成年及幼年大鼠硬脑膜差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:幼年动物具有很强的颅骨缺损自行修复能力,当动物进入成年后这种能力很快消失。既往文献报道硬脑膜在颅骨再生中发挥了关键作用,其中幼年大鼠硬脑膜有一些独特的特点与颅骨缺损自行修复相关。但颅骨缺损自行修复过程中的分子生物学机制并不完全清楚,并且目前没有相关的蛋白质组学研究。
     材料与方法:1、采用双向电泳技术,对样品的处理、上样量、等电聚焦、SDS-PAGE电泳等步骤进行优化。2、应用双向电泳、质谱及Western-blot技术筛选并鉴定成年及幼年大鼠硬脑膜中差异表达的蛋白质。3、对大鼠硬脑膜细胞原代培养,观察硬脑膜细胞体外培养的细胞形态和细胞增殖活性;应用透射电子显微镜,对硬脑膜细胞超微结构进行观察比较。
     结果:1、获得重复性和分辨率比较好的成年及幼年大鼠硬脑膜蛋白双向电泳图谱;2、比较成年及幼年大鼠硬脑膜蛋白双向电泳图谱,发现24个差异表达蛋白质(丰度相差3倍以上),鉴定出11个蛋白质(均为首次报道),其中幼年大鼠硬脑膜蛋白上调的有:Cytoskeleton-associated protein 4,vimentin,typeⅡkeratin,β-actin,γ-actin,Apolipoprotein A-Ⅳprecursor,alpha-tropomyosin和TCTP1;成年大鼠硬脑膜蛋白上调的有:COMM domain containing 7,albumin和RAB5-interacting protein;3、Western-blot结果显示在幼年大鼠硬脑膜vimentin,tropomyosin,β-actin和γ-actin水平分别是成年大鼠硬脑膜的3.2,2.4,3.6和2.2倍,这与双向电泳/质谱结果一致;4、在体外培养中,成年硬脑膜细胞于10~15天后呈贴壁生长,25~30天出现细胞融合。幼年硬脑膜细胞于5~8天后呈贴壁生长,12~15天出现细胞融合。5、成年大鼠硬脑膜细胞呈梭形,细胞核狭长,细胞核质比约为1:2.5~3,细胞器比较发达,胶原排列整齐、致密;幼年大鼠硬脑膜细胞呈椭圆形,细胞核比较丰满,细胞核质比约为1:1.3~1.5,细胞器比较不发达,细胞外基质不丰富。
     结论:1、.在标准操作流程和条件下,优化双向电泳关键技术是获得重复性和分辨率较好的双向电泳图谱的必要条件。2、成年及幼年大鼠硬脑膜存在11种差异蛋白,为从整体上认识幼年动物具有很强颅骨缺损自行修复能力的分子机制提供了实验和理论基础。3、成年及幼年大鼠硬脑膜细胞增殖能力以及成年及幼年大鼠硬脑膜超微结构差异较大。
Background:It has been widely observed that infants can reossify large calvarial defects,whereas adults older than 2 years of age lose this regenerative potential.Dura mater serves as a key regulator of calvarial regeneration.However,the molecular mechanism of calvarial reossification remains elusive.And few quantitative systematic studies by proteomics approaches have been performed.
     Methods:1.A 2-DE technique was used.Sample preparation,rehydration, SDS-PAGE and other steps were established and optimized.2.Dura mater of juvenile and adult rats was excised.Total proteins were extracted from rat dura,and then analyzed by combination of 2-DE and MALDI-TOF/TOF MS.The differential expressional levels of dentified proteins were validated by Western blot analysis.3.In vitro,morphological changes of juvenile and adult rats dura cells cultured was investigated;and in vivo,ultrastructure of juvenile and adult rats dura cells was studied.
     Results:1.Well-resovled,reproducible 2-DE patterns of juvenile and adult rats dura proteins were established.2.According to the results of 2-DE patterns of juvenile and adult rats dura proteins,24 differential protein spots between juvenile and adult rats dura were identified by 2-DE.Among them,14 protein spots were identified by MALDI-TOF/TOF MS and database search,which represented 11 proteins identified with high statistical reliability.Cytoskeleton-associated protein 4,vimentin,typeⅡkeratin,β-actin,γ-actin,apolipoprotein A-Ⅳprecursor,alpha-tropomyosin and TCTP1 were upregulated,and Copper metabolism MURR1(COMM) domain containing 7,albumin and RAB5-interacting protein were downregulated in juvenile dura compared to adult dura.3.Western blot showed that vimentin,α-tropomyosin,β-actin,andγ-actin were expressed at higher levels in the juvenile dura(3.2 fold,2.4 fold,3.6 fold,and 2.2 fold higher,respectively),confirming the differential protein expressions determined electrophoretically and by mass spectrometry.4.As observed under inversion microscope,adult dura cells began to grow on 10-15 days after culture and to cell fusion on 25-30 days.Juvenile dura cells began to grow on 5-8 days after culture and to cell fusion on 12-15 days.5.As observed under transmission electron microscope,adult dura cells were fusiform with long,narrow nuclei. Nuclear-cytoplasmic ratio was 1:2.5-3;while juvenile dura cells tended to be elliptical with plump nuclei.Nuclear-cytoplasmic ratio was 1:1.3-1.5.
     Conclusions:1.It is essential to obtained 2-DE profiles with high resolution and reproducible to optimize the technology of 2-DE.2.Most of these proteins were shown to be invovled in cell shape and size,translational control,cell proliferation, transport of special cellular organs,stress reaction etc.These data are valuable for studying molecular mechanism of calvarial reossification of juvenile animals.3. Ability of proliferation and ultrastructure of juvenile and adult rats dura cells was obviously different.
引文
1、 Dominguez DC, Lopes R, Torres ML. Introduction to proteomics. Clin Lab Sci.2007; 20(4): 234-8
    
