带孔网板多点成形过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多点成形是板材柔性成形新工艺,其基本思想是把传统模具离散化,用多个规则排列、高度可调的基本体冲头形成所需三维曲面进行成形。多点成形因其柔性、高效和精确等特点,有着广泛的应用前景。
     基于板材成形数值模拟的基础理论,建立了带孔网板和无孔板多点成形过程中起皱分析、拉裂分析和回弹分析的有限元模型。通过对不同成形方式和不同边界条件下板材多点成形过程的数值模拟研究和实验验证,分析缺陷产生的原因及抑制办法,得到了不起皱成形极限图、破裂临界图和回弹量与其它变量关系曲线等一系列结果,这些结果及缺陷抑制办法的提出对多点成形技术的工程应用具有很强的参考价值和指导意义。
     本文以个性化钛合金颅骨修复体成形为背景,研究了基于CT数据的曲面重构、NURBS曲面插值、非接触测量、曲面匹配和误差分析等问题;探讨板材多点闭环成形的一般过程和PID算法;研究了针对钛合金颅骨修复体的数字化制造解决方案。上述研究工作的完成,实现了板材成形CAD/CAE/CAM/CAT一体化,为多点数字化精确成形奠定了坚实的基础。
With the scientific progress and rapid development of industrial standards, the variety of new industrial products is developing at an incredible speed, and so is the renewal of the old products, the requirement of forming mold increase urgently. One solution to catching up with time is to explore new flexible technological process. Multi-point forming (MPF) is a flexible forming process for 3D sheet metal. Its basic idea is to make traditional mold discrete, using a series of height adjustable elements (little punch) to combine forming surface. MPF can rapidly achieve required surface, save a lot of modeling time and cost compared with traditional mold, one MPF system can be used for different purposes. MPF has been applied to vehicles covering parts, medical engineering (titanium alloy retiary sheet forming), architectural decoration and other fields. And in ship hull plate, pressure vessels, aircraft skin, urban sculpture and many other fields have broad application prospects. MPF equipment has been successfully used in the torsion plates forming of Beijing Stadium (nest project) for 2008 Olympic Games. So it is great importance to carry the MPF technique into effect.
     Computer aidding digital sheet metal forming, it is the development trend of the forming field. MPF technology adapt to the demond of digital sheet metal forming, it can be able to realize flexible, rapid and accurate forming part. In this paper, MPF technology is regarded as the core, CAD/CAM/CAT is regarded as a means to explore the surface modeling and detection method of MPF process; Studying digital MPF based on closed-loop forming by finite element numerical simulation, discussing deformation characteristics of sheet in forming process, putting forward some means and methods to control the forming defects and improve the accuracy of part.
     The main contents and conclusions are as follows:
     1. Study of MPF surface modeling method
     Constructing NURBS surface based on the data points has been analysed in detail. To consider surface reconstruction for the absenting cranium as the representative for MPF surface modeling has been explored in depth. In the measurement for CT photograph, taking the method based on wavelet theory to detect the edge of cranium surface, adopting the function of Modified Quadratic Shepard to construct the rectangular mesh from scattered points.The denoise function for measured data is realized based on Wavelet Transform. After that, the NURBS surface was interpolated.
     2. Study of numerical simulation method for MPF and wrinkling of sheet metal in forming process
     Wrinkling is main defect in sheet metal forming process. Based on basic numerical simulation theory of sheet metal forming, wrinkling criterion is given and the formula for calculating wrinkling critical stress is derived. The finite element model for wrinkling numerical analysis is established. The MPF processes of spherical surface parts of titanium alloy sheet metal, retiary sheet metal with hole sparse distribution and sheet metal with square hole density distribution were simulated. The results show that thickness and deformation are important factors affect the wrinkling. The spherical surface part of retiary sheet metal is not prone to wrinkle under the same condition. With sheet metal thickness increasing and deformation diminishing, wrinkles are weakened gradually. The reasons for the spherical surface part of retiary sheet metal is not prone to wrinkle are also analyzed, and the non-wrinkling critical graphs for spherical surface part with different sheet were obtained. According to existing conditions, the forming test was done, the testing result complies with the simulation result suitably, and they conform to the non-wrinkling critical graph for spherical surface part. The method how to eliminate wrinkling defects has been discussed, the conclusion is that varying deforming path MPF and sectional MPF techniques are effective to restrain wrinkling.
     3. Research on fracture of sheet metal in MPF process based on finite element analysis
     Fracture is main expressional form of tensile instability in sheet metal forming process. The tensile stability numerical description of isotropic sheet and orthotropic sheet can be realized by calculating tensile stability factor. The forming limit diagram(FLD)of sheet metal is obtained by computer simulation technology, and judging the fractures whether appear during the process based on FLD. The MPF in drawing process of titanium alloy sheet metal, retiary sheet metal with hole sparse distribution and sheet metal with square hole density distribution were simulated. The simulation results indicate that the drawing capability of sheet metal with square hole is bad, the drawing capability of retiary sheet metal with hole is better a little than sheet metal with square hole, and the drawing capability of sheet metal is best because of its good continuity. At the same time, with sheet metal thickness increasing, tensile property of sheet is strengthened gradually. The relationship graph between critical drawing height and blank-holder force with different sheet metal were fitted by studying drawing test. A fracture critical curve for forming part of different sheet metal was obtained. In order to restrain fracturing defect, the forming mode which sheet metal is sandwiched by steel paddings is proposed. The simulation and testing results demonstrate this forming mode is suitable for titanium alloy retiary sheet metal part with large deformation.
