猴脑选择性超深低温断血流复苏对NF-κB及MMP-2影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】观察猴脑常温缺血10分钟后选择性超深低温断血流复苏后NF-κB、MMP-2表达的变化。
     【方法】健康恒河猴9只,随机分成等温组、超深低温组。分离双侧颈内动静脉、颈外动静脉,右侧颈内静脉近心端插管监测中心静脉压,右侧颈内动脉远心端插管连接冷灌注系统,右侧颈内静脉远心端及双侧股静脉近心端插管连接超滤复温装置,建立脑局部体外循环。全身肝素化,夹闭双侧颈外动静脉、左侧颈内动静脉10分钟,再向右侧颈内动脉内输入4℃林格氏液,维持脑温≤16℃约60分钟。停止灌注,恢复上述血管血流,使脑自然复温。手术前后行头颅MRI检查,术后做神经功能缺失评分。等温组实验猴灌注或复苏死亡后立即开颅取脑,超深低温组实验猴饲养到术后12周处死开颅取脑,4%多聚甲醛固定、脱水、石蜡包埋、切片,用NF-κB、MMP-2抗体进行免疫组化染色。对额叶恒定视野内NF-κB、MMP-2的阳性细胞灰度值进行测量,并进行统计学分析。
     【结果】超深低温组恒河猴术后成功建立实验模型,术中、术后血流动力学稳定,术后安全复苏并长期存活,术后头颅MRI检查未见异常,术后神经功能评分无异常;等温组于灌注后均未能安全复苏,全部死亡。超深低温组NF-κB、MMP-2表达水平较常温组明显降低(P<0.05)。
     【结论】阻断猴双侧颈内动脉血流10分钟后脑选择性超深低温灌注60分钟可安全复苏,断血流及复苏对血流动力学及神经功能无明显影响。低温可降低NF-κB、MMP-2表达,提高了神经细胞对缺血缺氧的耐受性,抑制凋亡,减轻炎性反应,是脑缺血的重要保护机制之一。NF-κB、MMP-2较长时间的表达上调,在脑损伤的病理过程起重要作用。
【Objective】To observe the expression of NF-κB and MMP-2 in monkeys of resuscitation after selective cerebral ultra-deep hypothermia and blood flow occlusion.
     【Method】Eight 4~10-year-old rhesus mulattas were divided randomly into two groups: group A (bilateral internal carotid arterys would be occluded and 37℃Ringer's solution would be infused in operation) and group B (bilateral internal carotid arterys would be occluded and 4℃Ringer's solution would be infused in operation). Exposed bilateral external jugular veins (EJVs), bilateral external carotid arterys (ECAs), bilateral internal carotid arterys (ICAs) and bilateral internal jugular veins (IJVs), Right IJV intubated to monitoring central venous pressure (CVP). A catheter was inserted into right ICA to infuse cold Ringer's solution, two catheters were distally and proximally inserted into IJVs to extract the hypothermic diluted blood for ultrafiltration and then perfuse the warm blood into the right venae cava inferior after rewarming. Total body was heparinizated before reduce the brain temperature. Both ICAs were clamped 10 minutes. Then the both EJVs and the left IJV were clamped about 60 minutes. 4℃cold Ringer's solution was immediately perfused into the right ICA to induce the brain cooling less 16℃in group B, 37℃Ringer's solution was immediately perfused into the right ICA in group A. After 60 minutes, perfusion was stoped and blood vessels were recovered blood stream to cause brain physio-rewarming in group B, it needed not in group A of course. Preoperative and postoperative monkeys were examinated MRI. Operation changes of hemodynamics were measured; the dysfunctional scales of neurology were done three days after operation, then it was done every week. The monkeys' brain was immediately removed soon after death of group A in operation, and so did it in group B after we executed the monkeys 12 weeks after operation, followed by fixation, dehydration, embedding with paraffin and section. Immunohistochemical technique was used to determine the gray scale of the frontal cellular expression of NF-κB and MMP-2 in respective group. Statistics were analyzed by analyses with significance level at P<0. 05.
     【Results】All monkeys of group A were not resuscitation after perfusion and died. All monkeys of group B were succeeded in being built up the model. The hemodynamical parameters were steady during the operation, and all of them lived up for ever. MRI was normal after operation and the function of neurological deficient scale was normal. The levels of NF-κB and MMP-2 protein expression were significantly higher in the group A than those in the group B (P<0. 05).
