SDF-1α在颅脑创伤后促进血管新生的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     颅脑创伤(Traumatic brain injury, TBI)是已成为全世界的一个公共卫生问题。全世界每年有大约1000万患者因颅脑创伤住院或死亡,大约有5700万人因1次或更多次的颅脑创伤住过院。虽然对颅脑创伤后的病理生理机制的研究有了很大的进展,对颅脑创伤后治疗的动物学实验也取得了可喜的成果,但目前仍缺乏临床上有效地治疗颅脑创伤的策略。以往的研究较多的关注颅脑创伤后的神经再生,对创伤后血管新生的关注较少。但颅脑创伤后的血管新生与神经新生二者相辅相成,互相促进和制约。血管和神经作为一个整体—“血管神经单元”越来越受到神经科学研究人员的关注,促进创伤后组织血管的新生成为颅脑创伤治疗的一个新的方向。
     目的
     研究颅脑创伤后外源性给予重组人基质细胞衍生因子-1α(rhSDF-1α)对创伤脑组织局部CD34、CXCR4基因和蛋白质表达以及血管新生的影响。
     研究颅脑创伤后通过给予SDF-1α中和性抗体拮抗SDF-1/CXCR4轴对创伤脑组织局部CD34、CXCR4基因和蛋白质表达以及血管新生的影响。
     通过对rhSDF-1α和SDF-1α中和性抗体干预后大鼠神经功能恢复的评估研究血管新生和神经功能恢复之间的相关性。
     方法
     健康青年Wistar大鼠用液压打击仪成功制备颅脑创伤大鼠模型后,将颅脑创伤大鼠随机分为rhSDF-1α干预组、SDF-1α中和抗体干预组、生理盐水对照组。创伤后30分钟,rhSDF-1α干预组大鼠接受立体定向脑组织局部注射rhSDF-1α4μ8/4μ1,SDF-1α中和抗体干预组大鼠接受立体定向脑组织局部注射SDF-1α中和性抗体4μg/4μ1,对照组大鼠接受立体定向脑组织局部注射生理盐水4μ1。
     分别在创伤前、创伤后1、3、7、14、21天用改良神经功能评分(mNSS)对大鼠进行神经功能评分,创伤后14天开始用Morris水迷宫对大鼠进行空间学习记忆能力进行评估。
     取3个干预组动物创伤后14天的脑组织用组织学染色方法评估创伤脑组织CD34+的微血管密度和CD34/CXCR4双阳性的微血管的数量以了解SDF-1/CXCR4轴在血管新生过程中的作用,用qRT-PCR和Western-blot检测创伤脑组织局部的CD34和CXCR4mRNA和蛋白质的表达以进一步明确SDF-1/CXCR4轴在血管新生过程中的作用并分析大鼠神经功能改善与创伤脑组织血管新生的相关性。
     结果
     流式细胞仪分析结果显示不同干预对大鼠脑创伤后外周血CD34+干祖细胞数量无明显影响。
     组织学染色发现rhSDF-1α干预组大鼠损伤脑组织局部的微血管密度(MVD)和CD34/CXCR4双阳性微血管的数目较生理盐水对照组显著增加,结果有统计学差异(P<0.05)。与之相反,SDF-1α中和抗体干预组大鼠损伤脑组织局部MVD和CD34/CXCR4双阳性微血管的数目较生理盐水对照组减少(P<0.05)。
     qRT-PCR和Western blot结果显示rhSDF-1α干预大鼠损伤脑组织局部CD34和CXCR4mRNA和蛋白质的表达较生理盐水对照组增加,而SDF-1α中和抗体干预大鼠脑组织局部CD34和CXCR4mRNA和蛋白质的表达较生理盐水对照组显著降低(P<0.05)。
     mNSS评分显示伤前大鼠的mNSS均较低,3组动物的评分无统计学差异。损伤后1天,3组动物的mNSS均较高,说明液压打击导致了大鼠神经功能障碍,在后续的实验时间内,3组大鼠的mNSS评分均呈逐渐降低趋势,提示大鼠脑创伤后有一个神经功能恢复过程。在治疗后的14天和21天,rhSDF-1α干预组的大鼠的神经功能恢复明显优于SDF-1α中和性抗体处理组(P<0.01)和生理盐水对照组(P<0.05)。SDF-1α中和性抗体治疗组大鼠的mNSS在液压打击后的1-14天与生理盐水干预组相比无明显差异(P>0.05),但是在打击后21天,其mNSS评分高于生理盐水对照组(P<0.05)。Spearman秩相关分析发现TBI后14天微血管密度的增加与mNSS呈负相关。
     Morris水迷宫试验显示在试验的开始阶段,三组大鼠的潜伏期均较长,但是在后续的空间记忆能力试验中,潜伏期较前明显变短(P<0.001)。这提示通过试验建立了大鼠的空间记忆。SDF-1α中和抗体干预组动物的潜伏期长于生理盐水对照组大鼠,差异具有统计学意义(P<0.05)。rhSDF-1α干预组大鼠的潜伏期短于生理盐水对照组大鼠,差异具有统计学意义(P<0.05)。探索试验结果显示rhSDF-1α干预组大鼠在目标象限的游泳时间明显大于生理盐水对照组大鼠,差异具有统计学意义(P<0.05)。SDF-1α中和抗体干预组动物在目标象限的游泳时间与生理盐水对照组相比明显减少(P<0.05)。通过对三组动物游泳速度的统计分析发现,三组动物的游泳速度并无明显统计学差异,提示空间学习记忆能力障碍与动物的肢体功能障碍无关。
     结论
     颅脑创伤后脑组织局部给予rhSDF-1α可以通过SDF-1/CXCR4轴促进CD34+细胞向损伤部位的迁移,提高局部CD34、CXCR4的表达,促进损伤脑组织的血管新生,改善神经功能。
     应用SDF-1α中和性抗体拮抗SDF-1/CXCR4轴,则减弱了CD34+细胞向损伤部位的迁移,降低了局部CD34、CXCR4的表达,抑制了损伤脑组织的血管新生,使神经功能恶化。
     SDF-1/CXCR4轴可能是颅脑创伤治疗的一个新的靶点。
Background
     Traumatic brain injury (TBI) is one of the most important global public health problem. About100million people around the world are hospitalized or dead of TBI, and more than570million people world wide have been hospitalized with one or more TBI[1]. Despite the research progression of pathophysiological mechanism after TBI and the treatment strategies on TBI animal models, the effective clinical therapy is still limited. The previous research of TBI therapies focused more on the neurogenesis, but less on the angiogenesis after the initial injury. The angiogenesis and neurogenesis after TBI are co-regulated. Neurovascular niche, a unit that include neuron and microvessel draw more and more researchers' attention. The angiogenesis promoting strategies after TBI may be a promising field for TBI treatment.
     Objective
     To evaluated the angiogenesis and also the local brain tissue expression of CD34、 CXCR4mRNA and protein after rhSDF-1α treatment in TBI animal model.
     To evaluated the angiogenesis and also the local brain tissue expression of CD34、 CXCR4mRNA and protein after SDF-1α neutralizing antibody treatment in TBI animal model.
     To evaluate the correlation of angiogenesis and neurological outcome in different treatment groups.
     Methods