     4. Research on numerical simulation of springback in MPF process and springback control method
     The MPF processes of spherical surface parts of different sheet metal with different thickness and curvature radius were simulated by explicit-implicit algorithm, springback trend and curvature distribution have been concluded. The simulation results indicate, the influence of thickness and deformation to springback is same to traditional sheet metal forming essentially, that is reducing thickness and deformation can deteriorate the springback influence. Under the same condition, the springback ratios of retiary sheet metal are less than that of sheet metal. The relationship curve of springback ratios and thickness, curvature radius in spherical surface has been concluded. Based on the springback analysis, a method which can restrain springback-alternating forming is given. The analysis results show that the products with high precision and low residual stress are available by the multi-point alternating forming method, and the precision and uniformity of the parts are also improved with more alternating times. At the same time, the stretch forming mode with flexible clamp equipment which can aiso suppress springback is proposed, a simple flexible clamp equipment and interrelated finite element mode have been made. The simulation result and test show that the part with good quality, well-proportioned and small springback ratios can be obtained when the flexible clamp equipment is used.
     5. Technical study of the MPF digital process for titanium alloy cranial prosthesis based on finite element analysis
     MPF technology has many advantages in small batch production of sheet metal part, for example low cost and high accuracy, it is very suitable for customized products.Based on MPF technology, a novel digital manufacturing method of titanium alloy cranial prosthesis was developed in this paper. The MPF processes of titanium alloy cranial prosthesis of retiary sheet metal with different elastic cushion thickness, different steel padding thickness and different friction condition were simulated. The simulation results indicate that the dimple defect can be suppressed effectively when the thickness of elastic cushion is exceed 6mm, and the wrinkles can be restrained when 08Al steel paddings with 0.7mm thickness are used. The course which from 3D surface reconstruction based on CT data to forming titanium alloy cranial prosthesis with good quality is introduced detailedly. The testing result shows that the efficiency of cranial prosthesis can be improved when MPF digital technology is adopted, and the technical feasibility is validated primely by actual cases.
     6. Research on key techniques to multi-point closed-loop forming and part accuracy control
     The usual course of multi-point closed-loop forming and PID algorithm have been put forward, closed-loop forming simulation with PI controller has been conducted. The result proves the target surface can be obtained by closed-loop forming with PI controller. On the basis of non-contact detection for 3D surface, the two step registration method combining ICP algorithm and Genetic Algorithm (GA) optimization is proposed. At first step, the self adaptive GA is employed to aligning the data in different coordinate system, and then ICP algorithm is employed to register the data precisely by using the result of GA as the initial value. The actual cases show the registration accuracy is improved by this method. The error analysis of customized titanium alloy cranial prosthesis has been done, the result shows that the accurate MPF can be realized by MPF system and 3-D laser measurement system.
引文
[1]梁炳文,陈孝戴,王志恒.板金成形性能[M].北京:机械工业出版社,1999.
    [2]熊火轮,胡世光.板材成形中的计算机辅助技术[M].北京:航空航天大学出版社,1994.
    [3]李发致,卫原平,曾令寿.关于现代模具制造的研究[J].金属成形工艺,1998,16(2):26-29.
    [4]李明哲,苏世忠,刘纯国.无模多点成形技术[J].计算机辅助设计与制造,2000,4:1.
    [5]李明哲,陈建军,隋振.板材三维曲面多点成形技术[J].新技术新工艺,2000,10:27-29.
    [6]李明哲,付文智,李湘吉.板材多点成形样机的研制[J].哈尔滨工业大学学报,2000,32(4):62-64.
    [7] Matsubara,S.A. Computer numerically controlled dieless incremental forming of a sheet metal.Proceedings of the Institution of Mechanical Engineers B[J].Journal of Engineering Manufacture,2001,(215):959-966.
    [8] Iseki,H. Approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller[J].Journal of Materials ProcessingTechnology,2001,1-3(111):150-154.
    [9] Iseki,H; Naganawa,T. Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers[J].Journal of Materials Processing Technology,2002,130:675-679.
    [10]田中繁一.彈性工具を用いた少數回押入みインクリメンタルフォーミングによる曲面の成形[C].第48回塑性加工連合講演會論文集,1997:129—130.
    [11]康小明,马泽恩,何涛.机翼整体壁板喷丸成形CAD/CAM/CAE系统[J].航空制造工程,1997,6:35—36.
    [12]李国祥.机翼蒙皮壁板气动弯折外形的成形[J].航空制造工程,1999,7:15—17.
