大鼠创伤后巨噬细胞TLR2/4的表达及神经内分泌激素的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤后常发生免疫抑制,易继发感染、脓毒症,甚至多器官功能障碍综合征(multiple organ dysfunction syndrome,MODS),最终影响结局。针对损伤、感染天然免疫很快启动非特异的细胞、体液反应,成为机体的第一道防线,其在创伤后炎症反应的发生、发展动态过程中具有重要作用。巨噬细胞是参与天然免疫的重要细胞,Toll样受体(Toll-like receptor,TLR)家族中的两个重要受体TLR2、TLR4主要表达于巨噬细胞。近来发现TLR4不仅是LPS的模式识别受体(pattern recognition receptors, PRRs),还能识别众多内源性损伤相关分子模式(damage-associated molecular patterns,DAMPs),作为感知组织损伤的“哨兵”而介导无菌性炎症反应。TLR2能识别较TLR4更多的病原体,也参与了组织损伤后炎症反应。TLR2/4与各自的配体结合后,通过相似信号转导最终导致NF-κB活化,产生炎症细胞因子、趋化因子、共刺激分子等,并被认为在机体防御损伤、感染的天然免疫中具有开关作用。在发生天然免疫改变的同时机体发生了神经内分泌反应,表现为交感神经系统兴奋并伴以不同程度的下丘脑-垂体-肾上腺轴活化,产生肾上腺素(epinephrine,E)、去甲肾上腺素(norepinephrine,NE)、糖皮质激素等,除了能调节机体一般功能外,由于神经-内分泌-免疫网络的存在,它们常影响免疫功能,以维持稳态。以往研究显示,创伤后腹腔、脾巨噬细胞对LPS的反应性降低,但其机理不清。TLR2/4是TLR家族两种主要的受体,其表达水平与对配体的敏感性密切相关。尽管对其信号转导进行了大量研究,但是对其表达的调节还不清楚。研究TLR2/4在创伤后表达变化及神经内分泌激素的调节,对于揭示创伤后免疫功能失常的机制并预防、治疗相关并发症以提高临床救治率均具有重要意义。
     基于以上认识,本研究采用大鼠创伤模型,以腹腔巨噬细胞为研究对象,进行了以下研究:采用RT-PCR动态观察了创伤后巨噬细胞TLR2/4 mRNA表达变化;以不同浓度Pam3CSK4、LPS刺激创伤后24小时的巨噬细胞,测定产生TNF-α水平以反映受体反应性;采用HPLC测定了创伤后24小时不同时间点血清E和NE水平的变化,同时,采用放射免疫法测定了血清ACTH、皮质醇、T3、T4、TSH、β-EP、PRL,观察了神经内分泌激素变化规律;进一步进行离体实验,以不同浓度皮质酮(corticosterone,CORT)、E、NE刺激巨噬细胞不同时间后,以实时定量PCR和半定量RT-PCR方法研究了TLR2/4 mRNA表达;最后,于创伤前行颈交感神经干离断术(TCST)以观察其对创伤后神经内分泌激素的可能调节作用。通过研究,得出以下结果:
     1.大鼠创伤后巨噬细胞TLR2/4 mRNA表达在伤后2小时后即降低,直至创伤后24小时。创伤后巨噬细胞对Pam3CSK4、LPS刺激后的反应性降低。
     2.大鼠创伤后2小时血E、NE水平即明显升高,ACTH、GC也明显升高,直至创伤后24小时。垂体-甲状腺轴变化表现为创伤后T3、T4均降低,但是TSH变化不显著。非垂体-肾上腺轴激素β-EP也于创伤后2小时即升高,PRL于创伤后24小时升高。
     3.CORT刺激巨噬细胞后能下调TLR2 mRNA表达,其作用具有时间、剂量依赖性,但是对TLR4 mRNA表达的影响不明显。E刺激巨噬细胞后能下调TLR2 mRNA、TLR4 mRNA表达,其作用也具有时间、剂量依赖性。不同浓度NE(0~10000ng/ml)刺激巨噬细胞不同时间(0~48小时)后不能明显下调TLR2/4 mRNA的表达。
     4.TCST不能减轻创伤后2小时明显神经内分泌激素变化,能降低24小时的血清NE、皮质醇水平。
     总之,本研究得出以下结论:1.大鼠创伤后巨噬细胞TLR2/4 mRNA表达降低,这对于防止创伤后机体过度炎症反应可能具有一定意义,但与此同时,也意味着机体对病原体(如G+、G-菌)处理能力降低。创伤后巨噬细胞反应性降低,可能与TLR2/4表达降低有关。2.大鼠创伤后发生明显神经内分泌反应,交感神经系统、HPA轴活化,并伴以垂体-甲状腺轴、非垂体-肾上腺轴激素明显变化,共同调节机体以维持稳态。3.较高水平CORT、E刺激巨噬细胞较长时间后能下调TLR2 mRNA或TLR4 mRNA表达。4.TCST能一定程度减轻创伤后神经内分泌激素变化,可能有一定意义。
     通过研究,为创伤后TLR2/4表达变化及其调节提供了一定的实验及理论依据。
Immunosuppression is a common complication after trauma, and it may lead to the development of infection, sepsis, and multiple organ dysfunction syndrome (MODS),which eventually influence outcome. Innate immunity is the first line to defend body against infection and injury through rapid initiation of non-specific cellular and fluid response. Innate immunity plays an important role in the occurrence and development of inflammation after trauma. Macrophages are important resident cells to mediate innate immunity. Toll-like receptor(TLR)2 and TLR4 are two major members of TLRs, mainly expressed on monocytes and macrophages. TLR4 is the pattern recognition receptors(PRRs) of LPS, and recently it was found that it can bind to many damage-associated molecular patterns(DAMPs). As a sentinel to detect tissue injury TLR4 mediate sterile inflammation. TLR2 can