    2、 Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 2006; 6(17): 4688-703
    3、 Chambers G, Lawrie L, Cash P, Murray GI. Proteomics: a new approach to the study of disease. J Pathol. 2000; 192(3): 280-8
    4、 Dominguez DC, Lopes R, Torres ML. Proteomics technology. Clin Lab Sci. 2007;20(4): 239-44
    5、 G(?)rg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004; 4(12): 3665-85
    
    6、Ovsyannikova IG, Johnson KL, Bergen HR 3rd, Poland GA. Mass spectrometry and peptide-based vaccine development. Clin Pharmacol Ther. 2007; 82(6):644-52
    
    7、Mueller DR, Voshol H, Waldt A, Wiedmann B, Van Oostrum J. LC-MALDI MS and MS/MS-an efficient tool in proteome analysis. Subcell Biochem. 2007; 43:355-80
    8、 Ahram M. An introduction into proteomics and its clinical applications. Saudi Med J. 2007; 28(4): 499-507
    9、Schuchardt S, Sickmann A. Protein identification using mass spectrometry: a method overview. EXS. 2007; 97: 141-70
    10、 Sickmann A, Mreyen M, Meyer HE. Mass spectrometry-a key technology in proteome research. Adv Biochem Eng Biotechnol. 2003; 83: 141-76
    11、 Sickmann A, Mreyen M, Meyer HE. Identification of modified proteins by mass spectrometry. IUBMB Life. 2002; 54(2): 51-7
    12、 Hobar PC, Schreiber JS, McCarthy JG, Thomas PA. The role of the dura in cranial bone regeneration in the juvenile animal. Plast Reconstr Surg. 1993; 92(3):405-10.
    13、 Uddstromer L, Ritsila V. Healing of membranous and long bone defects. An experimental study in growing rabbits. Scand J Plast Reconstr Surg. 1979; 13(2):281-7
    14、Mabbutt LW, Kokich VG. Calvarial and sutural re-development following craniectomy in the neonatal rabbit. J Anat. 1979; 129(Pt 2): 413-22
    15、 Reid CA, McCarthy JG, Kolber AB. A study of regeneration in parietal bone defects in rabbits. Plast Reconstr Surg. 1981; 67(5): 591-6.
    