     【Conclusion】It is safety that monkeys resuscitate from selective cerebral ultra-deep hypothermia and blood flow occlusion of bilateral internal carotid for 60 minutes, and it is normal to the hemodynamical parameters and nervous function. The levels of nuclear factor kappa B and MMP-2 expression are significantly decreased after monkeys of resuscitation after selective cerebral ultra-deep hypothermia and blood flow occlusion. These are activated by cerebral ischemia and involves in ischemic cerebral injury by promoting the transcription of cytokines, adhesion factors and inflammatory enzymes, inducing the apoptosis of neurons, regulating the activity of astrocytes, inducing injury of free radicals.
引文
[1] 姚泰.生理学(七年制.第一版)[M].北京:人民卫生出版社,2001,177-208
    [2] 江基尧,朱诚,罗其中.颅脑损伤临床救治规范(修订版)[M].上海:第二军医大学出版社,2003,101-104
    [3] Igar T, Hoshino S, Iwaya F, et al. Cerebral blood flow and oxygen metabolism during cardiopu-lmonary bypass with moderate hypothermic selective cerebral perfusion[J]. Cardiovasc Surg, 1999, 7:106-111
    [4] Werner C. Mild and moderate hypothermia as a new therapy concept in treatment of cerebral ischemia and craniocerebral trauma. Pathophysiologic Principles[J]. 1997, 32:210-218
    [5] Connolly JE, Boyd RJ, Calvin JW. The protective effect ofhypothermia in cerebral ischemia: Experimental and clinical application by selective brain cooling in the human[J]. Surgery, 1962, 52:15-24
    [6] Baumgartner WA, Redmond M, Brock M, et al. Pathophysiology of cerebral injury and future management[J]. J Card Surg, 1997, 12(2 Supp 1):300-307
    [7] Sakai F, Amaha K. Effects of mild versus deep hypothermia on a cloned human brain glutamate transporter expressed in Chinese hamster ovary cells[J]. J Neurosurg Anesthesiol, 2000, 12(3): 240-245
    [8] Kawai N, Kawanishi M, Okauchi M, et al. Effects ofhypothermia on thrombin induced brain edema formation[J]. Brain Res, 2001, 895(1-2):50-57
    [9] Otha T, Sakaguchi Ⅰ, Liu WD, et al. Selective cooling of brain using pround hemodilution in dogs[J]. Neurosurgery, 1992, 31:1049-1052
    [10] Ye J, Yang L, Del Bigio, et al. Retrograde cerebral perfusion provides limited distribution of blood to the brain: a study in pig[J]. J Thorac Cardiovasc Surg, 1997, 114(4):660-664
    [11] 吕国蔚,主编.实验神经生物学[M].北京:科学出版社,2002,203-246
    [12] 施新猷,主编.比较医学[M].陕西:陕西科学技术出版社,2003,467-484
    [13] 方喜业,主编.医学生物实验方法[M].北京:人民卫生出版社,1995,310-345
    [14] 江基尧,徐蔚,杨朋范,等.选择性脑超深低温技术对猴颈动脉血流阻断时限的研究[J].中华神经外科杂志,2003,19(4):304-306
    [15] 徐蔚,江基尧,杨朋范,等.选择性深低温断血流对猴神经功能及神经元超微结构的影响[J].中华外科杂志,2004,42(8):486-488
    [16] 王敏,曹秉振缺血性脑损伤与核因子κB[J].中国临床康复,2006,10(42):110-114
    [17] 徐群,张毅,苏敏,等.缺血再灌注大鼠脑内MMP—2、MMP—9与血脑屏障的关系[J].中风与神经疾病杂志,2006,23(2):146-148
    [1] 杨朋范,朱诚,江基尧,等.犬颈内动脉内冷灌注脑选择性降温对脑保护的实验研究[J]。中华创伤杂志,1999,3(15):190-192
    [2] 徐蔚,高永军,江基尧,等.猴脑选择性深低温对全身主要器官功能的影响[J].昆明医学院学报,2003,24(2):6-9
    [3] 张晓鹏,胡加飞,蔡如珏,等.一种灵长类动物的中枢神经系统功能评价的方法[J].第二军医大学学报,1997,18(3):285-286
    [4] Julian E, Bailes JE, Marc L, et al. Ultraprofound hypothermia with complete blood substitution in a canine model[J]. J Neurosurg, 1991, 74:781-788
    [5] Leopoldo.C, Cancio G, William G, et al. Hypothermia in acute head injury[J]. Resuscitation, 1994, 28:9-19
    [6] 江基尧,徐蔚,杨朋范,等.猴脑选择性超深低温对神经元超微结构的影响[J].中华神经外科杂志,2003,19(4):304-306
    [7] 徐蔚,江基尧,杨朋范,等.选择性超深低温断血流对猴神经功能及神经元超微结构的影响[J].中华外科杂志,2004,42(8):486-488.