recognize a wider variety of pathogens, and it also can participate in infla- mmation after injury. After TLR2/4 bind to their respective ligands, they can cause a similar casade of signal transduction, resulting in the NF-κB activation and finally the production of inflammatory cytokines, chemokines, and costimulatory molecules, which are considered to be the switch to innate immune response to pathogenic microorganisms and endogenous damage-associated molecules. With the changes of innate immunity trauma often sets off neuroendocrine changes, which is charactrized by excited sympathetic nervous system and activated hypothalamic-pituitary-adrenal(HPA) axis to some extent. Norepinephrine(NE), epinephrine(E), and glucocorticoids are produced in large quantity. Neuroendocrine hormones may influence immune functions to keep homeostasis through the neuro-endocrine-immune network. Previous research has shown that following trauma peritoneal or spleen macrophages often could display impaired responsiveness to LPS, but the mechanism remains unclear. As two important receptors, the levels of TLR2/4 expression are closely related with the sensitivity to their ligands. Although extensive research is focused on TLRs and their signaling, how to regulate TLR2/4 expression remains unknown. To study the expression of TLR2/4 and its regulation by neuroendocrine hormones after trauma is of importance, it will provide valuable knowledge to explore the mechanism behind immune dysfunction and prevent and treat its complications to improve survival rate.
     Based on the above knowledge, the present research established a rat trauma model, peritoneal macrophages were collected from rats and the following studies were done: the level of TLR2/4 mRNA expression on rat macrophages was evaluated dynamically after trauma by RT-PCR; tumor necrosis factor-α(TNF-α) secretion of macrophages stimulated by different concentrations of Pam3CSK4 and LPS respectively was observed 24h after trauma to analyze receptors reactivity; changes of serum E and NE were determined by HPLC after trauma for 24 hours; at the mean time, the levels of serum adrenocorticotrophic hormone (ACTH), cortisol,T3,T4,TSH,β-EP,and PRL were determined by radioimmunity assay; following study in vitro is done to observe the effects of corticosterone (CORT), E, and NE on TLR2/4 mRNA expression on macrophages by real-time quantitative PCR and semi-quantitative RT-PCR in different concentrations and for different durations; finally, transection of the cervical sympathetic trunk(TCST) was performed to observe its effect on the changes of neuroendocrine hormone after trauma.
     Following results were made from the research:
     1. The expression of TLR2/4 mRNA could be downregulated by trauma, which continued from 2h to 24h following trauma. Trauma resulted in impaired responsiveness to both LPS and Pam3CSK4 on macrophages.