     Youth male Wistar rats received fluid percussion and were divided into3groups, the rhSDF-1α treated group, the SDF-1α neutralizing antibody treated group and the normal saline treated group.30minutes after TBI, the rhSDF-1α group received stereotactic cortical injection of rhSDF-1α4μg/4μl, the SDF-1α neutralizing antibody group received stereotactic cortical injection of SDF-1α neutralizing antibody4μg/4μl, the controlled group received stereotactic cortical injection of normal saline4μl.
     Modified neurological severity score (mNSS) was used to evaluate the neurological functional outcome before trauma and1,3,7,14and21days post trauma. The Morris water maze was used to evaluate the special learning memory deficit14days after injury. Flow cytometry was used to analyze the peripheral CD34+cells1,3,7,14days after injury. The brain tissues were harvest from the3groups14days post injury for histological and molecular biological assessment. The immunochemistry and immunofluorescence staining were used to assess the CD34positive microvessel density (MVD) and CD34/CXCR4double positive microvessels. Quantitative real time polymerase chain reaction (qRT-PCR) and western blot were used to assess the mRNA and protein expression of CD34and CXCR4. The role of SDF-1/CXCR4axis in angiogenesis was evaluated and the correlation of angiogenesis and neurological outcome was also assessed.
     Results
     No significant differences of the number of peripheral blood CD34+cells were observed among the three different treated groups by flow cytometry analysis. The histology staining results showed that the MVD and CD34/CXCR4double positive mivrovessels of the rhSDF-1α treated group increased significantly, whereas, decreased in the SDF-1α neutralizing antibody treated group compared with that of normal saline treated group (P<0.05). The results of qRT-PCR and western blot demonstrated that the expression of mRNA and protein of CD34and CXCR4in injured tissue increased compared to that of normal saline treated animals, however, in SDF-1α neutralizing antibody treated animals, the mRNA and protein expression of CD34and CXCR4decreased compared to that of normal saline treated animals (P <0.05). All of the3group animals displayed low mNSS before injury, but high mNSS lday post injury. The mNSS result indicated that the fluid percussion induced neurological dysfunction to the rats. The mNSS decreased dramatically in the subsequent evaluation days, demonstrating that there was a neurological recovery process after injury. The neurological outcome of rhSDF-1α treated group was better that of SDF-1α neutralizing antibody treated group (P<0.01) or normal saline treated group (P<0.05)14and21days after injury. The mNSS of SDF-la neutralizing antibody treated group had no significant difference compared to that of normal saline treated animals in14days after injury (P>0.05). However, the mNSS of neutralizing antibody treated group was worse than that of normal saline treated animals (P<0.05). The Morris water maze (MWM) was used to assess the special learning memory ability after injury. The latency of the3groups animals were similar at the beginning of the test, but decreased in the subsequent special acquisition test (P<0.001) This indicated that the special learning memory was established. The rhSDF-1α treated animals had shorter latency compared to that of normal saline treated group, whereas, the SDF-1α antibody treated group had longer latency compared to that of normal saline treated group (P<0.05). In the probe trial, the rhSDF-1α treated animals spend more time in the target quadrant, in the contrary, the SDF-1α neutralizing antibody treated animals spend less time in the target quadrant compared to that of the normal saline treated animals (P<0.05). The swimming speed of the3groups rats had no significant differences demonstrated that the special learning deficit was not due to the injury induced limb impairment. The Spearman rank correlation coefficient test showed that there was a significant negative correlation between mNSS and MVD14days after TBI in the3differently treated groups.