    [1] 徐蔚,江基尧,杨朋范,等。选择性超深低温断血流对猴神经功能及神经元超微结构的影响[J].中华外科杂志,2004,42(8):486-488
    [2] 蔡文琴,王泊云.实用免疫细胞化学及核酸分子杂交技术[M].成都:四川科学技术出版社,1994,180-191
    [3] Sun Z, Andersson R. NF-kappaB activation and inhibition: a review[J]. Slrock. 2002, 18(2): 99-106.
    [4] Baldwin AS Jr. The NF kappa B and I kappa B proteins: new discoveries and insights[J]. Annu Rev lmmunol. 1996, 14:649-83
    [5] Yaron A, Hatzubai A, Davis M, et al. Identification of the receptor conlponem of the lkappaBatpha —ubiquifin ligase[J]. Nature. 1998, 396(6711): 590-4
    [6] Stanimirovic D, Zhang W. Howleu c, el al. Inflammatory gene transcription in human astrocytes exposed to hypoxia: roles of the nuclear factor-kappaB and aulocrine stimulation[J]. J Neu- roimmunol. 2001. 119(2): 365-76
    [7] Wang YJ, He F. LI XI. The neuroprotection of resveral rol in the experimental cerebral ischemia[J]. Zhonghua Yi Xue Za Zhi. 2003. 83(7): 534-6
    [8] Shen W, Zhang C. Zhang G. Nuclear factor kappaB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca~(2+) channel following severe global ischemia in rathippocampus[J]. Brain Res. 2002, 933(1): 23-30
    [9] Clemens JA. Cerebral ischemia: gene activation, neuronal injury, and lhe proleclive role of antioxidants[J]. Free Radic Biol Med. 2000. 28(10): 1526-31
    [10] Howard EF, Chen Q, Cheng c, el al. NF-kappa B is aclivated and IC AM-1 gene expression is upregulated during reoxygenation of human brain endolhelial cells[J]. Neurosci l. Lett, 1998, 248(3): 199-203
    [11] Clemens JA, Slephenson DT. Dixon EP, el al. Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmenlalion[J]. Brain Res Mol Brain Res, 1997, 18(2): 187-96
    [12] VogtM, Bauer MK, Ferrari D, el al. Oxidative stress and hypoxia/reoxygenation trigger CD95(APO-1/Fas) ligand expression in microglial cells[J]. FEBS Lett. 1998. 429(1): 67-72
    [13] Neumar RW. Molecular mechanisms of ischenlif neuronal injury[J]. Ann Emerg Med, 2000, 36(5): 483-506
    [14]Kim EJ, Kwon KJ. Park JY, el al. Effects of peroxisome proliferalor-aclivaled receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated-with Inos and COX-2 [J]. Brain Res, 2002, 941(1-2): 1-10
    [15] Ryu J, Pyo H, Jou I, et al. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B[J]. J Biol Chem, 2000, 275 (39): 29955-9
    [16] Han HS, Karabiyikoglu M, Kelly S, el al. Mild hypothermia inhibits nuclear factor-kappaB translocalion in experimental stroke[J]. J Cereb Blood Flow Melab. 2003,23(5): 589-98
    [17] Zhu Y, Culmsee C, Klumpp S, et al. Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extmcellular-signal regulated kinasel, 2 signaling path-ways[J]. Neuroscience, 2004, 123(4): 897-906
    [18] Irving EA, Hadirigham SJ, Roberts J, et al. Decreased nuclear factor-kappaB DNA binding activity folowing permanent focal cerebral ischaemia in the rat[J]. Nenrosci Lett, 2000. 288(1): 45-48
    [19] Yin KJ, Chen SD, Lee JM, et al. ATM gene regulates oxygen-glucose deprivation-induced nuclear factor-kappaB DNA-binding activity and downstream apoptotic cascade in monse cerebrovascular endothelial cells[J]. Stroke, 2002, 33(10): 2471-2477
    [20] Culmsee C, SieweJ, Junker V, etal. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons[J]. J Nenrosci, 2003, 23(24): 8586-8595
    [21] Hil WD, Hess DC, Carrol JE, et al. The NF-kappaB inhibitor diethyldithiocarbamate(DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia [J]. Brain Res Bull, 2001, 55(3): 375-386
    [22] Botchkina GI, Geimonen E, Bilof ML, et al. Loss of NF-kappaB activity during cerebral ischemia and TNF cytotoxicity [J]. Mol Med, 1999, 5(6): 372-381