     2. Following trauma, the elevation of serum levels of E, NE, ACTH, and cortisol continued from 2h to 24h. Although the levels of T3 and T4 were decreased, those of TSH remained instant following trauma. The serum levels ofβ-EP and PRL not from pituitary-adrenal axis were also increased.
     3. After macrophages exposure to CORT, its down regulation of TLR2 mRNA expression was time-dosedependent, but no significant influence on TLR4 mRNA expression. The down regulation of TLR2 mRNA and TLR4 mRNA expression by E was also time-dosedependent in macrophages. After macrophages exposure to NE, it(0-10000ng/ ml) could not downregulate the expression of TLR2/4 mRNA significantly, and neither did NE(1000ng/ml) 48h after exposure.
     4. Although TCST can not attenuate remarkable changes of neuroendocrine hormones 2h following trauma, the levels of serum NE and cortisol were decreased significantly 24h following trauma.
     In conclusion, TLR2/4 expression is downregulated, which may help to prevent excessive inflammatory response following trauma and means that the organism has less ability to cope with pathogens then. Trauma results in impaired macrophages responsiveness, which may be related with the down regulation of TLR2/4 expression. Following trauma remarkable neuroendocrine changes occur, which is mainly characterized with excited sympathetic nervous system and activated hypothalamic-pituitary-adrenal axis. The pituitary-thyroid axis is changed, and the serum hormones levels not from pituitary-adrenal axis are increased, which cooperate to regulate body functions to keep homeostasis. After macrophages exposure to higher concentrations of CORT and E for longer durations, they may downregulate the levels of TLR2 mRNA or TLR4 mRNA expression . TCST can attenuate neuroendocrine hormones changes following trauma, which may be a useful measure.
     The present study provided valuable laboratorial and theoretical evidence for the research on the expression and regulation of TLR2/4 following trauma.
引文
1. Hoyert DL, Heron MP, Murphy SL, et al. deaths: final data for 2003. Natl Vital Stat Rep,2006, 541-120.
    2. Ward PA. Immunosuppression after trauma. Crit Care Med, 2005, 33(6): 1453-1454.
    3. Medzhitov R, Janeway CJ. Innate immunity. N Engl J Med, 2000, 343:338-344.
    4. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001, 1:135-145.
    5. Luster AD. The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol, 2002, 14:129-135.
    6. Mannick JA, Rodrick ML, Lederer JA. The immunologic response to injury. J Am Coll Surg, 2001, 193(3): 237-244.
    7. Ni Choileain N, Redmond HP. Cell response to surgery. Arch Surg, 2006, 141(11): 1132-1140.
    8. Libert C. Inflammation:A nervous connection. Nature, 2003, 421(6921): 328-329.
    9. Pavlov VA, Ochani M, Gallowitsch-Puerta M, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. PNAS, 2006, 103(13): 5219-5223.
    10. Besedovsky HO, Rey AD. Immune-neuro-endocrine interactions:facts and hypotheses. Endocrine Reviews, 1996, 17(1): 64-102.
    11. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev, 2000, 52(4): 595-638.
    12. Sternberg EM. Neural regulation of innate immunity:a coordinated nonspecific host response to pathogens. Nat Rev Immunol, 2006, 6: 318-328.
    13. Molina PE. Neurobiology of the stress response:contribution of th sympathetic nervous system to the neuroimmune axis in traumatic injury. Shock, 2005, 24(1): 3-10.
    14. Prince JM, Levy RM, Yang R, et al. Toll-like receptor-4 signaling mediates hepatic injury and systemic inflammation in hemorrhagic shock. J Am Coll Surg, 2006, 202:407-417.
    15. Levy RM, Prince JM, Yang R, et al. Systemic inflammation and remote organ damage following bilateral femur fracture requires Toll-like receptor 4. Am J Physiol RegulIntegr Comp Physiol, 2006, 291:R970-R976.
    16. Hoth JJ, Hudson WP, Brownlee NA, et al. Toll-like receptor 2 participates in the response to lung injury in a murine model of pulmonary contusion. Shock, 2007, 28(4): 447-452.
