel KB, et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet.2003; 12:3231-44
    62 Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet.2009;36:585-95
    63 Fortun J, Dunn WA, Jr, Joy S, Li J, Notterpek L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci. 2003;23:10672-80
    64 Waelter S, Boeddrich A, Lurz R, et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell.2009;12:1393-1407
    65 Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem.2003;278:25009-13
    66 Rideout HJ, Lang-Rollin I, Stefanis L. Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol. 2004;36:2551-62
    67 Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem.2010;280:23727-34
    68 Clarke PG, Posada A, Primi MP, Castagne V. Neuronal death in the central nervous system during development. Biomed Pharmacother. 1998;52:356-62
    69 Yu LY, Jokitalo E, Sun YF, et al. GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway. J Cell Biol.2009; 163:987-97
    70 Guimaraes CA, Benchimol M, Amarante-Mendes GP, Linden R. Alternative programs of cell death in developing retinal tissue. J Biol Chem.2010;278:41938-46
    71 Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res.2010;268:139-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700