联合基因转染兔骨髓间充质干细胞促进组织工程骨形成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅颌面部骨缺损是平、战时意外事故的常见损伤,临床需做骨缺损修复的病例很多。骨形态发生蛋白(Bone Morphogenetic Proteins,BMPs)对骨原细胞的分化起决定性作用,是促进成骨的重要因子之一;血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)是在创伤愈合过程中促进血管再生发挥着重要作用的生长因子,是最强的促血管生成因子。VEGF和BMP参与颅面部骨缺损修复过程中的不同阶段,二者具有协同作用。
     本研究在创建兔颅骨缺损动物模型的基础上,对兔骨髓间充质干细胞(bonemarrow mesenchymal stem cells,BMSCs)进行体外的分离和培养,在传代后采用阳离子脂质体介导的转染方式,将外源性VEGF165及BMP2通过前期已成功构建的hVEGF165与hBMP2真核细胞共表达载体pIRES-hBMP2-hVEGF165导入到BMSCs中,使其正常表达,以提高BMSCs的成骨能力,再将转染后的骨髓间充质干细胞置入聚乳酸可吸收材料内,随材料一起植入骨缺损部位,观察组织工程骨形成,骨缺损修复成骨情况。本实验通过大体形态学观察、X线检查、组织学检查和免疫组化等方法检测联合基因转染后BMSCs促进颅骨缺损修复重建的效果。
     结果:
     1.大体形态学改变:4周时转染组颅骨缺损区开始被新生骨组织代替,表面有皮质骨生成;对照组颅骨缺损区无明显骨痂形成,表面被肉芽组织包裹。8周时转染组骨缺损区有大量骨痂生成,质地变硬;对照组仅在骨缺损区边缘可见部分骨痂形成。12周时转染组骨缺损区基本被新生骨覆盖,质地较硬。对照组骨缺损区边缘有较多骨痂生成,中心区域无明显骨质覆盖。
     2.x线检查:术后2周时转染组开始出现模糊骨痂,中心区域有散在点状密度增强。对照组缺损边界明显,未见明显骨痂生成。术后4周时转染组缺损区出现明显骨痂,中心区域出现片状密度增强。二组缺损边缘出现骨痂,中心区域未见骨痂。8周时转染组缺损区基本被新生骨痂包裹。对照组边缘区域骨痂增多。12周转染组缺损区基本消失,密度较周围正常略低。对照组缺损面积变小,但中心无新骨形成。
     3.组织学变化:转染组术后2周时有大量纤维性骨痂生成,骨缺损附近骨外膜内层的间充质细胞分裂增殖,向成骨细胞和软骨细胞转化,肉芽组织中软骨细胞和成骨细胞数目很多,软骨岛形成。4周时纤维性骨痂、软骨骨痂与骨性骨痂混杂在一起,以纤维性骨痂和软骨骨痂为主,有较多的新生血管,并出现软骨内骨化,可见部分软骨骨化,形成桥接骨痂。8周时成骨细胞、纤维母细胞减少、纤维骨痂消失,代之以软骨骨痂和骨性骨痂。12周时骨组织结构趋于完善,骨髓腔基本形成。对照组仅在骨缺损附近有成骨反应和少量新骨生成。
     4.VEGF165表达情况
     转染组VEGF在术后2周时,软骨细胞和成骨细胞呈阳性表达,基质内阳性表达,4周时软骨细胞分裂增生,呈团状排列,表达达到高峰,呈强阳性。对照组2周时在新生的软骨细胞和成骨细胞内呈阳性表达,4周时仅部分细胞呈阳性表达。
     5.BMP2蛋白表达情况
     转染组BMP2在术后2周时,在原始骨痂、成骨细胞、骨端骨细胞、新形成的软骨基质内呈阳性。4周时,新形成的软骨细胞出现阳性染色,软骨基质也呈阳性。幼稚软骨细胞、骨痂表面成骨细胞呈阳性。对照组2周时新生的软骨细胞和成骨细胞呈阳性表达,4周时仅部分细胞呈阳性表达。
     结论:
     1.通过pIRES-hBMP2-hVEGFl65重组质粒体外经脂质体转染兔骨髓间充质干细胞促进组织工程骨形成的研究,我们初步实现从体外研究向体内研究的深入,并进一步阐明在新骨生成过程中,BMP2与VEGF165具有协同作用,转基因BMSCs在转染后4周甚至更长时间内可促进表达BMP2和VEGF165。
     2.pIRES-hBMP2-hVEGFl65真核细胞共表达载体转染使BMSCs中外源性BMP2、VEGF165基因稳定表达,向成骨细胞定向分化的能力增强,可促进颅骨缺损的修复。
     3.本实验为运用骨组织工程技术修复巨大骨缺损提供了初步的实验依据。
Cranio-maxillo-facial bone defect is common both in daily life and during the war. So many cinical bone defect cases also needed to be reconstructed . Bone Morphogenetic Proteins (BMPs) play a critical role in the differentiation of osteoprogenitor cells and the bone formation process. Vascular Endothelial Growth Factor (VEGF) is the recently discovered cellular growth factor related to the angiogenesis which is important in the wound healing process. VEGF and BMP-2 have synergistic interaction in ossification of the cranium bone defect in different healing stages.
     In this study, an rabbit canium defect model was established , by the prophase research of vector containing combinations of condensed plasmid DNA encoding for hBMP2 and hVEGF165. The cultured rabbit bone marrow mesenchymal stem cells (BMSCs) were transfected with cation liposome-mediated transfection method to express the exogenous VEGF and BMP-2. The transfected BMSCs could improve the bone regeneration. Then we put the bone marrow mesenchymal stem cells (BMSCs) into the absorbtable polylatic acid, all of them were implantded into the bone defect area together,so we can observe the regeneration of the defect bone. The reconstruction of cranium bone defect was detected in the transfected rBMSCs by gross observation , X-ray examination , histological test and immunohistochemistry examination.