    17. Mollen KP AR, Tsung A, et al. Emerging paradigm:Toll-like receptor 4-sentinel for the detection of tissue damage. Shock, 2006, 26(5): 430-437.
    18. Beutler B. Inferernces,questions and possibilities in Toll-like receptor signaling. Nature, 2004, 430:257-263.
    19. Kawai T, Akira S. TLR signaling. Cell Death Differ, 2006, 13:816-825.
    20.王正国.脓毒症研究现状与思考.中华创伤学杂志, 2008, 24(2): 1-4.
    21. Kapetanovic R, Cavaillon JM. Early events in innate immunity in the recognition of microbial pathogens. Expert Opin Biol Ther, 2007, 7:907-918.
    22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124:783-801.
    23. Kaczorowski DJ, Mollen KP, Edmonds R, et al. Early events in the recognition of danger signals after tissue injury. J Leukoc Biol, 2008, 83(3): 546-552.
    24. Aliprantis AO, Yang RB, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 1999, 285(5428): 736-739.
    25. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006, 2006(117): 979-987.
    26. Ohashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol, 2000, 164:558-561.
    27. Li M, Carpio DF, Zheng Y, et al. . An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol, 2001, 166(12): 7128-7135.
    28. Wang Q, Dziarski R, Kirschning CJ, et al. Micrococci and peptidoglycan activate TLR2→MyD88→IRAK→TRAF→NIK→IKK→NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect Immun, 2001, 69:2270-2276.
    29. Werling D, Jungi TW. Toll-like receptors limking innate and adaptive immune response. Veteinary immunology and immunopathology ,2003, 9:11-12.
    30. Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol, 2000, 164:3476-3479.
    31. Medvedev AE, Henneke P, Schromm A, et al. . Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4. J Immunol, 2001, 167:2257-2267.
    32. Kilmartin B, Reen DJ. HSP60 induces self-tolerance to repeated HSP60 stimulation and cross-tolerance to other pro-inflammatory stimuli. Eur J Immunol, 2004, 34(7): 2041-2051.
    33. Mita Y, Dobashi K, Endou K, et al. Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Let, 2002, 81(1): 71-75.
    34. Bosisio D, Polentarutti N, Sironi M, et al. Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-γ: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood, 2002, 99: 3427-3431.
    35. Woiciechowsky C, Schoning B, Lanksch WR, et al. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med, 1999, 77(11): 769-780.
    36. Maddali S, Stapleton PP, Freeman TA, et al. Neuroendocrine responses mediate macrophage function after trauma. Surgery, 2004, 136(5): 1038-1046.
    37. Zellweger R, Ayala A, Zhu XL, et al. Effect of surgical trauma on splenocyte and peritoneal macrophage immune function. J Trauma, 1995, 39(4): 645-650.
    38. McCarter MD, Mack VE, Daly JMea. Trauma-induced alterations in macrophage function. Sugery, 1998, 123:96-101.
    39. Perl M, Gebhard F, Bruckner UB, et al. Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge. Crit Care Med, 2005, 33(6): 1351-1358.
    40. Paterson HM, Murphy TJ, Purcell EJ, et al. Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol, 2003, 171(3): 1473-1483.
    41. Schwacha MG. Macrophages and post-burn immune dyefunction. Burns, 2003,29:1-14.
    42. Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002, 110:191-202.
    43. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 2003, 197:263-268.
    44. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun, 2001, 69:1477-1482.
    45. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 2000, 165:5392-5396.
    46. Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine, 2003, 21:S55-S60.
    47. Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000, 68:6398-6401.
    48.周元国.严重创伤应激反应及应激不良. In:分子创伤学,王正国,付小兵,周元国,主编,第1版.福州:福建科学技术出版社, 2004: 167-175.
    49. Cardinali DP, Esquifino AI, Arce A, et al. Changes in serum growth hormone and prolactin levels, and in hypothalamic growth hormone-releasing hormone, thyrotropin-releasing hormone and somatostatin content, after superior cervical sympathectomy in rats. Neuroendocrinology, 1994, 59(1): 42-48.