     Conclusion
     Local distribution of rhSDF-1α after TBI could enhance the migration of CD34+cells to the injured site, increase the expression of mRNA and protein of CD34and CXCR4, promote angiogenesis, ameliorate neurological outcome via SDF-1/CXCR4axis.
     Local distribution of SDF-1α neutralizing antibody after TBI could suppress the migration of CD34+cells to the injured site, decrease the expression of mRNA and protein of CD34and CXCR4, inhibit angiogenesis, exacerbate neurological outcome via blocking SDF-1/CXCR4axis.
     SDF-1/CXCR4axis may be a new promising therapeutic target for TBI.
引文
[1]Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury-A brief overview[J]. J Head Trauma Rehab,2006;21: 375-378.
    [2]Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury:a brief overview[J]. J Head Trauma Rehabil,2006;21: 375-378.
    [3]Werner C, Engelhard K. Pathophysiology of traumatic brain injury[J]. Br J Anaesth,2007;99:4-9.
    [4]Cunningham AS, Salvador R, Coles JP, et al. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury[J]. Brain,2005; 128:1931-1942.
    [5]Eriskat J, Plesnila N, Stoffel M, et al. Assessment of regional cortical blood flow following traumatic lesion of the brain[J]. Acta Neurochir Suppl,1997;70:94-95.
    [6]Li Q, Michaud M, Stewart W, et al. Modeling the neurovascular niche:murine strain differences mimic the range of responses to chronic hypoxia in the premature newborn[J]. J Neurosci Res,2008;86:1227-1242.
    [7]Li Q, Ford MC, Lavik EB, et al. Modeling the neurovascular niche:VEGF and BDNF-mediated cross-talk between neural stem cells and endothelial cells:An in vitro study[J]. Journal of Neuroscience Research,2006;84:1656-1668.
    [8]Ward NL, Lamanna JC. The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems[J]. Neurol Res,2004; 26:870-883.
    [9]Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis[J]. J Comp Neurol,2000;425:479-494.
    [10]Fagel DM, Ganat Y, Silbereis J, et al. Cortical neurogenesis enhanced by chronic perinatal hypoxia[J]. Exp Neurol,2006;199:77-91.
    [11]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science,1997;275:964-967.
    [12]Wang S, Cui J, Peng W, et al. Intracoronary autologous CD34+ stem cell therapy for intractable angina[J]. Cardiology,2010; 117:140-147.
    [13]Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke[J]. J Neurosci Res,2003;73: 296-307.
    [14]Guo X, Liu L, Zhang M, et al. Correlation of CD34+cells with tissue angiogenesis after traumatic brain injury in a rat model[J]. J Neurotrauma,2009; 26:1337-1344.
    [15]Kao CH, Chen SH, Chio CC, et al. Human umbilical cord blood-derived cd34(+) cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors[J]. Shock,2008;29:49-55.
    [16]Liu L, Liu H, Jao JF, et al. Changes in circulating human endothelial progenitor cells after brain injury[J]. Journal of Neurotrauma,2007;24:936-943.
    [17]Liu L, Wei H, Chen F, et al. Endothelial progenitor cells correlate with clinical outcome of traumatic brain injury[J]. Crit Care Med,2011.
    [18]Beck H, Voswinckel R, Wagner S, et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke[J]. J Cereb Blood Flow Metab,2003;23:709-717.
    [19]Paczkowska E, Larysz B, Rzeuski R, et al. Human hematopoietic stem/ progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction[J]. Eur J Haematol,2005;75:461-467.
    [20]Laughlin MJ, Barker J, Bambach B, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors[J]. N Engl J Med,2001;344:1815-1822.
    [21]Hofineister CC, Zhang J, Knight KL,et al. Ex vivo expansion of umbilical cord blood stem cells for transplantation:growing knowledge from the hematopoietic niche[J]. Bone Marrow Transplant,2007;39:11-23.
    [22]Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood[J]. J Exp Med,1997;185:111-120.
    [23]Peled A. Multiple constraint organization in the brain:a theory for schizophrenia [J]. Brain Res Bull,1999;49:245-250.