     Results
     1. The gross morphological alternation
     The cranium bone defect in the transfected group was replaced with neogenetic bone tissue with the generation of os integumentable 4 weeks later. No obvious osteotylus was found in the control group, however the defect area was encapsuled with granulation tissue. A large amount of lipid bony callus formed in the cranium bone defect in the transfected group 8 weeks later. Partial bone callus could be found merely encircled the cranium bone defect in the control group. The cranium bone defect in the transfected group was completely replaced with neogenetic rigid bone 12 weeks later. The callus encircled the cranium bone defect proliferated in bigger number without the cental converase of the bone in the control group.
     2. X-ray examination
     The undefined bone callus appeared in the transfected group 2 weeks later, with scattered spot-like density enhancement in the center. The defected margin exposed evidently without the formation of osteotylus in the control group. The callus emerged in cranium bone defect 4 weeks later in the transfected group , lamellar density enhancement could be found in the center. While in the control group the marginal callus increased . The cranium bone defect area in the transfected group vanished basically still with higher bone density than perimeter 12 weeks later. The cranium bone defect area declined without central bone formation in the control group.
     3. histological alteration
     Considerable fibrous osteotylus could be found at cranium bone defect area 2 weeks after the occurence of the bone defect .Mesenchymal stem cells in the medial of the periosteum around the cranium bone defect area proliferated, converting into massive osteoblasts and chondrocytes. Come out with the cartilaginous insula. The chondral tissue regenerated rapidly to fill the interspace of the cranium bone defect area. Fibrous osteotylus , chondral osteotylus and osseous osteotylus mixed together at the bone defect area 4 weeks later, by the majority of fibrous osteotylus and chondral osteotylus together with more neogenetic vascellum. With the appearance of the of intral-chondral ossification, partial chondral ossification formed bridge-grafting could be seen. The osteoblasts , fibroblasts declined . The fibrous osteotylus disappreared replaced by the chondral osteotylus and osseous osteotylus 8 weeks later. The bone construction proned to be perfect at the 12th week and the medullary canal was formed basically.