    16、 Mabbutt LW, Kokich VG, Moffett BC, Loeser JD. Subtotal neonatal calvariectomy. A radiographic and histological evaluation of calvarial and sutural redevelopment in rabbits. J Neurosurg. 1979; 51(5): 691-6
    
    17、 Aalami OO, Nacamuli RP, Lenton KA, Cowan CM, Fang TD, Fong KD, et al.Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg. 2004; 114(3): 713-20
    
    18、 Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Crisera FE, Mehrara BJ,et al. Co-culture of osteoblasts with juvenile dural cells causes an increased rate and degree of osteoblast differentiation. Plast Reconstr Surg. 2002; 109(2): 631-42
    
    19、 Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Detch RC, Fagenholz PJ,et al. Dura mater biology: autocrine and paracrine effects of fibroblast growth factor 2. Plast Reconstr Surg. 2002; 109(2): 645-54
    
    20、 Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, et al. Biomolecular mechanisms of calvarial bone induction: juvenile versus mature dura mater. Plast Reconstr Surg. 2000; 105(4): 1382-92
    
    21、Greenwald JA, Mehrara BJ, Spector JA, Fagenholz PJ, Saadeh PB, Steinbrech DS, et al. Juvenile versus mature dura mater: II. Differential expression of genes important to calvarial reossification. Plast Reconstr Surg. 2000; 106(3):630-8
    
    22、 Wan DC, Aalami OO, Wang Z, Nacamuli RP, Lorget F, Derynck R, et al.Differential gene expression between juvenile and adult dura mater: a window into what genes play a role in the regeneration of membranous bone. Plast Reconstr Surg. 2006; 118(4): 851-61
    
    23、 Laronga C, Drake RR. Proteomic approach to breast cancer. Cancer Control. 2007; 14(4): 360-8.
    
    24、 Kislinger T, Emili A. Multidimensional protein identification technology: current status and future prospects. Expert Rev Proteomics. 2005; 2(1): 27-39
    
    25、 Spellman DS, Deinhardt K, Dane CC, Chao MV, Neubert TA. Stable isotopic labeling of amino acids in cultured primary neurons: Application to BDNF-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics.2008 Feb 6
    
    26、 Borrebaeck CA, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn. 2007; 7(5): 673-86.
    
    27、 Mittal V, Nolan DJ. Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn. 2007; 7(2): 133-47
    
    28、 Mocellin S, Rossi CR. Principles of gene microarray data analysis. Adv Exp Med Biol. 2007; 593: 19-30
    
    29、 Aggarwal K, Lee KH. Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic. 2003; 2(3): 175-84
    
    30、 Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999; 19(3): 1720-30.
    
    31、 Hocquette JF. Where are we in genomics? J Physiol Pharmacol. 2005; 56 Suppl 3:37-70
    
    32、 Adams LD, Gallagher SR. Two-dimensional gel electrophoresis. Curr Protoc Mol Biol. 2004; Chapter 10: Unit 10.4
    
    33、 Pernelle JJ, Righetti PG, Wahrmann JP. 2-D analysis of human skeletal muscle myosin light chains with immobilized pH gradients. J Biochem Biophys Methods.1988; 16(2-3): 227-36
    
    34、 Lopez JL. Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 849(1-2): 190-202
    
    35、 Horgan GW. Sample size and replication in 2D gel electrophoresis studies. J Proteome Res. 2007; 6(7): 2884-7
    
    36、 Lilley KS, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol. 2002; 6(1): 46-50
    37、 Canas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo JM. Trends in sample preparation for classical and second generation proteomics. J Chromatogr A. 2007;1153(1-2): 235-58
    38、 Towbin H, Ozbey O, Zingel O. An immunoblotting method for high-resolution isoelectric focusing of protein isoforms on immobilized pH gradients.Electrophoresis. 2001; 22(10): 1887-93.
    39、 Chin CC, Wold F. The use of tributylphosphine and 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole in the study of protein sulfhydryls and disulfides. Anal Biochem. 1993 ; 214(1): 128-34
    
    40、 Feliu JX, Cubarsi R, Villaverde A. Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol Bioeng. 1998; 58(5): 536-40.
    
    41、 Li ZB, Flint PW, Boluyt MO. Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics. Electrophoresis. 2005; 26(18):3572-85
    
    42、 Taylor RC, Coorssen JR. Proteome resolution by two-dimensional gel electrophoresis varies with the commercial source of IPG strips. J Proteome Res.2006; 5(11): 2919-27
    
    43、 Khoudoli GA, Porter 1M, Blow JJ, Swedlow JR. Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach.Proteome Sci. 2004; 2(1): 6
    
    44、 Gorg A, Postel W, Gunther S, Weser J, Strahler JR, Hanash SM et al. Approach to stationary two-dimensional pattern: influence of focusing time and immobiline/carrier ampholytes concentrations. Electrophoresis. 1988; 9(1): 37-46
    
    45、 Dunn MJ. Two-dimensional polyacrylamide gel electrophoresis for cardiovascular proteomics. Methods Mol Biol. 2007; 357: 3-13.
    