    [24]Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development[J]. J Exp Med,2006;203:2201-2213.
    [25]Floege J, Smeets B, Moeller MJ. The SDF-1/CXCR4 axis is a novel driver of vascular development of the glomerulus[J]. J Am Soc Nephrol,2009;20: 1659-1661.
    [26]Shirozu M, Nakano T, Inazawa J, et al. Structure and Chromosomal Localization of the Human Stromal Cell-Derived Factor 1(Sdfl) Gene[J]. Genomics,1995;28: 495-500.
    [27]Lazarini F, Tham TN, Casanova P, et al. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system[J]. Glia,2003;42:139-148.
    [28]Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system:a migration from immunology to neurobiology[J]. Prog Neurobiol,2008;84:116-131.
    [29]Bogoslovsky T, Spatz M, Chaudhry A, et al. Stromal-derived factor-1 [alpha] correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients[J]. Stroke,2011;42:618-625.
    [30]Tysseling VM, Mithal D, Sahni V, et al. SDF1 in the dorsal corticospinal tract promotes CXCR4+cell migration after spinal cord injury[J]. J Neuroinflammation,2011;8:16.
    [31]Tepper OM, Capla JM, Galiano RD, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells[J]. Blood,2005;105:1068-1077.
    [32]Lau XT, Wang DA. Stromal cell-derived factor-1 (SDF-1):homing factor for engineered regenerative medicine[J]. Expert Opin Biol Ther,2011; 11:189-197.
    [33]Belmadani A, Tran PB, Ren D, et al. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors[J]. J Neurosci, 2005;25:3995-4003.
    [34]Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice[J]. P Natl Acad Sci USA,1998;95:9448-9453.
    [35]Rosenkranz K, Kumbruch S, Lebermann K, et al. The chemokine SDF-1/CXCL12 contributes to the 'homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain[J]. J Neurosci Res,2010;88:1223-1233.
    [36]Wang Y, Deng Y, Zhou GQ. SDF-1 alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model[J]. Brain Res,2008;1195:104-112.
    [37]Tsai LK, Wang ZF, Munasinghe J, et al. Mesenchymal Stem Cells Primed With Valproate and Lithium Robustly Migrate to Infarcted Regions and Facilitate Recovery in a Stroke Model[J]. Stroke,2011;42:2932-U2406.
    [38]Wei L, Fraser JL, Lu ZY, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats[J]. Neurobiol Dis,2012.
    [39]Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model [J]. J Clin Invest, 2004;114:330-338.
    [40]Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor[J]. Proc Natl Acad Sci U S A,1994;91: 2305-2309.
    [41]Shyu WC, Lin SZ, Yen PS, et al. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats[J]. J Pharmacol Exp Ther,2008;324:834-849.
    [42]Zhuang Y, Chen X, Xu M, Zhang LY, Xiang F. Chemokine stromal cell-derived factor 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction[J]. Chin Med J (Engl),2009; 122:183-187.
    [43]Koch KC, Schaefer WM, Liehn EA, et al. Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1 alpha on left ventricular function and perfusion in a porcine model of myocardial infarction[J]. Basic Res Cardiol,2006; 101:69-77.
    [44]Yu JX, Huang XF, Lv WM, et al. Combination of stromal-derived factor-1 alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization[J]. Journal of Vascular Surgery,2009;50:608-616.
    [45]Kuliszewski MA, Kobulnik J, Lindner JR., et al. Vascular Gene Transfer of SDF-1 Promotes Endothelial Progenitor Cell Engraftment and Enhances Angiogenesis in Ischemic Muscle[J]. Mol Ther,2011;19:895-902.
    [46]Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4pathway[J]. Proc Natl Acad Sci U S A,2004;101:18117-18122.
    [47]Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4[J]. Nat Immunol, 2002;3:687-694.
    [48]Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells[J]. Blood,2001;97:3354-3360.
    [49]Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4[J]. Science,1999;283:845-848.
    [50]Reca R, Mastellos D, Majka M, et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1 [J]. Blood,2003;101:3784-3793.
    [51]Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice[J]. Blood,2000;95:3289-3296.
    [52]Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis[J]. Blood,2000;96:4142-4151.
    [53]Levesque JP, Hendy J, Takamatsu Y, et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide[J]. J Clin Invest,2003; 111:187-196.
    [54]Wright DE, Bowman EP, Wagers AJ, et al. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines[J]. J Exp Med, 2002; 195:1145-1154.
    [55]Shichinohe H, Kuroda S, Yano S, et al. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct[J]. Brain Res,2007; 1183:138-147.
    [56]Barresi V, Cerasoli S, Vitarelli E, et al. Density of microvessels positive for CD 105 (endoglin) is related to prognosis in meningiomas[J]. Acta Neuropathologica,2007; 114:147-156.
    [57]Kollet O, Shivtiel S, Chen YQ, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver[J]. J Clin Invest, 2003;112:160-169.