     4. The expression of VEGF165
     In the transfected group, we found that VEGF was positively expressed in the chondrocytes , osteoblasts and matrix at the 2nd week in the bone defect area. The chondrocytes proliferated and arranged in the clusters. The expression of VEGF reached peak value and was hadro-positive 4 weeks later. While the expression of VEGF was postive in the neogenetic chondrocytes and osteoblasts 2 weeks later , only partial reserved positive 4 weeks later after the occurence of the defect in the control group.
     5.The expression of BMP2
     In the transfected group, BMP2 was expressed in the osteoblasts, osteocytes and regenerated cartilage matrix, granular matrix in the primary callus at the bone defect area 2 weeks later after the bone defect. Strong expression of BMP-2 was observed in the regenerated chondrocytes and cartilage matrix, junior chondral cells and osteoblasts at the surface of the callus 4 weeks later. While the expression of BMP2 was postive in the neogenetic chondrocytes and osteoblasts 2 weeks later , only partial reserved positive 4 weeks later after the occurence of the defectin the control group.
     Conclusions
     1.The constructed pIRES-hBMP2-rVEGF165 can be successfully transfected into BMSCs of rabbits by bangosome. So this way can faciliate the bone ossification in tissue engineering.we can also advance our reserch from vitro study to vivo study primarily with this cation liposome-mediated transfection method. VEGF and BMP-2 have synergistic interaction in ossification. BMP2-VEGF165 can be steadily expressed in the transfected BMSCs both immediately and 4 weeks later.
     2. The differentiation abilities of BMSCs is enhanced, so to promote the reconstruction of canium bone defect.
     3. This study can provide an experimental base for rectification enormous bone defect in tissue engineering way.
引文
1.曹宜林,刘伟,崔磊.组织工程学理论与实践.上海:上海科学技术出版社.2004,3.
    2.Uematsu S,Mogi M,Deguchi T.Interleukin(IL)-1β,IL-6,Tumor necrosis factora,epidermal growth factor,and β2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement.J Dent Res,1996,75(1):562-567.
    3.Filvaroff E,Erlebacher A,Ye J et al.Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass Development,1999,126(19):4267-4279.
    4.Shimizu T,Mehdi R,Yoshimura Y et al.Sequential expression of bone morphogenetic protein,tumor necrosis factor,and their receptors in bone-forming reaction after mouse femoral marrow ablation.Bone,1998,23(2):127-133.
    5.Gospodarowicz D.Fibroblast growth factor Chemical structure and biologic function.Clin Orthop Relat Res.1990,25(7):231-248.
    6.McCarthy TL,Ji C,Casinghino S et al.Alternate signaling pathways selectively regulate binding of insulin-like growth factor Ⅰ and Ⅱon fetal rat bone cells.J Cell Biochem,1998,68(4):446-456.
    7.Fujii H,Kitazawa R,Maeda S et al.Expression of platelet-derived growth factor proteins and their receptor alpha and beta mRNAs during fracture healing in the normal mouse.Histochem Cell Biol,1999,112(2):131-138.
    8.Urist MR.Bone:Formation by autoinduction.Science,1965,150;893-899.
    9.Wozney JM,Rosen V.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop,1988,36:26-37.
    10.Wozney JM,Rosen V.Celeste AJ,et al.Novel regulators of bone formation:molecular clones and activities.Science,1988,242:1528-1534.
    11.Reddi AH.Role of bone morphogenetic proteins in skeletal tissue engineering and regeneration.Nat Biotechnol,1998,16(3):247-252.
    12.Temaat MF,Blokhuis TJ,Bakker FC,et al.The role of bone morphogenetic proteins in bone healing.Osteo Trauma Care,2003,11:122-125.