    [23] Yenari MA, Han HS. Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NF-kappaB)[J]. Neurochem Int. 2006, 49(2):164-9
    [24] Kawamura N, Schmeichel AM, Wang Y, et al. Multiple effects of hypothermia on inflammatory response following ischemia-reperfusion injury in experimental ischemic neuropathy. Exp Neurol. 2006,202(2) :487-96
    [25] Irazuzta J, Olson J, Kiefaber M, et al. Hypothermia decreases excitatory neurotransmitter release in bacterial meningitis in rabbits. Brain Res. 847, 143-148
    [26] Gross J, Lapiere CM, Collagenolytie activity in amphibian tissues: atisuescuhure assay[J]. Proe Natl head Sci USA, 1962, 54(11): 1197
    [27] Kleiner DE, Stevenson WG. Matrix metellopmteinases and metastasis[J]. Cancer Chemother Pharmacol, 1999, 43[Suppl]: S42-51
    [28] Maedougall JR, Matrisian LM. Contributions of turner and stromal matrix netellopmteinases to turner progession, invation and metastasis[J], Cancer Metastasis Rev, 1995, 14(4): 351-362
    [29] Lijnen HR, Silence J, Van Hoef B, et al. Stremelysin-l(MMP-3)-inde-pendentgelatinase expression and activation in mcie[J]. Blood, 1998, 91(6): 2045-2053
    [30] Hoshino Y, MioT, Nagai S, et al, Fibmgenic and inflammatory eytoklnesmodulate mRNA expressions of Ilia~x metalloproteinase-3 and in type II pneumocyt es[J], Res-pirafion, 2001, 68(5): 509-516
    [31] Romanic AM,White RF.Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats, inhibition of matrix metalloproteinase-9 reduces infarct size[J].Stroke, 1998, 29(5): 1020-1030
    [32] Harkness KA, Adamson P, Sussman JD, et al. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium[J]. Brain, 2000, 1123:698-709
    [33] Rosenberg GA, Estrada BS, Dencoff JE. Matrixmetalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke, 1998,29(10):2189-2195
    [34] Lee MA, Palace J, Stabler G, et al. Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis, a longitudinal clinical and MR! study[J]. Brain, 1999, 122:191-197
    [35] Rosenberg GA, Dencoff JE, Correa N, et al. Effect of steroids on CSF matrix metalloproteinase in multipl esclerosis: relation to blood-brain injury[J].Neurology,1996,46(6):1626-1632
    [36] Cross AK, Woodrofe MN. Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglia cell line in vitro[J]. Glia, 1999, 28(3): 183-189
    [37] Asahina M, Yoshiyama Y,Hattori T. Expression of matrix metallopro-teinase-9 and urinary- type plasminogen activator in Alzheimer's disease brain[J]. Clin Neuropathol, 2001,20(2):60-63
    [38] Fujimura M, Gasche Y, Morita-Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption after focal cerebral ischemia and reperfusion[J]. BrainRes,1999, 842(1): 92-100
    [39] Sato M, Seiki M. Regulatory mechanism of 92kDa type 4 collagenase gene expression which is associated with invasiveness of tumor cells[J]. Onco-gene, 1993, 8:395-405
    [40]Shimada T,Nakamura H,Ohuchi E, et al. Characterization of a truncated recombinant form of human membrane etype 3 matrix metalloproteinase[J]. Eur J Biochem,1999,262(3):907-914
    [41] Kim JT, Kim MS, Bae MK, et al. Cloning and characterization of tissue inhibitor of metalloproteinase-3(TIMP-3) from shark, scyliorhinu torazame[J]. Biochem Biophys Acta, 2001, 1517(2): 311-315
    [42] Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic(tissue plasming enactivator)-induces hemorrhage after thromboembolic storke[J]. Stroke, 2000, 31(12): 3034-3040
    [43] Neumann-ttaefelin T, Kastrup A, Crespigny A, et al. Serial MRI after transient focal cerebral ischemia in rats, dynamics of tissue injury, blood-brain barrier damage, and edema formaton[J]. Stroke, 2000, 31(8):1968-1973