    [58]. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet,2003;362:697-703.
    [59]Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation,2003;107:1322-1328.
    [60]Peled A, Grabovsky V, Habler L, et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow[J]. J Clin Invest,1999;104:1199-1211.
    [61]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med, 2004;10:858-864.
    [62]Shimonaka M, Katagiri K, Nakayama T, et al. Rapl translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow[J]. J Cell Biol,2003;161:417-427.
    [63]Chavakis E, Hain A, Vinci M, et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells[J]. Circ Res,2007; 100: 204-212.
    [64]Kinashi T. Intracellular signalling controlling integrin activation in lymphocytes [J]. Nat Rev Immunol,2005;5:546-559.
    [65]Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes[J]. Nat Rev Immunol,2004;4:432-444.
    [66]Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature[J]. J Clin Invest,2006; 116: 652-662.
    [67]Chavakis E, Aicher A, Heeschen C, et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells[J]. J Exp Med,2005; 201:63-72.
    [68]Petit I, Goichberg P, Spiegel A, et al. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells[J]. J Clin Invest,2005; 115:168-176.
    [69]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1 alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization[J]. Circulation,2004; 109:2454-2461.
    [70]Shin JW, Lee JK, Lee JE, et al. Combined Effects of Hematopoietic Progenitor Cell Mobilization from Bone Marrow by G-CSF and AMD3100, and Chemotaxis into the Brain Using SDF-1alpha in an Alzheimer's Disease Mouse Model[J]. Stem Cells,2011.
    [71]Berger O, Li G, Han SM, et al. Expression of SDF-1 and CXCR4 during reorganization of the postnatal dentate gyrus[J]. Dev Neurosci,2007;29:48-58.
    [72]Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor[J]. Proc Natl Acad Sci U S A,2002;99:7090-7095.
    [73]Tran PB, Banisadr G, Ren D, et al. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain[J]. J Comp Neurol, 2007;500:1007-1033.
    [74].Ohab JJ, Carmichael ST. Poststroke neurogenesis:emerging principles of migration and localization of immature neurons[J]. Neuroscientist,2008;14: 369-380.
    [75]Riek-Burchardt M, Kolodziej A, Henrich-Noack P, Reymann KG, Hollt V, Stumm R. Differential regulation of CXCL12 and PACAP mRNA expression after focal and global ischemia[J]. Neuropharmacology,2010;58:199-207.
    [76].Robin AM, Zhang ZG, Wang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2006;26:125-134.
    [77]Leu S, Lin YC, Yuen CM, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats[J]. J Transl Med,2010;8:63.
    [78]Miller JT, Bartley JH, Wimborne HJ, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury[J]. BMC Neurosci,2005;6:63.
    [79]Hill WD, Hess DC, Martin-Studdard A, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke:association with bone marrow cell homing to injury[J]. J Neuropathol Exp Neurol,2004;63:84-96.
    [80]Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion[J]. J Mol Histol,2004;35:233-245.
    [81]Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease:molecular mechanisms and therapeutic implications[J]. Neuron,2011;71: 406-424.
    [82]Zhang YL, Xiong Y, Mahmood A, et al. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit[J]. Brain Research,2009;1294:153-164.
    [83]Xiong Y, Mahmood A, Meng YL, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose[J]. Journal of Neurosurgery, 2010;113:598-608.
    [84]Xiong Y, Zhang YL, Mahmood A, et al. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment[J]. Brain Research,2010;1353:249-257.
    [85]Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001;32:2682-2688.
    [86]Xiong Y, Mahmood A, Meng YL, et al. Treatment of traumatic brain injury with thymosin beta(4) in rats Laboratory investigation[J]. Journal of Neurosurgery, 2011;114:102-115.
    [87]Ning R, Xiong Y, Mahmood A, et al. Erythropoietin promotes neurovascular remodeling and long-term functional recovery in rats following traumatic brain injury[J]. Brain Res,2011.
    [88]Greenberg DA, Jin K. From angiogenesis to neuropathology[J]. Nature, 2005;438:954-959.
    [89]Rodriguez-Baeza A, Reina-de la Torre F, Poca A, et al. Morphological features in human cortical brain microvessels after head injury:a three-dimensional and immunocytochemical study[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003;273:583-593.
    [90]Nag S, Papneja T, Venugopalan R, et al. Increased angiopoietin2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown[J]. Lab Invest,2005;85:1189-1198.
    [91]Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science,2004;304:1338-1340.
    [92]Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke[J]. J Cereb Blood Flow Metab,2008;28:764-771.
    [93]Lu D, Goussev A, Chen J, et al. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury[J]. J Neurotrauma,2004;21:21-32.
    [94]Dixon CE, Kochanek PM, Yan HQ, et al. One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats[J]. J Neurotrauma,1999; 16:109-122.
    [95]Morris R. Developments of a water-maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods,1984; 11:47-60.