    [13]马振平,李宇.普旋道次曲线轨迹对成形影响分析[J].锻压技术,1999,1:21—24.
    [14]刘兴家,张奕黄.封头旋压成形旋轮运动轨迹确定方法的研究[J].塑性工程学报,1997,4:80—83.
    [15]康达昌,高西成,孟晓峰.平板毛坯普旋变形方式的研究[J]..塑性工程学报,1998,4:102—106.
    [16]李洪涛,王绍安,邱春城.电磁成形工艺及其应用[J].电加工,1999,3:36—39.
    [17]赵林,周锦进.板材电磁成形实验研究[J].金属成形工艺,1992,2:7—11.
    [18]周立军,杨学泉.电磁成形工艺及其应用[J].水利电力机械,1996,2:29—32.
    [19]陈敦军,向毅斌,李淼泉.激光成形工艺方法及其发展前景[J].热加工工艺,2000,3:50—51.
    [20]方刚.激光成形技术的特点及其应用[J].应用激光,2001,2:107—110.
    [21]周建忠,张永康,杨继昌.基于激光冲击波的板材塑性成形新技术[J].中国机械工程,2002,22:1938—1941
    [22]杨继昌,周建忠,张永康.激光冲压金属板材成形的研究[J].江苏大学学报,2002,1:1—4.
    [23]野本敏治.多点プしス法による船体外板の曲げ加工に关する基础的研究[C].日本造船学会论文集第170号,1991:587~598.
    [24]中岛尚正.针金束を用いた金型·电极の研究[J],日本机械学会志第72卷第603号,昭和44年4月:32—40.
    [25]北野广雄.钢板曲げ加工用万能调整式プレス机械の研究[D].日本东京:京都大学,昭和36年1月.
    [26]西冈富仁雄.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第一报基础の研究)[C],日本造船学会论文集第132号,昭和47年10月:481—501.
    [27]西冈富仁雄.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第二报实用化研究)[C],日本造船学会论文集第133号,昭和48年5月:291—305.
    [28]世古成道,熊本盛秀.三条プレスの开发[J],三菱重工技报,1976,13(6):64—72.
    [29] Yasuhiro Iwasaki,Hiroshi Shifa,Yoshiharu Taura.Forming of the Three-Dimensional Surface with a Triple-Row-Press[J].Advanced Technology of Plasticity,1984:483—488.
    [30] David E. Hardt,David C. Gossard.A Variable Geometry Die for Sheet Metal Forming:Machine Design and Control[J].Proc. Jt. Autom. Control Conf.,1980,FP7-C:366-367.
    [31] D.E. Hardt,B. A. Olsen,B. T. Allison,K. Pasch.Sheet Metal Forming with Discrete Die Surface[C].Proc:9th NAMRC,1981:140-144.
    [32] David E. hardt, R. Davis Webb.Sheet Metal Die Forming Using Closed-Loop Shape Control[C].Annals of the CIRP,1982,31:165-169.
    [33] David. E. Hardt, R. Davis Webb.Closed-Loop Control of Three-Dimensional Sheet Forming[J].Comput.-Based Fact. Autom,1984:381-387.
    [34] R. D. Webb,D. E. Hardt.A Transfer Function Description of Sheet Metal Forming for Process Control[J].Journal of Engineering for Industry,1991,113:44-52.
    [35] Walczyk, D.F.,Hardt, D.E. Rapid tooling for sheet metal forming using profiled edge laminations - design principles and demonstration [J], Journal of Manufacturing Science and Engineering.1998,120(4):746-754.
    [36] David E. Hardt,Mary C. Boyce,Karl B. Ouster hout.A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts[J].Comput.-Based Fact. Autom,1993,69-76.
    [37] D. F. Walczyk, D. E. Hardt, Design and analysis of reconfigurable discrete dies for sheet metal forming[J], Journal of Manufacturing System,1998,17(6):436-454.
    [38] David E. hardt,M. A. Roberts,K. A. Stelson.Closed-Loop Shape Control of A Roll-Bending Process.Trans. of ASME[J],Journal of Dynamic System, Measurement and Control,1982,104(4):317-322.
    [39] David. E. Hardt,B. chen.Control of A Sequential Brakeforming Process[J].Control Manuf:Process Rob. Syst,1983:246-253.
    [40] Michael Hale, David. E. Hardt.Dynamic Analysis and Control of a Roll Bending Process[J].Proc. Am. Control Conf. ,1986(1):578-586.
    [41] David E. Hardt,Mary C. Boyce,Karl B. Ouster hout.A Flexbile Forming System for Sheet Metal[C].18th Annual NSF Conference on Design and Manufacturing System Research, Atlanta.CA, 1992:8-10.
    [42] David E. Hardt,R.C.Fenn. Real-Time Control of Sheet Stability During Forming[J],Journal of Engineering for Industry,1993(115):229-308.
    [43]李明哲,中村敬一.基本的な成形原理の检讨(板材多点成形法の研究第1报)[C],平成4年度塑性加工春季讲演会论文集,1992:519-522.