    [44] Jiang X, Namura S, Nagata I. Matrix metalloproteinase inhibitor KB-7785 attenuate brain damage resulting from permanent focal cerebral ischemia in mice[J]. Neurosci Lett, 2001, 305(1): 41-44
    [45] Cary DJ. Control of growth and differentiation of vascular cells by extra-cellular matrix protein[J]. Ann Rev Physiol, 1991, 53:161-177
    [46] Fujimura M, Gasche Y, Morita-Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion[J]. BrianRes, 1999, 842(1 ):92-l00
    [47] Gasche Y, Fujimura M, Morita-Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction[J]. J Cereb Bloob Flow Metab, 1999, 19(9):1020-1028
    [48] Romanic AM, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal isehemia in rats:inhibition of matrix mefalloproteinase- 9 reduces infarcts size[J]. Stroke, 1998, 29(5) 1020-1030
    [49] 许宏伟,杨期东,等.MMP-2/9与脑出血后脑水肿的关系探讨[J].中风与神经疾病杂志,2004,21(4):295-297
    [50] Rosenberg GA, Navratil W. MetaIloproteinase inhibition blocks edema in cerebral hemorrhage in the rat[J]. Neurology, 1997,48:921-926
    [51] Planas AM, Sole S, Justicia C. el al. Expression and activation of matrix metallo-proteinase-2 and-9 in rat brain after transient focal cerebral isehemia[J]. Neurobiol Dis, 2001, 8(5):833-846
    [52] Gasche Y, Copin JC, Sugawara T, et al. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab. 2001,21(12): 1393-1400
    [53] Rosenberg GA, Estrada EY, Dencoff JE, et al. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke. 1998, 29: 2189-2195
    [54] Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat[J]. Neurology, 1997, 48(4): 921-926
    [55] Lee JE, Yoon YJ, Moseley ME,et al. Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke [J]. J Neurosurg. 2005, 103(2):289-97
    [1] 姚泰.生理学(七年制.第一版)[M].北京:人民卫生出版社,2001,177-208
    [2] Baumgartner WA, Redmond M, Brock M, et al. Pathophysiology of cerebral injury and future management[J]. J Card Surg, 1997, 12(2 Supp 1):300-307
    [3] Sakai F, Amaha K. Effects of mild versus deep hypothermia on a cloned human brain glutamate transporter expressed in Chinese hamster ovary cells[J]. J Neurosurg Anesthesiol, 2000, 12(3): 240-245
    [4] Kawai N, Kawanishi M, Okauchi M, et al. Effects of hypothermia on thrombin induced brain edema formation[J]. Brain Res, 2001, 895(1-2):50-57
    [5] 梁玉敏.选择性脑低温疗法的研究进展[J].中华微侵神经外科杂志,2002,8(1):41-43
    [6] Connolly JE, Boyd RJ, Calvin JW. The protective effect of hypothermia in cerebral ischemia: experimental and clinical application by selection brain cooling in the human .Surgery, 1962,52:15-19
    [7] Ohta T, Sakaguchi Ⅰ, Dong LW, et al.Selective cooling of brain using profound hemodilution in dogs[J].Neurosurgery, 1992,31(6): 1046-1055
    [8] Otha T, Koroiua T, Sakaguchi Ⅰ, et al. Selective hypothermia perfusion of canine brain[J].Neurosurgery, 1996,38 (6):1211-1215
    [9] 徐蔚,高永军,江基尧,等.猴脑选择性深低温对全身主要器官功能的影响.昆明医学院学报,2003,24(2):6-9
    [10] Anttila V, Kivilmoma K, Pokela M, et al. Cold retrograde cerebral perfusion improves cerebral protection during moderate hypothermia circulatory arrest:A long-term study in a porcine model.J Thorac cardiovasc surg, 1999,118:938-945
    [11] Sail HJ, Hiopoulos DC, Gopinath SP, et al. Retrograde cerebral perfusion during profound hypothermia and circulatory arrest in pigs.Ann Thorac Surg, 1995, 118:938-945
    [12] 江基尧,朱诚,罗其中,主编.现代颅脑损伤学.上海:第二军医大学出版社,2004.9
    [13] Shurr-Tim D, Tchervenkov CI, Laliberte E, et al. Timing of steroid treatment is important for cerebral protection during car-diopulmonary bypass and circulatory arrest: minimal protection of pump prime methylprednisolone. Eur J Cardiothorac Surg, 2003, 24: 125-132