    [96]Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory[J]. Nature Protocols,2006; 1:848-858.
    [97]Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract[J]. Nature,1998;393: 591-594.
    [98]Salvucci O, Yao L, Villalba S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1[J]. Blood, 2002;99:2703-2711.
    [99]Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E[J]. Nat Med,2003;9:61-67.
    [100]Yu X, Chen D, Zhang Y, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke[J]. J Neurol Sci,2012;316:141-149.
    [101]Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization[J]. Nat Med, 2002;8:607-612.
    [102]Sheu ML, Cheng FC, Su HL, et al. Recruitment by SDF-1alpha of CD34-positive cells involved in sciatic nerve regeneration[J]. J Neurosurg,2012; 116: 432-444.
    [103]Li L, Jiang Q, Zhang L, et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke[J]. Brain Research,2007; 1132:185-192.
    [104]Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma:a role for hypoxia-inducible factors in traumatic brain injury[J]. Journal of Cerebral Blood Flow and Metabolism,2009;29:575-584.
    [105]Fan YF, Yang GY. Therapeutic angiogenesis for brain ischemia:A brief review[J]. J Neuroimmune Pharm,2007;2:284-289.
    [106]Itoh T, Satou T, Ishida H, et al. The relationship between SDF-lalpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats[J]. Neurol Res,2009;31:90-102.
    [107]Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature,1998;393:595-599.
    [108]Peng H, Huang Y, Rose J, et al. Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells[J]. J Neurosci Res, 2004;76:35-50.
    [109]Thored P, Arvidsson A, Cacci E, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke[J]. Stem Cells,2006;24: 739-747.
    [110]Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage:pathophysiology and role of inflammatory mediators [J]. FEBS J, 2009;276:13-26.
    [111]Liu XS, Chopp M, Santra M, et al. Functional response to SDF1 alpha through over-expression of CXCR4 on adult sub ventricular zone progenitor cells [J]. Brain Res,2008; 1226:18-26.
    [112]Li Y, McIntosh K, Chen J, et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats[J]. Exp Neurol,2006;198:313-325.
    [113]Cui X, Chopp M, Zacharek A, et al. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke[J]. Neurobiol Dis, 2009;36:35-41.
    [114]Oh BJ, Kim DK, Kim BJ, et al. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells[J]. Biochem Biophys Res Commun,2010;398:627-633.
    [115]Zheng H, Dai T, Zhou B, et al. SDF-lalpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway[J]. Atherosclerosis,2008;201:36-42.
    [1]Aramburu J, Balboa MA, Ramirez A, et al. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/delta+T lymphocytes. Ⅰ. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody[J]. J Immunol,1990;144:3238-3247.
    [2]Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets[J]. Trends Immunol,2001;22:633-640.
    [3]Misao Y, Takemura G, Arai M, et al. Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF[J]. Cardiovasc Res,2006;71:455-465.
    [4]Holland JD, Kochetkova M, Akekawatchai C, et al. Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells[J]. Cancer Res,2006;66:4117-4124.
    [5]Rossi D, Zlotnik A. The biology of chemokines and their receptors[J]. Annu Rev Immunol,2000; 18:217-242.
    [6]Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma[J]. Blood, 2007;109:2708-2717.
    [7]Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development[J]. J Exp Med,2006;203:2201-2213.
    [8]Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor[J]. Proc Natl Acad Sci U S A 1994;91: 2305-2309.
    [9]Shirozu M, Nakano T, Inazawa J, et al. Structure and Chromosomal Localization of the Human Stromal Cell-Derived Factor 1(Sdf1) Gene[J]. Genomics, 1995;28:495-500.
    [10]Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) [J]. J Exp Med,1996;184:1101-1109.
    [11]Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor[J]. Science,1996;272:872-877.
    [12]D'Apuzzo M, Rolink A, Loetscher M, et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4[J]. Eur J Immunol,1997;27:1788-1793.
    [13]Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system[J]. Glia,2003;42:139-148.
    [14]Stumm RK, Rummel J, Junker V, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain:isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia[J]. J Neurosci,2002;22:5865-5878.
    [15]Busillo JM, Benovic JL. Regulation of CXCR4 signaling[J]. Biochim Biophys Acta,2007; 1768:952-963.
    [16]Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion[J]. J Mol Histol,2004;35:233-245.
    [17]Raffaghello L, Cocco C, Corrias MV, et al. Chemokines in neuroectodermal tumour progression and metastasis [J]. Semin Cancer Biol,2009;19:97-102.
    [18]Berger O, Li G, Han SM, et al. Expression of SDF-1 and CXCR4 during reorganization of the postnatal dentate gyrus[J]. Dev Neurosci,2007;29:48-58.
    [19]Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system:a migration from immunology to neurobiology[J]. Prog Neurobiol,2008;84:116-131.
    [20]Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor[J]. Proc Natl Acad Sci U SA,2002;99:7090-7095.
    [21]Tran PB, Banisadr G, Ren D, et al. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain[J]. J Comp Neurol, 2007;500:1007-1033.