    [44]中村敬一,李明哲.油压式多点プレス实验装置の试作(板材多点成形法の研究第2报)[C],平成4年度塑性加工春季讲演会论文集,1992:523-526.
    [45]李明哲,中村敬一.多点成形における不良现象の发生及ぴその抑制(板材多点成形法の研究第3报)[C],日本第43回塑性加工联合讲演会论文集,1992:425-428.
    [46]中村敬一,李明哲.ねじれ形状の多点成形に关する实验的检讨(板材多点成形法の研究第4报)[C],第43回塑性加工联合讲演会论文集,1992:429-432.
    [47]岛昭夫,中村敬一,李明哲.ねじれ形状に对应した多点プレス成形CAD/CAMシステムの开发(板材多点成形法の研究第5报)[C],第45回塑性加工联合讲演会论文集,1994:335-338.
    [48]中村敬一,岛昭夫,李明哲.多点プレス成形装置の开发(板材多点成形法の研究第6报)[C],第45回塑性加工联合讲演会论文集,1994:339-342.
    [49]李明哲,赵晓江.球形曲面多点分段成形实验研究[J],塑性工程学报,1996,3(4):19-26.
    [50]李明哲,赵晓江等.板材二维曲面多点分段成形实验研究[J],农业机械学报,1997,28(1):123-126.
    [51]李明哲,赵晓江.多点分段成形中的几种成形方法[J],中国机械工程,1997,8(1):87-90.
    [52]赵晓江.多点成形CAGD与多点成形实验研究[D].长春:吉林工业大学,1997.
    [53]初红艳.无模成形CAD系统的曲面造型[D].长春:吉林工业大学,1997.
    [54]陈建军.多点成形CAD系统的研制[D].长春:吉林工业大学,1998.
    [55]李明哲,苏世忠,李广权.金属板材无模多点成形专用CAD/CAM/CAT软件的开发[J],中国机械工程,1997,8(3):298-342.
    [56] Li Mingzhe, Liu Yuhong etc. Multi-Point Forming: A Flexible Manufacturing Method for a 3-D Surface Sheet[J], Journal of Materials Processing Technology ,1999,87:277-280.
    [57] Li Mingzhe , Liu Chunguo , Chen Qingmin. Research on Multi-Point Forming of Three-Dimensional Sheet Metal Parts[C],6th International Conference on Technology of Plasticity, Nuremberg,Germany,1999,1:189-194.
    [58] Li Mingzhe,Liu Chunguo,Cai Zhongyi. A Dieless Forming Technique for Sheet Metal[C],'99 international Conference on Science and Technology, Seoul, Korea,1999,7.
    [59] Li Mingzhe,Su Shizhong. The Flexible System for Manufacturing Three Dimensional Curved Sheet with Technology of Multi-point forming[C],ICAMT’99 Proceedings of 1999 International Conference on Advanced Manufacturing Technology,Science Press New York,ltd,1999:294-297.
    [60] Li Mingzhe,Liu Chunguo,Su Shizhong. Research on a flexible forming system of sheet metal[C],IFAC 5th Symposium on Low Cost Automation,1998,9.
    [61] Cai Zhongyi,Li Mingzhe. Optimum path forming technique for sheet metal and its realization in multi-point forming[J],Journal of Materials Processing Technology,2001,110:136-141.
    [62]陈建军,李明哲.多点分段成形技术应用研究[J].哈尔滨工业大学学报,2000,32(4):65-67.
    [63]余同希,章亮炽.塑性弯曲理论及其应用[M],科学出版社,1992.
    [64]陈毓勋.板材与型材弯曲回弹控制原理与方法[M],国防工业出版社,1990.
    [65] Woo,D.M..On the complete solution of the deep drawing problem[J],Int.J.Mech.Sci.,1968,10:89-94.
    [66] Wang,N.M. . Large plastic deformation of a circular sheet caused by punchstretching[J].Appl.Mech.,ASME,1970,37:431-440.
    [67] H.S.Mehta,S.Kobayashi.Finite Element Analysis and Experimental Investigation of Sheet Metal Stretching[J].J.of Applied Mechanics,1973,40:874-880.
    [68] A.S.Wifi.An incremental complete solution of the stretch forming and deepdrawing of a circular blank using a hemispherical punch[J].Int.J.Mech.Sci.,1976,18:23-31.
    [69] P.V.Marcal.A stiffness method for elastic-plastic problems[J].Int.J.Mech.Sci.,1965,7:229-238.
    [70] P.V.Marcal,I.P.King.Elastic-plastic analysis of two dimensional systems by the finite element method[J].Int.J.Mech.Sci.,1967,9:143-155.
    [71] O.C.Zinkiwicz,S.Valliappan and I.P.King.Ealsto-plastic Solutions of Engineering Problems“Initial Stress”Finite Element Approach[C].International Journal for numerical methods in engineering,1969,1:75-100.
    [72] Y.Yamada,N.Yoshimura and T.Sakurai.Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method[J].Int.J.Mech.Sci.,1968,10:343-354.