    [14] Myung RJ, Kirshbom PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome follwing deep hypothermie circulatory arrest. Eur J Cardiothorac Surg, 2003, 24: 243-248
    [15] Myung RJ, Petko M, Judkins AR, et al. Regional low-flow pedusion improves neurologic outcome compared with deep hypothermie circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg, 2004, 127: 1051-1057
    [16] Undar A, Masai T, Yang SQ, et al. Effects ofperfusionmode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac rac Surg 1999, 68: 1336-1342
    [17] Undar A, Eicbstaedt HC, Frazier OH, et al. Monitoring regional cerebral oxygen saturation using near-infrared spectroscopy during pulsatile hypo- thermic cardiopulmonary bypass in a neonatal piglet model. ASAIO J, 2000, 46: 103-106
    [18] Baribeau YR, Westbrook BM, Charlesworth DC, et al.Arterial inflow via an axillary artery graft for the severely atheromatous aorta.Ann Thorac Surg, 1998,66(1):33-36
    [19] Reich DL, Horn LM, HossainS, etal. Using Jugular bulb oxyhe-moglobin saturation to guide onset of deep hypothermie circulatory arrest does not affect post- operative neuropsychological function. Eur J Cardiothorac Surg, 2004,25:401 -406
    [20] Hagl C, Ergin MA, Galla JD, et al.Neurologic outcome afer assending aorta-aortic arch operationreffect of brain protection technique in high-risk patients.J Thorac Cardiovasc Surg, 2001,121(6):1107-1114
    
    [21] Appoo JJ, Angoustides JG, Pochettino A, et al. Peroperative outcome in adults undergoing elective deep hypothermie circulatory arrest with retrograde cerebral perfusion in proximal aortic arch repair: evaluation of protocol-based care. J Cardiothorac Vase Anesth, 2006, 20: 3-7
    [22] Liang YM, Ohta T, et al. The use of selective brain hypothermia in dogs with cold brain injury[J]. Bulletin of Osaka Med College, 1999,45(1):15-31
    [23] Liang YM, Ohta T, Ikenuka T, et al. The use of selective brain hypotheemia in dogs with cold brain injury[J]. Bulletin of Osaka Med College, 1999,45(1):15-23.
    [24]Gunn AJ, Gluckman PD, Gnuu TR, et al. Selective cooling in newborn infants after perinatal asphyxia: a safty study[J]. Pediatric, 1998,,102(4 pt 1):203-211
    [25] Berdat PA, GoberV, Carrel T. Extra-anatomic aortic bypass for complex(re-) coarctation and hypoplastie aortic arch in adolescents and adtilts. Inter Cardiovasc Thorac Surg, 2003, 2: 133-137
    [26] Reich DL, HornLM, HossainS, etal. Using Jugular bulb oxyhemoglobin saturation to guide onset of deep hypothermie circulatory arrest does not affect post- operative neuropsychological function. Eur J Cardiothorac Surg, 2004, 25: 401-4
    [1] 郑丰任,曹美鸿.严重颅脑外伤的颅内压监护(63例报告)中国神经精神疾病杂志 1982:8:138.
    [2] 鄢裕光,骆宗琼.脑室炎的诊断与治疗[J].实用儿科杂志,1986,1(5):233.
    [3] 刘爱华.颅内压监测的应用价值及发展趋势[J].中国综合临床.2003,19(8):680-681.
    [4] 刘安民,李方成,钟志光,等.脑室冲洗引流术治疗开颅术后严重颅内感染[J].中国临床神经外科杂志2006,11(2):109-110.
    [5] Qsenback RK, Zeidman SM. Infection in neurosurgical surgery.New York: Lippncott-Raven, 1999:65.
    [6] 王忠诚主编.神经外科学.武汉:湖北科技出版社,1998:367.
    [7] 李松年.腰大池置管持续引流在开颅术后严重颅内感染中的应用(附23例报告)[J].广西医科大学学报.2005,22(2):289-290.
    [8] 戴自英主编.实用抗菌药物学.上海:上海科学技术出版社1992.79-81.
    [9] 唐玉明,宗酉明,王耿焕,等。腰大池持续引流治疗颅脑术后颅内感染[J].浙江创伤外科2005,10(6):439-431.
    [10] Lorenzl S, Koedel U, Pfister HW. Mannital, but not allopurinol ,modulates changes in cerebral blood flow ,intracranial pressure ,andbrain water content pneumococcal meningitis in the rat[J]. CritCare Med ,1996, 24 (11): 187421880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700