    46、 Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical,organizational, and signaling functions in the cytoplasm. Genes Dev. 2007; 21(13):1581-97.
    
    47、 Norlen L, Masich S, Goldie KN, Hoenger A. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp Cell Res. 2007;313(10): 2217-27
    
    48、 Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994;79(4): 679-94
    
    49、 Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007; 313(10): 2050-62
    50、Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004; 22(7): 1263-78
    
    51、 Morsczeck C, Moehl C, Gotz W, Heredia A, Schaffer TE, Eckstein N, et al. In vitro differentiation of human dental follicle cells with dexamethasone and insulin.Cell Biol Int. 2005; 29(7): 567-75.
    
    52、 Margaritescu C, Raica M, Simionescu C, Mogoanta L, Surpateanu M, Jaubert F,et al. Tumoral stroma of salivary pleomorphic adenoma - histopathological,histochemical and immunohistochemical study. Rom J Morphol Embryol. 2005;46(3): 211-23
    
    53、 Annunen-Rasila J, Ohlmeier S, Tuokko H, Veijola J, Majamaa K. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity.Proteomics. 2007; 7(13): 2189-200
    54、 Kitching R, Qi S, Li V, Raouf A, Vary CP, Seth A. Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3-E1 cells. J Bone Miner Metab. 2002; 20(5): 269-80
    55、 Chen M, Shen X. Nuclear actin and actin-related proteins in chromatin dynamics.Curr Opin Cell Biol. 2007; 19(3): 326-30
    56、 Fath KR, Obenauf SD, Burgess DR. Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes.Development. 1990; 109(2): 449-59
    57、Yates-Siilata KE, Dahms TE, Webster RO, Heuertz RM. C-reactive protein increases F-actin assembly and cortical distribution with resultant loss of lamellipod formation in human neutrophils.Cell Biol Int.2004;28(1):33-9.
    58、Hickson GR,Echard A,O'Farrell PH.Rho-kinase controls cell shape changes during cytokinesis.Curr Biol.2006;16(4):359-70.
    59、Gourlay CW,Ayscough KR.A role for actin in aging and apoptosis.Biochem Soc Trans.2005;33(Pt 6):1260-4
    60、Takahashi N,Ejiri S,Yanagisawa S,Ozawa H.Regulation of osteoclast polarization.Odontology.2007;95(1):1-9
    61、Perry SV.Vertebrate tropomyosin:distribution,properties and function.J Muscle Res Cell Motil.2001;22(1):5-49
    62、Pittenger MF,Kazzaz JA,Helfman DM.Functional properties of non-muscle tropomyosin isoforms.Curr Opin Cell Biol.1994;6(1):96-104.
    63、张轶 刘文韬 李强 陈雪华 刘炳亚 朱正纲。肿瘤转移相关基因原肌球蛋白2的克隆及功能仞步研究。中华肿瘤杂志,2007,29(9):644-648
    64、Jiang D,Ying W,Lu Y,Wan J,Zhai Y,Liu W,et al.Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis.Proteomics.2003;3(5):724-37
    65、Takenaga K,Nakamura Y,Sakiyama S.Differential expression of a tropomyosin isoform in low-and high-metastatic Lewis lung carcinoma cells.Mol Cell Biol.1988;8(9):3934-7.
    66、Radice P,Sozzi G,Miozzo M,De Benedetti V,Cariani T,Bongarzone I,et al.The human tropomyosin gene involved in the generation of the TRK oncogene maps to chromosome 1 q31.Oncogene.1991;6(11):2145-8
    67、Hesse M,Zimek A,Weber K,Magin TM.Comprehensive analysis of keratin gene clusters in humans and rodents.Eur J Cell Biol.2004;83(1):19-26
    68、Magin TM,Vijayaraj P,Leube RE.Structural and regulatory functions of keratins.Exp Cell Res.2007;313(10):2021-32.
    69、Gachet Y,Toumier S,Lee M,Lazaris-Karatzas A,Poulton T,Bommer UA.The growth-related,translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle.J Cell Sci.1999;112(Pt 8):1257-71
    70、 Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP).Int J Biochem Cell Biol. 2004; 36(3): 379-85
    71、 Li F, Zhang D, Fujise K. Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem. 2001; 276(50): 47542-9.
    