    [73] Y.Yamada,T.Kawai,N.Yoshimura,T.Sakurai.Analysis of the Elastic-plastic Problem by the Matrix Displacement Method[C].Proceedings of the second conference on matrix methods in structural mechanics,Wright-Patterson Air Force Base,Ohio,1969,1271-1299.
    [74] Lee, H.and Kobayashi.S. New solution to rigid-plastic deformation problems using a matrix method,Trans.ASME[J],J.Engineering Industries,1975,95:865-873.
    [75] Marcal,P.V.and King,I.P. Elastic-plastic analysis of two-dimension stress system by the finite element method[J],Int.J.Mech.Sci.,1967,9:143-155.
    [76] Hibbit,H.D.,etc,.A finite element formulation for problems of large strain and large displacement[J],Int.J.Solids Structures,1970,6:1069-1086.
    [77] Osias,J.R.,etc,.Finite elasto-plastic deformation—I[J],Int.J.Solids Structures,1974, 10:321-339.
    [78] McMeeking,R.M.and Rice,J.R. Finite element formulation for problems of large elastic-plastic deformation[J],Int.J.Solids Structures,1975,11:601-615.
    [79] Wifi,A.S. An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch[J],Int.J.Mech.Sci., 1976,18.
    [80] Wang,N.M.and Budiansky,B. Analysis of sheet metal stamping by a finite-element method[J],J.Appl.Mech.,1978,45:73-82.
    [81] Tang,S.C. Large elasto-plastic strain analysis of flanged hole forming[J],Computer &Structures,1981,13.
    [82] Tang,S.C. Large strain analysis of an inflating membrane[J],Computer& Structures,1982,15(1).
    [83] Nakamachi,E.,etc,.基于Kirchhoff板理论的圆形板胀形问题和凸模拉胀的数值分析[M],《世界塑性加工最新技术》,机械工业出版社,1987.
    [84] Wennerstorm,H.,etc,. Numerical Analysis Forming Process,Pittman,J.F.T.(ed.) [C], John Wiley&Sons Ltd.,1984.
    [85] Isaki,H.,etc,.用有限元法对轴对称压延件的分析[M],《世界塑性加工最新技术》,机械工业出版社,1987.
    [86] Arlinghaus,F.J.,Frey.W.H.,etc,.Finite element modeling of a stretch formed part[J], Computer Modeling of Sheet Metal Forming Process[J],The Metallurgical Society, Warrendale,PA,1985:51-64.
    [87] Nakamachi,E. A finite element simulation for the sheet metal forming processes[J], Int.J.Num.Meths.Engng.,1988,25:283-292.
    [88] Honecher,A.and Mattiasson,K. Finite element procedures for 3D sheet forming simulations[C],Proc.NUMIFORM’89,Thompson,E.G.,etc(eds),Balkema A.A., 1989.
    [89] Tang,S.C.,etc,. Sheet metal forming modeling of automobile body panels[J],ASM, Int.,1988:185-193.
    [90] Chung,K.and Lee,D.板材成形工艺的计算机辅助分析[M],《世界塑性加工最新技术》,1987.
    [91] Aoh,H.and Nakamachi,E. 3-D sheet metal forming simulations of automobile panel by thin shell finite element method[J],VDI BERICHTE NR894,1991: 357-379.
    [92] Tang,S.C. A local 3-D model for automotive sheet metal forming analysis[J], Advanced Technology of Plasticity,1993,3:1647-1652.
    [93] Nakamachi,E.and Tongru,H. Development of virtual manufacturing system for automotive sheet forming[J],Advanced Technology of Plasticity,1993,3: 1799-1804.
    [94] Tang,S.C.,Chappuis,L.B.and Mathe,J. Thin shell element simulation of sheet metal forming processes[J],ibid,1990:1757-1761.
    [95] Nakamachi,E.and Makinouchi,A. Description of tool geometry and formulation of deformation dependant contact problem[J],VDI BERICHTE,Zurich,Switzerland, 1991:75-107.
    [96] Kawka,N.and Makinouchi,A. Finite element simulation of sheet metal forming processes by simultaneous use of membrane,shell and solid elements[C], UNIFORM’92,Sophia,Antipolis,1992:491-496.
    [97] Huo,T.R.and Nakamachi,E. 3-D dynamic explicit finite element simulation of sheet metal forming[C],Proc.of 4th ICTP,Beijing,China,1993:1828-1833.
    [98]熊火轮.计算机辅助板材成形分析模拟系统[D].北京:北京航空航天大学,1990.
    [99]张凯峰.三维板壳成形过程的粘塑性壳有限元分析,中国机械工程学会锻压学会第六届年会,北京,1995.
    [100]李尧臣.金属板材冲压成形过程的有限单元法模拟[J],力学学报,1993,27:351-364.
    [101]李光耀.三维板材成形过程的显式有限元分析[J],计算结构力学及其应用,1996,13:253-268.
    [102]董湘怀.轴对称及三维金属板材成形过程的有限元模拟[D],武汉:华中理工大学,1991.