    13.张建军,李兵仓.骨折愈合的现代研究与局部基因治疗.创伤外科杂志,2003, 5(4):230-232.
    14.马真胜,胡蕴玉,王臻,等。骨形态发生蛋白4(BMP4)基因表达在骨折愈合过程中的定何研究.中华骨科杂志,1997,17(8):517-519。
    15.张永刚,卢世璧,王继芳,等。骨形态发生蛋白和转化生长因子-β及碱性成纤维细胞生长因子在骨折修复中的表达。中华创伤杂志,2000;16(3):170-172。
    16.Termaat MF,Blokhuis TJ,Rueger D,et al.Immunolocalization of osteogenic protein-1(OP-1,BMP-7) in vasculature during early human fracture repair.Osteo Trauma Care,2003,11:88-94.
    17.Meyer RA,Mryer MH,Tenholder M,et al.Gene expression in older rats with delayed union of femoral fractures.Journal Bone Joint Surg.2001,85(7):1243-1254.
    18.Kishimoto KN,Watanabe Y,Nakamura H,et al.Ectopic bone formation by electroporatic transfer bone morphogenetic protein 4 gene.Bone,2002,31(2):340-347.
    19.Namkung MH,Appleyard R,Jansen J.Osteoporosis influences the early period of fracture healing in a rat osteoporotic model.Bone,2001,28(1):80-86.
    20.Hanada K,Solchaga LA,Caplan AI,et al.BMP-2 induation and TGF betal modulation of rat periosteal cell chondrogenesis.J Cell Biochem,2001,81(2):284-294.
    21.Spector JA,Luchs JS,Mehrara BJ,et al.Expression of bone morphogenetic proteins during membranous bone healing.Plast Reconstr Surg.2001,107(1):124-134.
    22.Rauch F,Lauzier D,Croteau S,et al.Temporal and spatial expression of bone morphogenetic protein-2,-4,and -7 during distraction osteogenesis in rabbits.Bone 2000,27(3):453-459.
    23.陈刚,王大章,刘宝林等,牵张成骨腭裂整复术新骨组织骨形成蛋白的表达分布与X线影像特征。华西口腔医学杂志,2002;20(3):209-212.
    24.Campisi P,Hamdy RC,Lauzier D,et al.Expression of Bone Morphogenetic Proteins during mandibular osteogenesis.Plast Reconstr Surg,2003,111(1):201-208.
    25.Sato M,Ochi T,Nakase T,et al.Mechanical tension-stress induce expression of bone morphogenetic protein BMP-2 and BMP-4,but not BMP-6,BMP-7,and GDF-5mRNA,during distraction osteogenesis.Bone Miner Res,1999,14(7):1084-1095.
    26.Urist MR,Lietze A,Mizutani H,et al.A bovine low molecular weight bone morphogenetic protein(BMP)fraction.Clin Orthop Relat Res.1982,162:219-232
    27.胡蕴玉.骨生长因子促进骨愈合的研究及展望.解放军医学杂志,1997,22(1):4-6.
    28.李健,石志才,蔡郑东.骨形态发生蛋白分子生物学研究进展.第二军医大学学报,2002,23(8):914-916.
    29.Groeneveld EHJ,van den Bergh JPA,Holzmann P,et al.Histomor phometrical analysis of bone formed in human maxillary sinus floor elevations grafted with OP-ldevice,demineralised bone matrix or autologous bone.Clin Oral Impl Res,1999,10:499-509.
    30.Terheyden H,Jepsen S,Moller B,et al.Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant osteogenic protein-1.Clin Oral Impl Res,1999,10:510-521.
    31.Boyne.Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects.J Bone Joint Surg(Am),2001,83(S1):146-150.
    32.Turk AE.Enhanced healing of large cranial defects by an osteoinductive protein in rabbits.Plast Reconstr Surg.1993,92(4):593-600.