    72、 Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM,et al. COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem. 2005; 280(23): 22222-32
    
    73、 Maine GN, Burstein E. COMMD proteins: COMMing to the scene. Cell Mol Life Sci. 2007; 64(15): 1997-2005
    
    74、 Feng JQ, Xing L, Zhang JH, Zhao M, Horn D, Chan J, et al. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem. 2003; 278(31): 29130-5
    
    75、 Wu S, Flint JK, Rezvani G, De Luca F. Nuclear factor-kappaB p65 facilitates longitudinal bone growth by inducing growth plate chondrocyte proliferation and differentiation and by preventing apoptosis. J Biol Chem. 2007 ; 282(46):33698-706
    
    76、 Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006; 103(32): 11821-7
    
    77、 Hoffenberg S, Liu X, Nikolova L, Hall HS, Dai W, Baughn RE, et al. A novel membrane-anchored Rab5 interacting protein required for homotypic endosome fusion. J Biol Chem. 2000; 275(32): 24661-9
    
    78、 Woodman PG. Biogenesis of the sorting endosome: the role of Rab5. Traffic.2000; 1(9): 695-701.
    79、 Rajagopal R, Ishii S, Beebe DC. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo. BMC Cell Biol. 2007; 8 :25.
    80、 Lin IC, Slemp AE, Hwang C, Sena-Esteves M, Nah HD, Kirschner RE.Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion. Plast Reconstr Surg.2007; 120(5): 1137-47.
    81、 Smartt JM Jr, Lin IC, Ischiropoulos H, Kirschner RE. Intermittent hydrostatic compression promotes nitric oxide production and osteodifferentiation of fetal dural cells. Ann Plast Surg. 2005; 55(1): 76-80
    
    82、 Sun Z, Lee E, Herring SW. Cell proliferation and osteogenic differentiation of growing pig cranial sutures. J Anat. 2007; 211(3): 280-9.
    
    83、 Schick B, Wolf G, Romeike BF, Mestres P, Praetorius M, Plinkert PK. Dural cell culture. A new approach to study duraplasty. Cells Tissues Organs. 2003; 173(3):129-37
    
    84、 Zhou F, Chen G, Zhang JM, Huang ZS. An in vitro culturing model for rabbit dural cells. Ann Clin Lab Sci. 2006; 36(3): 341-4
    
    85、 Thery M, Bornens M. Cell shape and cell division. Curr Opin Cell Biol. 2006;18(6): 648-57
    
    86、 Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, et al. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol. 2005; 7(10):947-53
    
    87、 Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci U S A. 2006; 103(52): 19771-6
    
    88、 Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 2002; 16(10): 1195-204
    
    89、 Novak IL, Slepchenko BM, Mogilner A, Loew LM. Cooperativity between cell contractility and adhesion. Phys Rev Lett. 2004; 93(26 Pt 1): 268109
    90、 Wang N, Ostuni E, Whitesides GM, Ingber DE. Micropatterning tractional forces in living cells. Cell Motil Cytoskeleton. 2002; 52(2): 97-106
    
    91、 Yamakita Y, Totsukawa G, Yamashiro S, Fry D, Zhang X, Hanks SK, et al.Dissociation of FAK/p130(CAS)/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK. J Cell Biol. 1999; 144(2): 315-24.
    