    [103]杨玉英,徐伟力,金朝海.几种典型件成形过程的弹塑性有限元数值模拟[J].塑性工程学报,1999,6(4):22-25.
    [104]柳玉起,胡平,郭威,李运兴.板材成形局部塑性失稳与起皱的数值模拟[J].机械工程学报,1997,33(2):88-92.
    [105] Goudreau,G.L.and Hallquist,J.O. Recent developments in large-scale finite element Lagrangian hydrocode technology[J],Comput.Meths.Appl.Mech.Engng., 1982,33:726-757.
    [106] Benson,D.J.and Hallquist,J.O. A simple rigid body algorithm for structural dynamics programs[J],Int.J.Num.Meths.Engng.,1986,22:723-749.
    [107] Hallquist,J.O.,etc,.Implementation of a modified Hughes-Liu shell into a fully vectorize explicit finite element code,Finite Elements for Nonlinear Problems[J], Bergne,P.,etc(eds),Berlin,Springer Verlag,1986:465-479.
    [108] Hallquist,J.O. DYNA2D,An explicit finite element and finite different code for axisymmetric and plane strain calculation,University of California,Lawerence Livemore Lab.Rept.
    [109] Hallquist,J.O. Goudreau,G.L.,and Benson,D.J.,Sliding interfaces with contact-impact in large-scale Lagrangian computations[J],Comput.Meths.Appl. Meth.Engng.,1985,51:107-137.
    [110] Schweizerhof,K.and Hallquist,J.O. Explicit integration and contact formulation for thin sheet metal forming[J],VDI,BERICHTE:405-439.
    [111] Nakamachi,E.and Makinouchi,A. Development of process simulation system for autobody panel forming by using FE analysis and laser atercolithography techniques[C],17th Biennial Congress of IDDRG,1992:235-242.
    [112] AutoForm Engineering GMBH,AutoForm User’s Manual 2001.
    [113] Guo,Y.Q.,Batoz,J.L.,Naceur,H. Bouabdallah,S.,Recent developments on the analysis and optimum design of sheet metal forming parts using the simplified inverse approach[J].Computers andStructures 2000,78:133-148.
    [114] El Mouatassim,M.,Thomas,B.,Jameux,J.P.,Di Pasquale,E. An industrial finite element code for one step simulation of sheet metal forming[C], NUMIFORM’95,1995,9:761-766.
    [115] Liu,S.D.,Kolodziejski,J.,Assempoor,A.,Aboutour,T.,Cheng,W. Development of a fast design and trouble-shooting FEM in sheet metal forming[C]. 19th IDDRG Biennal Congress,1996,p.265-276.
    [116] Liu,S.D.,Assempoor,A. Development of FAST3D a design-oriented one step FEM in sheet metal forming[J],COMPLAS IV,Part II,1995,p.1515-1526.
    [117]陈中奎,施法中,黄迪民.板材冲压成形过程有限元分析原型系统的开发[J].计算机辅助设计与制造,1999(6):44-46.
    [118]冯天飞,施法中.冲压成形模拟技术与SheetForm软件[J].机械工人冷加工,2002(9):48-50.
    [119]胡平,卫教善.冲压成形模具分析软件—KMAS[J].模具制造,2004(6):9-11.
    [120]丁祎,胡平,曹颖,李运兴.KMAS冲压分析CAE软件在车身件设计及工艺预分析中的应用[J].吉林大学学报(工学版),2005,35(2):148-152,162.
    [121]李广权,李明哲,苏世忠,李淑慧,刘纯国.板材多点成形时摩擦边界条件的处理方法[J].农业机械学报,1999,30(2):99-103.
    [122]李广权,李达,李东平,李明哲.板材多点成形时复杂边界条件的研究[J].哈尔滨工业大学学报,2000,32(5):75-77.
    [123]蔡中义,李明哲,陈建军.板材多点成形隐式算法数值模拟专用软件及关键技术[J].哈尔滨工业大学学报,2000,32(4):82-88.
    [124]蔡中义,李明哲,李广权.金属成形数值模拟中的接触单元法[J].中国机械工程,2000,11(8):933-935.
    [125]蔡中义,李明哲,李湘吉.板材成形回弹数值分析的静力隐式方法[J].中国机械工程,2002,13(17):1458-1461.
    [126] Cai Zhongyi,Li Mingzhe,Feng Zhaohua.Theory and method of optimum path forming for sheet metal[J].Chinese Journal of Aeronautics,2001,14(2):118-122.
    [127]苏世忠,李明哲,陈建军.有限元多晶体模型模拟铝板多点成形过程[J].哈尔滨工业大学学报,2000,32(4):117-119.
    [128]李明哲,李淑慧,柳泽,陈建军,李广权.板材多点成形过程起皱现象数值模拟研究[J].中国机械工程,1998,9(10):34-38.
    [129]李雪,李明哲,蔡中义.使用弹性介质的多点成形过程数值模拟研究[J].塑性工程学报,2003,10(5),20-24.
    [130]李雪,李明哲,蔡中义.多点成形过程中弹性介质对成形质量的影响[J].哈尔滨工业大学学报,2005,37(2):194-197.