    33.Sheridan MH,Shea LD,Peters MC,et al.Bioabsorbable polymer scaf~- folds for tissue engineering capable of sustained growth factor delivery.J Controlled Release,2000,64:91-102.
    34.Geesink RG,Hoefnagels NH,Bulstra SK.Osteogenic activity of OP-1 bone morphogenetic protein(BMP-7) in a human fibular defect.J Bone Joint Surg,1999,710-718.
    35.Friedlaender GE,Perry CR,Cole JD,et al.Osteogenic protein-1(bone morphogenetic protein-7) in the treatment of tibial nonunions,J Bone Joint Surg,2001,83(Suppll):S151-158.
    36.Tschakaloff A,Schliephake H,Dard M.Pilotstrdie zur kontrollierten Freisetzung von Wachstumsfaktoren aus Polyactidkorpern.Mund Kiefer Gesichts Chir,2000,4(Suppl.):474-478.
    37.Seto I,Asahina I,Oda M,et al.Reconstruction of the primate mandible with a combinant graft of recombinant human bone morphogenetic protein-2and bone marrow.J OralMaxillofac Surg,2001,59:53-61.
    38.Takaoka K,Yoshikawa H,Hashimoto J,et al.Transfilter bone induction by Chinese hamster ovary(CHO) cells transfected by DNA encoding bone morphogenetic protein-4.Clin Orthop Relat Res.1994;300:269-273.
    39.马庆军,党耕町.BMP-1基因在体表达的实验研究.中华外科杂志,1996,34(10):582。
    40.Baltzer AW,Lattemann C,Whalen JD,et al.Genetic enhancement of fracture repair:healing of an experiment segmental defect by adenoviral transfer of the BMP-2gene.Gene Ther,2000,7:734-739.
    41.Baltzer AW.Bone healing by adenocieal based gene therapy with BMP-2 and TGF-β.Trans Ortbop Res Soc.1999,24:308.
    42.Liberman JR,Daluiski A,Stevenson S,et al.The effect of regional gene therapy with bone morphogenetic protein-2 producing bone-marrow cells on the repair of segmental femoral defects in rats.J Bone Joint Surg Am,1999,81:905-917.
    43.Scaduto AA,Lieberman JR.Gene therapy for osteoinduction.Orthop Clin North Am.1999,30:625-633.
    44.Nussenbaum B,Rutherford RB,Teknos TN,et al.Ex Vivo Gene Therapy for Skeletal Regeneration in Cranial Defects Compromised by Postoperative Radiotherapy.Human Gene Therapy,2003,14:1107-1115,
    45.Lee J Y,Musgrave D,Pelinkovic D,et al.Effect of bone morphogenetic protein-2expressing muscle2derived cells on healing of critical-sized bone defects in mice.J Bone Joint Surg Am,2001,83:1032-1039.
    46.Ashinoff RL,Cetrulo CLr,Galiano RD,et al.Bone Morphogenic Protein-2 Gene Therapy for Mandibular Distraction Osteogenesis.Ann Plast Surg 2004,52:585-591.
    47.Boden SD,Hair GA,Viggeswarapu M,et al.gene therapy for spine fusion.Clin Orthop,2000,(379 Suppl):S225-233.
    48.Viggeswarapu M,Boden SD,Liu Y,et al.Adenoviral delivery of L IM mineralization protein-1 induces new bone formation in vitro and in vivo.J Bone Joint Surg Am,2001,83:364-376.
    49.David W L,george C,et al.Vascular endothelial growth factor is a secreted angiogenic mitogen.Science,1989,246:1306-1315.
    50.曾际斌.血管内皮生长因子研究进展.国外医学分子生物学分册,2000,22:87-92.
    51.薛刚,周庆贤,王培红,等。血管内皮细胞生长因子研究进展。西南军医,2004,6 (1):40-42.