    92、 Sunada R, Gorzer I, Oma Y, Yoshida T, Suka N, Wintersberger U, et al. The nuclear actin-related protein Act3p/Arp4p is involved in the dynamics of chromatin-modulating complexes.Yeast.2005;22(10):753-68
    93、陈强,史俊南,任雨笙。牛血小板衍化尘长因子对人牙周膜成纤维细胞超微结构的影响。牙体牙髓牙周病学杂志1998,8(1):29-31
    94、韦长元,陈建思,刘剑仑,杨南武,李挺。应用顺铂后肝癌细胞超微结构的研究。中华肝脏病杂志,2000,8(2):89-90
    1.Dominguez DC,Lopes R,Torres ML.Introduction to proteomics.Clin Lab Sci.2007 Fa11;20(4):234-8
    2.Wittmann-Liebold B,Graack HR,Pohl T.Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry.Proteomics.2006 Sep;6(17):4688-703
    3.Chambers G,Lawrie L,Cash P,Murray GI.Proteomics:a new approach to the study of disease.J Pathol.2000 Nov;192(3):280-8
    4.Swinbanks D.Government backs proteome proposal.Nature.1995 Dec 14;378(6558):653.
    5.Pandey A,Mann M.Proteomics to study genes and genomes.Nature.2000 Jun 15;405(6788):837-46
    6.G(o|¨)rg A,Weiss W,Dunn MJ.Current two-dimensional electrophoresis technology for proteomics.Proteomics.2004 Dec;4(12):3665-85
    7.Fountoulakis M,Lahm HW.Hydrolysis and amino acid composition of proteins.J Chromatogr A.1998 Nov 27;826(2):109-34.
    8.马海蓉,乍维琪。大规模的酵母双杂交系统在蛋白质相互作用组图谱中的应用。微生物学通报,2003,30(6):119-123
    9.López JL.Two-dimensional electrophoresis in proteome expression analysis.J Chromatogr B Analyt Technol Biomed Life Sci.2007 Apr 15;849(1-2):190-202
    10.Barnouin K.Two-dimensional gel electrophoresis for analysis of protein complexes.Methods Mol Biol.2004;261:479-98.
    11.Jorrín JV,Maldonado AM,Castillejo MA.Plant proteome analysis:a 2006 update.Proteomics.2007 Aug;7(16):2947-62
    12.Hoorn EJ,Hoffert JD,Knepper MA.The application of DIGE-based proteomics to renal physiology.Nephron Physiol.2006;104(1):p61-72
    13.Wheelock AM,Goto S.Effects of post-electrophoretic analysis on variance in gel-based proteomics.Expert Rev Proteomics.2006 Feb;3(1):129-42
    14.Woodson SA.Structure and assembly of group I introns.Curr Opin Struct Biol.2005 Jun;15(3):324-30.
    15.Gygi SP,Rist B,Griffin TJ,Eng J,Aebersold R.Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags.J Proteome Res.2002 Jan-Feb;1(1):47-54
    16.雷红灵,吴永尧。蛋白质组学研究策略及质谱技术的应用。湖北民族学院学报:自然科学版,2007,25(3):346-349
    17.Englbrecht CC,Facius A.Bioinformatics challenges in proteomics.Comb Chem High Throughput Screen.2005 Dec;8(8):705-15
    18. Salasznyk RM, Westcott AM, Klees RF, Ward DF, Xiang Z, Vandenberg S, et al.Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. Stem Cells Dev. 2005 Aug;14(4):354-66
    
    19. Olkku A, Bodine PV, Linnala-Kankkunen A, Mahonen A. Glucocorticoids induce glutamine synthetase expression in human osteoblastic cells: a novel observation in bone. Bone. 2004 Feb;34(2):320-9
    
    20. Spreafico A, Frediani B, Capperucci C, Chellini F, Paffetti A, D'Ambrosio C, et al.A proteomic study on human osteoblastic cells proliferation and differentiation.Proteomics. 2006 Jun;6(12):3520-32.
    
    21. Blonder J, Xiao Z, Veenstra TD. Proteomic profiling of differentiating osteoblasts.Expert Rev Proteomics. 2006 Oct;3(5):483-96
    
    22. Conrads KA, Yu LR, Lucas DA, Zhou M, Chan KC, Simpson KA, et al.Quantitative proteomic analysis of inorganic phosphate-induced murine MC3T3-E1 osteoblast cells. Electrophoresis. 2004 May;25(9):1342-52.
    
    23. Salasznyk RM, Klees RF, Westcott AM, Vandenberg S, Bennett K, Plopper GE.Focusing of gene expression as the basis of stem cell differentiation. Stem Cells Dev. 2005 Dec;14(6):608-20.
    
    24. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M.Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005 Jun 3;308(5727):1472-7.
    
    25. Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, et al.Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts.J Cell Physiol. 2007 Feb;210(2):325-35
    
    26. Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res. 2006 Nov;24(11):2059-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700