    [22]Tan W, Martin D, Gutkind JS. The Galphal3-Rho signaling axis is required for SDF-1-induced migration through CXCR4[J]. J Biol Chem,2006;281: 39542-39549.
    [23]Shinjyo N, Stahlberg A, Dragunow M, et al. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells[J]. Stem Cells,2009;27:2824-2832.
    [24]Li M, Chang CJ, Lathia JD, et al. Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells[J]. Glia,2011;59:108-118.
    [25]Krathwohl MD, Kaiser JL. Chemokines promote quiescence and survival of human neural progenitor cells[J]. Stem Cells,2004;22:109-118.
    [26]Peng H, Kolb R, Kennedy JE, et al. Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation[J]. J Neuroimmune Pharmacol,2007;2:251-258.
    [27]Sessa A, Mao CA, Colasante G, et al. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons[J]. Genes Dev,2010;24:1816-1826.
    [28]Luo Y, Lathia J, Mughal M, et al. SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egrl, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons[J]. J Biol Chem, 2008;283:24789-24800.
    [29]Pujol F, Kitabgi P, Boudin H. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons[J]. J Cell Sci,2005; 118:1071-1080.
    [30]Kolodziej A, Schulz S, Guyon A, et al. Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus[J]. J Neurosci,2008;28:4488-4500.
    [31]Dziembowska M, Tham TN, Lau P, et al. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors[J]. Glia,2005;50: 258-269.
    [32]Watson K, Fan GH. Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways[J]. Mol Pharmacol,2005;67:757-765.
    [33]Zujovic V, Benavides J, Vige X, et al. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation[J]. Glia,2000;29: 305-315.
    [34]Hwang J, Son KN, Kim CW, et al. Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis[J]. Cytokine,2005;30:254-263.
    [35]Bakhiet M, Tjernlund A, Mousa A, et al. RANTES promotes growth and survival of human first-trimester forebrain astrocytes[J]. Nat Cell Biol,2001;3: 150-157.
    [36]Daniel D, Rossel M, Seki T, et al. Stromal cell-derived factor-1 (SDF-1) expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the pallial-subpallial boundary and extends progressively towards the cortical hem[J]. Gene Expr Patterns,2005;5:317-322.
    [37]Tran PB, Miller RJ. Chemokine receptors:signposts to brain development and disease[J]. Nat Rev Neurosci,2003;4:444-455.
    [38]Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature,1998;393: 595-599.
    [39]Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice[J]. P Natl Acad Sci USA,1998;95:9448-9453.
    [40]Adler MW, Rogers TJ. Are chemokines the third major system in the brain? [J] J Leukoc Biol,2005;78:1204-1209.
    [41]Dijkstra IM, Hulshof S, van der Valk P, et al. Cutting edge:activity of human adult microglia in response to CC chemokine ligand 21[J]. J Immunol, 2004; 172:2744-2747.
    [42]Klein RS, Rubin JB, Gibson HD, et al. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells[J]. Development,2001;128:1971-1981.
    [43]Borghesani PR, Peyrin JM, Klein R, et al. BDNF stimulates migration of cerebellar granule cells[J]. Development,2002;129:1435-1442.
    [44]Bagri A, Gurney T, He X, et al. The chemokine SDF1 regulates migration of dentate granule cells[J]. Development,2002; 129:4249-4260.
    [45]Bajetto A, Barbero S, Bonavia R, et al. Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway[J]. J Neurochem,2001;77:1226-1236.
    [46]Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway[J]. Proc Natl Acad Sci U S A,2004;101:18117-18122.
    [47]Wang Y, Huang J, Li Y, et al. Roles of chemokine CXCL12 and its receptors in ischemic stroke[J]. Curr Drug Targets,2012;13:166-172.
    [48]Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction[J]. Inflammation,2001;25:293-300.
    [49]Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet,2003;362:697-703.
    [50]Ohab JJ, Carmichael ST. Poststroke neurogenesis:emerging principles of migration and localization of immature neurons[J]. Neuroscientist, 2008;14:369-380.
    [51]Riek-Burchardt M, Kolodziej A, Henrich-Noack P, et al. Differential regulation of CXCL12 and PACAP mRNA expression after focal and global ischemia[J]. Neuropharmacology,2010;58:199-207.
    [52]Robin AM, Zhang ZG, Wang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2006;26:125-134.
    [53]Leu S, Lin YC, Yuen CM, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats[J]. J Transl Med,2010;8:63.
    [54]Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4[J]. Nat Immunol, 2002;3:687-694.
    [55]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J]. Cell,2002; 109:625-637.
    [56]Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4[J]. Science,1999;283:845-848.
    [57]Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation,2003;107:1322-1328.
    [58]Rodgers KE, Xiong S, Steer R, et al. Effect of angiotensin Ⅱ on hematopoietic progenitor cell proliferation[J]. Stem Cells,2000; 18:287-294.