    50.廖克龙,朱佩芳,王正国,等.大鼠胸部撞击伤肺损伤模型的建立.创伤外科杂志, 2001,3(4): 263-265
    51.许爽,蒋星红,郭试瑜,等.水浸束缚应激及电击足底应激诱导的大鼠脑内FOS蛋白表达.中国应用生理学杂志1999, 15 (4): 311-315.
    52. Herman JP, Cullinan WE. Neurocircuitry of stess : central control of hypothalamo-pituitary-adrenocortical axis. Trends Neurosci, 1997, 20 (2 ): 78-84.
    53. Gibson SC, Hartman DA, Schenck JM. The endocrine response to critical illness: update and implications for emergency medicine. Emerg Med Clin North Am, 2005, 23(3): 909-929.
    54. Peeters RP, Debaveye Y, Fliers E, et al. Changes within the thyroid axis during critical illness. Crit Care Clin, 2006, 22(1): 41-55.
    55. Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol Biol, 2004, 31:463-469
    56. Lasa M, Abraham SM, Boucheron C, et al. Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol, 2002, 22:7802-7811.
    57. Imasato A, Desbois-Mouthon C, Han J, et al. Inhibition of p38 MAPK by glucocorticoids via induction of MAPK phosphatase-1 enhances nontypeable Haemophilus influenzae-induced expression of toll-like receptor 2. J Biol Chem, 2002, 277:47444-47450.
    58. Tsuyoshi S, Akira I, Hirofumi J, et al. Glucocorticoids synergistically enhance nontypeable haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. J Bio Chem, 2002, 277(19): 17263-17270.
    59. Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol, 2002, 20:125-163.
    60. Musikacharoen T, Matsuguchi T, Kikuchi T, et al. NF-κB and STAT 5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression. J Immunol, 2001, 166:4516-4524.
    61. Ogawa Sea. Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell ,2005, 122:707-721
    62. Wolfs TG, Buurman WA, Van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-γand TNF-αmediated up-regulation during inflammation. J Immunol, 2002, 168:1286-1293.
    63. Almawi WY, Melemedjian OK. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol, 2002, 28:69-78.
    64. Haehnel V, Schwarzfischer L, Fenton MJ, et al. Transcriptional regulation of the human Toll-like receptor 2 gene in monocytes and macrophages. J Immunol, 2002, 168:5629-5637.
    65. Hermoso MA, Matsuguchi T, Smoak K, et al. Glucocorticoids and Tumor Necrosis Factor Alpha Cooperatively Regulate Toll-Like Receptor 2 Gene Expression.Mol CellBiol, 2004, 24(11): 4743-4756.
    66. Hasko G, Nemeth ZH, Szabo C, et al. Isoproterenol inhibits IL-10 , TNF-alpha , and nitric oxide production in RAW 264. 7 macrophages. Brain Res Bull, 1998, 45:183-187.
    67. Siegmund B, Eigler A, Hartmann G, et al. Adrenaline enhances LPS induced IL-10 synthesis : Evidence for protein kinase A-mediated pathway. Int J Immunopharmacol, 1998, 20:57-69.
    68.全守波,王清秀,杨光,等.自主神经干预对脑循环的影响.国外医学?麻醉学与复苏分册, 2002, 23(2): 116-119.
    69. Faleiros ATS, Maffei FHA, Resende LAL. Effects of vervical sympathectomy on vasospasm induced by meningeal haemorrhage in rabbits. Arq Neuropsiquiatr, 2006, 64(3-A): 572-574.
    70.武小玲,王振金,李英杰,等.颈交感神经切断对光化学法诱导大鼠脑梗死体积的影响.中华老年心脑血管病杂志, 2001 ,3(6): 412-414.
    71.张丽红,姚常柏,崔健君.颈交感神经干离断对妊高征大鼠胎盘血供及去甲肾上腺素和一氧化氮的影响.中华麻醉学杂志, 2004, 24(2): 119-121.
    72.小川秀道.星状神经节阻滞的继发(中枢)性作用:家兔胃溃疡模型的实验研究.疼痛学杂志, 1994, 2(4): 152-153.
    73.赵广翊,孟凌新,陈延英,等.颈交感神经干离断对应激大鼠ET-1及胃黏膜血流量的影响.世界华人消化杂志, 2004, 4.