    52.熊兵,易传勋.血管内皮生长因子其家族与基因治疗.中华医学美容杂志,2000,6(12):328-330.
    53.潘欣.血管内皮生长因子的研究进展.国外医学临床生物化学与检验学分册,2000,21(2):66-69.
    54.姜口彬.血管内皮生长因子内皮受体研究进展.国外医学药学分册,2001,28(1):9-13.
    55.Homer A,Bishop NJ,Bord S,et al.Immunolocation of vascular endothelial growth factor(VEGF) in human neonatal growth plate cartilage.Anat,1999,194(pt4):519-524.
    56.Gerber HE,Vu TH,Ryan AM,et al.VEGF couples hypertrophic cartilage emodeling,ossification and angiogenesis during endochondral bone formation.Nat Med,1999,5:623-628.
    57.Takayuki F,Zheng NS,Kawai A,et al.principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis.J Biochem,2003,33:633-639.
    58.马信龙,谢军,王沛,等。VEGF、TGF β在骨缺损不愈合中表达的实验研究.中华骨科杂志,2002,22(9):561-566.
    59.Steinbrech DS,Mehrara BJ,Saadeh PB,et al.VEGF expression in an osteoblast-like cell line regulated by a hypoxia response mechanism.Am J Physiol Cell Physiol,2000,278:C853-860.
    60.Steinbrech DS,Mebrara BJ,Saadeh PB,et al.llypoxia regulates VEGF expression and cellular proliferation byosteoblasts in vitro.Plast Reconstr Surg,1999,104:738-747.
    61.Uchida S,Sakai A,Kudo H,et al.Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats.Bone,2003,32:491-501.
    62.Deckers MM,Van Bezooijen RL,Van der Horst G,etal.Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor-A.Endocrinology,2002,143(4):2545-1553.
    63.Yeh L,Lee JC.Osteogenic protein-1 increases gene expression of vascular endothelial growth facto in primary cultures of fetal rat calvaria cells.Mol Cell Endocrinol,1999,20;153(1-2):113-124.
    64.Bouletraeu PJ,Warren SM,Specter JA,et al.Hypoxia and VEGF up-regulate BMP-2mRNA and protein expression in microvascular endothelial cells:implications for fracture healing.Plast Reconstr Surg.2002,109(7):2384-2397.
    65.Steinbrech DS,Mehrara BJ,Saadeh PB,et al.VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism.Am J Physiol.2000;278:C853.
    66.Peng H,Wright V,Usas A,et al.Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4.J Clin Invest.2002;110(6):751-759.
    67.Wu X,Rabkin Aikawa E,Guleserian K J,et al.Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells.Am J Physiol Heart Circ Physiol,2004,287(2):H480-H487.
    68.Murphy W L,PetersM C,Kohn D H,et al.Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering,Biomaterials,2000,21(24):2521-2527.
    69.Murphy W L,Simmons C A,KaiglerD,etal.Bone regeneration via a mineral substrate and induced angiogenesis.J Dent Res,2004,83(3):204-210.
    70.Chang C S,Su C Y,Lin T C.Scanning electron microscopy observation of vascularization around hydroxyapatite using vascular corrosion casts.J Biomed Mater Res,1999,48(4):411-416.
    71.Lu Y,Shansky J,Del TattoM,et al.Recombinant vascular endothelial growth factor secreted from tissue2engineered bioartificial muscles promotes localized angiogenesis.Circulation,2001,104(5):594-599
    72.钟刚,裴福兴,李胜富。血管内皮生长因子(VEGF)基因转染促进成骨细胞成骨活性的实验研究.中华创伤骨科杂志.2004,6(10):1147-1150.
    73.鱼兵,闫露,范清宇,等.人BMP7及VEGF基因共表达腺病毒的构建及在兔骨髓基质干细胞中的共表达.中国矫形外科杂志,2004,12(21-22):1704-1707.