    [131]宋雪松,蔡中义,李明哲.板材多点成形过程中成形力的数值模拟[J].吉林大学学报(工学版),2004,34(2):226-231.
    [132]宋雪松,蔡中义,李明哲.多点成形中压痕的数值模拟及极限成形力的分析[J].材料科学与工艺,2004,12(4):368-371.
    [133]孙刚,李明哲,蔡中义.多点成形时工艺方式与工件压痕的关系研究[J].材料科学与工艺,2004,12(4):360-363.
    [134]孙刚,李明哲,蔡中义,钱直睿.薄板多点成形时不同的工艺方式对起皱的影响[J].哈尔滨工业大学学报,2006,38(4):633-635,643.
    [135]孙刚,李明哲,崔相吉,邓玉山.不同的多点成形工艺方式对回弹的影响[J].北京科技大学学报,2006,28(3):274-277.
    [136] Ted Belytschko,Wing Kam Liu,Brian Moran.Nonlinear finite elements for continua and structures[M].John Wiley & Sons,1943.
    [137]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1985.
    [138]骆少明,汪凌云.论塑性成形各向异性屈服准则[J].金属成形工艺,1994,12(2):75-77.
    [139] Chen Kuokuang,Peter C.Sun.Evaluation of a Dynamic Explicit Finite Element Code for Binder Forming Calculations[J].SAE International Congress and Exposition,Detroit,Michigan,February 27-March 2,1995:19-26.
    [140] Nakamachi E,Huo T.Dynamic-Explicit Type Elastic Plastic Finite Element Simulation of Sheet Metal Forming-Hemispherical Punch Drawing[J].International Journal of Computer Aided Engineering and Software,1996,13:327-338.
    [141] S.S.Han.The influence of tool geometry on friction behavior in sheet metal forming[J].Journal of materials Processing Technology,1997,63:129—133
    [142] N.Bay and T.Wanheim.Real area of contact and friction stress at high pressure sliding contact[J].Journal of materials Processing Technology,1976,38:201—209.
    [143] S.B.Petersen,P.A.F.Martins,N.Bay.Friction in bulk metal forming:a general friction model vs.the law of constant friction[J].Journal of materials Processing Technology,1997,66:186—194 .
    [144] B.D.Carleer,et al,.Sheet metal forming simulation with a friction model based on local contact conditions,In:Proceedings of the Fourth International Conference of Sheet Metal,University of Twente,the Netherlands,1996:40.
    [145] A.Behrens,H.Schafstall.2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficient[J].Journal of materials Processing Technology,1998,80-81:298—303.
    [146] J W Hutchinson.Plastic bucking[J]. Advances in Applied Mechanics, 1974,14:67-144
    [147] K W Neale, P Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metals[J], International Journal for Numerical Methods in Engineer, 1990, 30:1595-1608.
    [148]陈喜娣,蔡中义,李明哲.板材无压边多点成形中起皱数值模拟[J].农业机械学报,2005,36(4):330-333.
    [149]蔡中义.板材多点成形过程的数值模拟与最优成形路径研究[D].长春:吉林大学,2000.
    [150] Chung K.Homogeneous Deformation with Minimum Plastic Work[J].Int.J.Mech.Sci.,1992,34(8):175-491.
    [151] Chung K. Sheet Forming with Optimum Deformation[J].Int.J.Mech.Sci.,1992,34(8):617-633.
    [152]李淑慧,李明哲,陈建军.板材多点分段成形工艺的数值模拟研究[J].机械工程学报,2000,36(8),88-91.
    [153]陈建军,李明哲,严庆光,裴永生.分段多点成形过程有限元数值模拟关键技术研究[J].中国机械工程,2003,14(16):1364-1367.
    [154]谢晖,成艾国,钟志华.变形裕度云图在薄板冲压成型CAE中的应用[J].湖南大学学报,1999,26(5):69一72.
    [155] Hill R.A user一friendly theory of orthotropic plastieity in sheet metals[J].Int J MechSci,1993,35(l):19一5.
    [156]梁炳文,胡世光.弹塑性稳定理论[M].北京:国防工业出版社,1983.
    [157]刘腾喜,傅衣铭,丁皓江.正交各向异性金属板材的成形极限[J].固体力学学报,2000,21(2):32一37.
    [158]阎辉.板材成形数值模拟及回弹研究[D].南京:南京理工大学机械工程学院,2004.
    [159]赵国伟,王元勋,陈建桥.板材成形回弹的数值模拟与影响因素[J]..锻压装备与制造技术,2005,(3):55一58.
    [160]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M],华中理工大学出版社,1996.
    [161] E. Onate, J. Rojek, C. G. Garino. NUMISTAMP A Research Project for Assessment of Finite Element Models for Stamping Processes[J], Journal of Materials Processing Technology, 1995(50), No.1: 17—38.
    [162] M. Papadrakakis. A Method for the Automated Evaluation of the Dynamic Relaxation Parameters[J], Computer Methods for Applied Mechanical Engineering, 1981(25): 35—48.