    [59]Hill WD, Hess DC, Martin-Studdard A, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke:association with bone marrow cell homing to injury[J]. J Neuropathol Exp Neurol,2004;63:84-96.
    [60]Shyu WC, Lin SZ, Yang HI, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells [J]. Circulation, 2004;110:1847-1854.
    [61]Lataillade JJ, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines:possible role in progenitor survival[J]. Blood,2000;95:756-768.
    [62]Nakamura K, Tsurushima H, Marushima A, et al. A subpopulation of endothelial progenitor cells with low aldehyde dehydrogenase activity attenuates acute ischemic brain injury in rats[J]. Biochem Biophys Res Commun,2012;418: 87-92.
    [63]Rosenkranz K, Kumbruch S, Lebermann K, et al. The chemokine SDF-1/CXCL12 contributes to the 'homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain[J]. J Neurosci Res,2010;88:1223-1233.
    [64]Fan Y, Shen F, Frenzel T, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice[J]. Ann Neurol,2010;67:488-497.
    [65]Schonemeier B, Schulz S, Hoellt V, et al. Enhanced expression of the CXC112/SDF-1 chemokine receptor CXCR7 after cerebral ischemia in the rat brain[J]. J Neuroimmunol,2008; 198:39-45.
    [66]Wang Y, Deng Y, Zhou GQ. SDF-lalpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model[J]. Brain Res,2008;1195:104-112.
    [67]Shichinohe H, Kuroda S, Yano S, et al. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct[J]. Brain Res,2007;1183:138-147.
    [68]Shyu WC, Lin SZ, Yen PS, et al. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats[J]. J Pharmacol Exp Ther,2008;324:834-849.
    [69]Cui X, Chen J, Zacharek A, et al. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke[J]. Stem Cells,2007; 25:2777-2785.
    [70]Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist J]. Blood,2003;102:2728-2730.
    [71]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med, 2004; 10:858-864.
    [72]Bissell MJ, Radisky D. Putting tumours in context[J]. Nat Rev Cancer,2001;1: 46-54.
    [73]Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites[J]. Nat Rev, Cancer 2002;2:563-572.
    [74]Fidler IJ. The organ microenvironment and cancer metastasis[J]. Differentiation, 2002;70:498-505.
    [75]Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil' hypothesis revisited[J]. Nat Rev Cancer,2003;3:453-458.
    [76]Radinsky R, Ellis LM. Molecular determinants in the biology of liver metastasis[J]. Surg Oncol Clin N Am,1996;5:215-229.
    [77]Yeatman TJ, Nicolson GL. Molecular basis of tumor progression:mechanisms of organ-specific tumor metastasis[J]. Semin Surg Oncol,1993;9:256-263.
    [78]Balkwill F. Cancer and the chemokine network[J]. Nat Rev Cancer,2004;4: 540-550.
    [79]Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas[J]. Br J Cancer,2011;104: 1805-1809.
    [80]Ben-Baruch A. Site-specific metastasis formation:chemokines as regulators of tumor cell adhesion, motility and invasion[J]. Cell Adh Migr,2009;3:328-333.
    [81]Gerber PA, Hippe A, Buhren BA, et al. Chemokines in tumor-associated angiogenesis[J]. Biol Chem,2009;390:1213-1223.
    [82]Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia[J]. J Exp Med,2003;198:1391-1402.
    [83]Schutyser E, Su Y, Yu Y, et al. Hypoxia enhances CXCR4 expression in human micro vascular endothelial cells and human melanoma cells[J]. Eur Cytokine Netw,2007; 18:59-70.
    [84]Gassmann P, Haier J, Schluter K, et al. CXCR4 regulates the early extravasation of metastatic tumor cells in vivo[J]. Neoplasia,2009; 11:651-661.
    [85]Zagzag D, Lukyanov Y, Lan L, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma:implications for angiogenesis and glioma cell invasion[J]. Lab Invest,2006;86:1221-232.
    [86]Kulbe H, Hagemann T, Szlosarek PW, et al. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells[J]. Cancer Res,2005;65:10355-10362.
    [87]Rao S, Sengupta R, Choe EJ, et al. CXCL12 mediates trophic interactions between endothelial and tumor cells in glioblastoma[J]. PLoS One, 2012;7:e33005.
    [88]Itoh T, Satou T, Ishida H, et al. The relationship between SDF-lalpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats[J]. Neurol Res,2009;31:90-102.
    [89]Zhang S, Liu XZ, Liu ZL, et al. Tropism mechanism of stem cells targeting injured brain tissues by stromal cell-derived factor-1[J]. Chin J Traumatol, 2009; 12:263-268.
    [90]Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, et al. Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult rats[J]. Glia,2010; 58:916-931.
    [91]Graumann U, Ritz MF, Rivero BG, et al. CD133 expressing pericytes and relationship to SDF-1 and CXCR4 in spinal cord injury[J]. Curr Neurovasc Res, 2010;7:144-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700