    74.岩间裕,田势长一郎,奥秋晟.鼠交感神经干离断与促性腺激素的关系:星状神经节阻滞长期作用致内分泌改变的研究.疼痛学杂志, 1995, 3(1): 6-8.
    75. Iwama H. Can superior cervical ganglionectomy be an experimental model of stellate ganglion block ? . Masui ,1997, 46:565-567.
    76.赵春亭,王恩真,张迎萍,等.星状神经节阻滞稳定全麻气管内插管及切皮时应激反应的初步研究.首都医科大学学报, 2000, 21(2): 125-127.
    77. Yokoyama M, Nakatsuka H, Itano Y, et al. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity. Anesthesiology, 2000, 92(1): 109-115.
    1.王正国.脓毒症研究现状与思考.中华创伤学杂志, 2008, 24(2): 1-4.
    2. Kaczorowski DJ, Mollen KP, Edmonds R, et al. Early events in the recognition of danger signals after tissue injury. J Leukoc Biol, 2008, 83(3): 546-552.
    3. Beutler B. Inferernces,questions and possibilities in Toll-like receptor signaling. Nature, 2004, 430:257-263.
    4. Medzhitov R, Janeway CJ. Innate immunity. N Engl J Med, 2000, 343:338-344
    5. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001, 1:135-145.
    6. Luster AD. The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol, 2002, 14:129-135.
    7. Ni ChoHeain N, Redmond HP. The immunoiogical consequences of injury. Surgeon, 2006, 4(1): 23-31.
    8. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86:973-983.
    9. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science,1998, 282:2085-2088.
    10. Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol,2000,64:5998-6004.
    11. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol, 2007, 19:39-45.
    12. Werling D, Jungi TW. Toll-like receptors limking innate and adaptive immune response. Veteinary immunology and immunopathology, 2003, 9:11-12.
    13. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006, 2006(117): 979-987.
    14. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-likereceptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 2003, 197:263-268.
    15. Janssens S, Burns K, Vercammen E, et al. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett, 2003, 548;103-107.
    16. Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell ,2002 110:191-202.
    17. Gray P, Dunne A, Brikos C, et al. MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem, 2006, 281:10489-10495.
    18. Mansell A, Smith R, Doyle SL, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol, 2006, 7:148-155.
    19. Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 2006, 7:1074-1081.
    20. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun, 2001, 69:1477-1482.
    21. Kapetanovic R, Cavaillon JM. Early events in innate immunity in the recognition of microbial pathogens. Expert Opin Biol Ther, 2007, 7:907-918.
    22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124:783-801.
    23. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 2000, 165:5392-5396.
    24. Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine, 2003, 21:S55-S60.
    25. Feterowski Cea. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology, 2003, 109:426-431.
    26. Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the Toll-like receptor2 gene and its potential association with staphylococcal infection. Infect Immun 2000, 68:6398-6401.
    27. Ogus ACea. The Arg753GIn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J, 2004, 23:219-223.
    28. Bochud PY, Hawn TR, Aderem A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol, 2003, 170:3451-3454
    29. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol, 2007, 19:3-10.
    30. Yang R, Harada T, Mollen KP, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med, 2006, 12:105-114.
    31. Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol, 2007, 293:R1538-R1544.
    32. Tang D, Shi Y, Kang R, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol, 2007, 81:741-747.
    33. Yu M, Wang H, Ding A, et al. HMGB1 signals through Toll-like receptor (TLR) 4 and TLR2. Shock 2006 ,26: 174-179.
    34. Park JS, Gamboni-Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol, 2006, 290:C917-C924.
    35. Park JS, Svetkauskaite D, He Q, et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem, 2004, 279:7370-7377.
    36. Mollen KP, Kaczorowski DJ, Scott M, et al. High mobility group box 1 (HMGB1) induces Toll-like receptor 4 (TLR4) clustering within the lipid raft in macrophages. Inflamm Res, 2007,56:S116.
    37. Rouhiainen A, Tumova S, Valmu L, et al. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 2007, 81:49 -58.
    38. Platt J, Brunn G, Johnson G. Weighing exogenous versus endogenous triggers of SIRS. Inflamm Res, 2007,56:109.
    39. Johnson GB, Brunn GJ, Kodaira Y, et al. Receptor mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol, 2002, 168:5233-5239.