    [163] P. Underwood. Dynamic Relaxation, Computational Method for Transient Analysis[J], T. Belytschko, T. J. R. Hughes, Eds., 1986(1): 245—263.
    [164]陈喜娣.板材多点成形的起皱和回弹数值分析[D].长春:吉林大学,2004.
    [165]陈伟强,杨应明.颅骨缺损修复的展望[J].汕头大学医学院学报,2001,14(2):154—156.
    [166]皇甫强,牛金龙.钛合金在医学领域的应用[J].稀有金属快报,2005,24(1):33—34.
    [167]付双林,陈寰,王海峰.钛网数字化多点成形技术在颅骨缺损修补中的应用[J].吉林大学学报(医学版),2006,32(1):119—122.
    [168]宋涛,归来,张智勇等.个性化钛植入体修复大面积颅骨缺损[J].创伤外科杂志,2007,9(6):509—511.
    [169]褚国民,费仁元,韩景芸.个性化钛合金颅骨修复体成形仿真[J].制造业自动化,2004,26(12):35—38.
    [170]谭富星,李明哲,钱直睿.钛合金颅骨修复体的多点成形数值模拟[J].吉林大学学报(工学版),2006,36(6):851—855.
    [171]周增俊,徐宏,彭涛,刘之一,曾义.常用人工颅骨修补材料临床对比研究[J].中国神经精神疾病杂志, 2004,30(6):447-448.
    [172]褚国民,李彦生,韩景芸.钛金属板颅骨修复体数字化制造研究[J].应用基础与工程科学学报,2003,11(4):384-389.
    [173] Winder, J., Cooke, R.S., Gray, J. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates[J]. Journal of Medical Engineering & Technology. 1999, 23(1): 26-28.
    [174] Lara, Wilfredo C., Schweitzer, Jeremy, Lewis, Rodney P. Technical considerations in the use of polymethylmethacrylate in cranioplasty[J]. Journal of Long-Term Effects of Medical Implants. 1998, 8(1): 43-53.
    [175] Gopakumar, Sunil. RP in medicine: A case study in cranial reconstructive surgery[J]. Rapid Prototyping Journal. 2004, 10(3): 207-211.
    [176] Tu, Peter. Computer-aided facial reconstruction using skulls[C]. 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, 2007, 3.
    [177] Tie Ying, Wang Dong-Mei, Cheng-Tao. Biomechanical evaluation of unilateral maxillary defect restoration based on modularized finite element model of normal human skull[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology– Proceedings, 2005, 7VOLS: 6184-6187.
    [178] Ju Luyue, Zhong Gaojian, Liu Xia. Reverse engineering methodology in broken skull surface model reconstruction[C]. Lecture Notes in Computer Science (including subseries Lecture Notesin Artificial Intelligence and Lecture Notes in Bioinformatics), 2007, 4689 LNBI: 399-405.
    [179] Tan, F.X.; Li, M.Z.; Cai, Z.Y. Research on the process of multi-point forming for the customized titanium alloy cranial prosthesis[J], Journal of Materials Processing Technology,2007, v 187-188: 453-457.
    [180]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨工业大学出版社,2001.
    [181]郑海波,陈心昭,李志远.基于小波包变换的一种降噪算法[J].合肥工业大学学报(自然科学版),2001,24(4):459-462.
    [182] Goodman T N T,Lee S L. Wavelets of multiplicity[J].Trans of Amer Math Soc,1994,342(1):307-324.
    [183] Dowine T R,Silverman BW. The discrete multiple wavelet transform and thresholding methods[J].IEEE Trans SPIE,1998,46(9):2558-2561.
    [184] Coifman R R,Donoho D L. Translation-invariant denoising,wavelets and statistics[J].New York:Springer-Verlag,1995.125-150.
    [185] Bradely C,Vickers G W. Free-form Surface Reconstruction for Machine Vision[J] Rapid Prototyping.Optical Engineering,1993,32(9):2191-2199.
    [186]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.
    [187]刘纯国.板材多点成形过程控制系统及曲面闭环成形研究[D].长春:吉林工业大学,1999.
    [188]李剑.基于激光测量的自由曲面数字制造基础技术研究[D].杭州:浙江大学,2001.
    [189]严庆光.面向多点成形的逆向工程关键技术及应用研究[D].长春:吉林大学,2001.
    [190] X.M.Li, M.Yeung, Z.X.Li. An algebraic algorithm for work piece localization[J]. IEEE Int. Conf. Robot.Automat, 1996:152—158.
    [191]俎栋林,余立峰,王卫东.基于轮廓特征的多模态医学图像的配准[J].系统工程与电子技术,2000,22(7):61—64.
    [192] David Simon A. Fast and accurate shape-based registration [D]. Pittsburgh:PHDDissertation of Carnegia Mellon University, 1996, 18—31.
    [193] Ko K H, Takashi Maekawa, Nicholas M Patrikalakis, et al. Shape intrinsic properties for free-form object matching[J]. J Comput Inf Sci Eng,2003,3(4):325—333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700