    74.杨在亮,张波,周继红等.rhBMP22和rhVEGF转染ADSCs后体外表达及诱导骨缺损成骨修复的实验研究.创伤外科杂志2007,9(4):296-300.
    75.邹海波,周亚莉等.血管内皮细胞生长因子165及骨形态发生蛋白2促进兔骨缺损部位再 血管化的研究.中华创伤骨科杂志.2007,9(2)147-152.
    76.傅德皓,杨述华.骨形态发生蛋白2对原代鼠胚成骨细胞血管内皮生长因子表达的影响中华创伤骨科杂志2006,8(8)751-754.
    77.孙梁,胡蕴玉,王万明.牛骨形态发生蛋白上调小鼠血管内皮细胞生长因子基因表达对骨修复过程中血管生长的影响.中国临床康复:2004,8(14):2624-2625.
    78.韩冬,李建军等.骨形态发生蛋白22腺病毒表达载体在成骨过程中与血管内皮细胞生长因子关系.中华矫形外科杂志2007,15(9):698-701.
    79.张希峰,王晓东等.兔骨髓间充质干细胞的体外培养及生物学活性观察。苏州大学学报.2005,25(1):48-50.
    80.蔡文琴,王伯云主编.实用免疫细胞化学与核酸分子杂交技术.成都:四川科学技术出版社,1992,第1版,10-12.
    81.叶信海,冯胜之,穆雄铮,等不同移植体修复晚驯颅骨缺损56例的疗效分析.实用美容整形外科杂志,2001,12(1):19-21.
    82.Friendenstein A,Chailakhyan R,Gerasimov U,et al.Cell Tissue Kinet,1987,20:263-272.
    83.Daley GQ,Goodell MA,Snyder EY,et al.Hematology(AmSoc Hematol E duc Program),2003,398-418.
    84.Maniatopoulous C,sodek J,Melcher AH.Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats.Cell Tissue Res,1988,254(2):314-317.
    85.陈富林,毛天球,马秦.骨髓细胞体外成骨能力的实验研究.华西口腔医学杂志,1998,16(3):207.
    86.Dennis J E,Charbord P.Origin and differentiation of human and murine.Strem Cells,2002,20:205-214.
    87.Musgrave DS,Bosch P,Lee J Y,et al.Ex vivo gene therapy to produce bone using different cell types.Clin Orthop,2000,378:290-305.
    88.Jane,Jr JA,Dunford BA,Kron A,et al.Ectopic Osteogenesis Using Adenoviral Bone Morphogenetic Protein(BMP)-4 and BMP-6 Gene Transfer.Molecular Therapy,2002,6(4):464-470.
    89.Labhasetwar V,Bonadio J,Goldstein SA,et al.Gene transfection using biodegradable nanospheres:results in tissue culture and a rat osteotomy model. Colloids and Surfaces B:Biointerfaces,1999,16:281-290.
    90.Musgrave DS,Pruchnic R,Bosch P,et al.Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2.J Bone Joint Surg Br,2002,84:120-127.
    91.Lee J Y,Musgrave D,Pelinkovic D,et al.Effect of bone morphogenetic protein-2expressing muscle2derived cells on healing of critical-sized bone defects in mice.J Bone.Joint Surg Am,2001,83:1032-1039.
    92.Liberman JR,Daluiski A,Stevenson S,et al.The effect of regional gene therapy with bone morphogenetic protein-2 producing bone-marrow cells on the repair of segmental femoral defects in rats.J Bone Joint Surg Am,1999,81:905-917.
    93.Bosch P,Musgrave D,Ghivizzani S,et al.The efficiency of muscle-derived cell-mediated bone formation.Cell Transplant,2000,9:463-470.
    120.Moutsatsos IK,Turgeman G,Zhou S,et al.Exogenously regulated stem cell-mediated gene therapy for bone regeneration.Mol Ther,2001,3:449-461.
    94.李娜,杨慧.骨髓基质干细胞多向分化的可能机制.中国生物工程杂志,2004,24:17-22.
    95.裴国献,金丹.骨组织工程学种子细胞研究进展。中华创伤骨科杂志,2003,5:55-58。
    96.Tepper OM,Mehrara BJ.Gene therapy in plastic surgery.Plast.Reconstr.Surg.2002,109:716-733.
    97.Evans GH,Ghivizzani SC,Robbins,PD.Orthopaedic gene therapy,lin Orthop Relat Res,2004,429:316-329.
    98.Kang R,Ghivizzani SC,Muzzonigro TS,et al.Orthopaedic applications of gene therapy.Clin Orthp,2000,375:324-337.
    99.Enayahu D,Kletter Y,Zipori D et al.Bone marrow-derived stromed cell line expressing osteoblastic phenotyre in vitro and osteogenic capacity in vivo.J CellPhysiol,1989,140(1):1160.
    100.Aronow WA,Gertenfeid LC,Owen TA et al.Fastors that promote progressive development of the osteoblast phenotype in cultured fetal rat calraria cells.J Cell Physiol,1990,143(2):213.
    101.Alborzi A,Nac-KG,Lackin CA et al.Endochondral and intramenbranous fetal bone development:osteoblastic cell proliforation and expressing of alkaline phosphatase,mtwist and histone H4.J Cranifac Genet Dev Biol,1996,6(2):94.
    102.Murphy WL,Peters MC,Kohn DH,et al.Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering.Biomaterials,2000,21(24):2521-2527.
    103.Supp DM,Supp AP,Bell SM,et al.Enhenced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor.J Invest Dermatol,2000,114:5-13.
    104.Murphy WL,Simmons CA,Kaigler D,et al.Bone regeneration via a mineral substrate and induced angiogenesis.J Dent Res,2004,83(3):204-210.
    105.Chang SCN,Wei FC,Chuang HL,et al.Ex Vivo Gene Therapy in Autologous Critical-Size Craniofacial Bone Regeneration.Plast.Reconstr.Surg.2003,112:1841-1850.
    106.Chang SC,Wei FC,Chang H,et al.Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration.Plast.Reconstr.Surg.2003,112(7):1841-1850.
    107.Chang SC,Chuang HL,Chen YR,et al.Ex vivo gene therapy in autologous bone marrow stromal stem ceils for tissue-engineered maxillofacial bone regeration.Gene Ther,2003,10(24):2013-2019.
    108.戴克戎,徐小良,汤亭亭,等。骨形态发生蛋白-2基因修饰的组织工程化骨修复羊胫骨干骨缺损。中华医学杂志,2003,83(15):1345-1349.
    109.Huang YC,Simmons C,Kaigler D et al.Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4(BMP-4).Gene Ther,2005,12:418-426.
    110.唐尤超,汤炜,田卫东,等。基因修饰的组织工程化骨修复骨质疏松症骨缺损的实验研究.中华口腔医学杂志,2006,41(7):430-431.
    111.Jiang X,Gittens SA,Chang Q,et al.The use of tissue-engineered bone with human bone morphogenetic protein-4-modified bone-marrow stromal cells in repairing mandibular defects in rabbits.Int J Oral Maxillofac Surg,2006,35:1133-1139.
    112.谭祖建,李起鸿,许建中,等.聚乳酸作为骨形态发生蛋白载体修复骨缺损的实验研究. 中华骨科杂志,2000,20(12):742-746.
    113.William L.Murphy,Martin C.Peters,David H.Kohn,et al.Sustained release of vascular endothelial growth factor from mineralize poly(lactide-co-glycolide)scaffolds for tissue engineering.Biomate-rials,2000.21:2521-2527.
    114.Mendes SC,Tibbe JM,Veenhof M,et al.Bone tissue-engineered implants using human bone marrow stromal cells:effect of culture conditions and donor age.Tissue Eng,2002,8(6):911-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700