    40. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol, 2004, 172:20-24.
    41. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med, 2002, 195:99-111.
    42. Taylor KR, Trowbridge JM, Rudisill JA, et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem, 2004, 279 :17079-17084.
    43. Taylor KR, Yamasaki K, Radek KA, et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem, 2007, 282:18265-18275.
    44. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol, 2001, 167:2887-2894.
    45. Williams JH. Heat shock proteins as danger signals. Inflamm Res, 2007,56:S327.
    46. Ohashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol, 2000, 164:558-561.
    47. Maguire M, Poole S, Coates AR, et al. Comparative cell signaling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology, 2005,115:231-238.
    48. Warger T, Hilf N, Rechtsteiner G, et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem, 2006 ,281:22545-22553.
    49. Vogl T, Tenbrock K, Van Zeolen MA, et al. MRP8 and MRP14 are novel endogenous ligands of Toll-like receptor 4 and promote lethal endotoxin-induced shock. Inflamm Res, 2007, 56:S115.
    50. Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med, 2007, 13:1042-1049.
    51. Rock K, Shi Y, Chen C, et al. Uric acid as a danger signal with adjuvant properties. Inflamm Res, 2007, 56:S76.
    52. Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004, 279:12542-12550.
    53. Sivori S, Falco M, Della CM, et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A 2004, 101:10116-10121.
    54. Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005, 202:1131-1139.
    55. Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med, 2005, 202:1575-1585.
    56. Li M, Carpio DF, Zheng Y, et al. . An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol, 2001, 166(12): 7128-7135.
    57. DeMaria EJ, Pellicane JV, Lee RB. Hemorrhagic shock in endotoxin-resistant mice: improved survival unrelated to deficient production of tumor necrosis factor. J Trauma 1993, 35:720-724.
    58. Prince JM, Levy RM, Yang R, et al. Toll-like receptor-4 signaling mediates hepatic injury and systemic inflammation in hemorrhagic shock. J Am Coll Surg, 2006, 202:407-417.
    59. Billiar TR. Early events in the host recognition of endogenous danger signal. . Symposium 78. 7th World Congress on Trauma, Shock,Inflammation, and Sepsis, Munich, Germany., 2007
    60. Barsness KA, Arcaroli J, Harken AH, et al. Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol, 2004, 287:R592-R599.
    61. Fan J, Kapus A, Marsden PA, et al. Regulation of Toll-like receptor 4 expression in thelung following hemorrhagic shock and lipopolysaccharide. J Immunol, 2002, 168:5252-5259.
    62. Powers KA, Sza′szi K, Khadaroo RG, et al. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med, 2006, 203:1951-1961.
    63. Fan J, Li Y, Vodovotz Y, et al. Hemorrhagic shock activated neutrophils augment TLR4 signaling-induced TLR2 upregulation in alveolar macrophages:role in hemorrhage primed lung inflammation. Am J Physiol Lung Cell Mol Physiol 2006, 290(4): L738- L746.
    64. Thobe BM, Frink M, Hildebrand F, et al. The role of MAPK in Kupffer cell Toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following traumahemo- rrhage. J Cell Physiol, 2006,210:667-675.
    65. Levy RM, Prince JM, Yang R, et al. Systemic inflammation and remote organ damage following bilateral femur fracture requires Toll-like receptor 4. Am J Physiol Regul Integr Comp Physiol, 2006, 291:R970-R976.
    66. Hierholzer C, Billiar TR. Molecular mechanisms in the early phase of hemorrhagic shock. Langenbecks Arch Surg, 2001, 386:302-308.
    67.王正国,付小兵,周元国.分子创伤学,第1版.福州:福建科学技术出版社, 2004.
    68. Mollen KP, Levy RM, Prince JM, et al. Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells. J Leukoc Biol, 2008, 83:1-9.
    69. Oyama J, Blais Jr C, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in Toll-like receptor 4-deficient mice. Circulation ,2004, 109:784-789.
    70. Wolfs TG, Buurman WA, van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 2002, 168:1286- 1293.
    71. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med, 2005, 201:1135-1143.
    72. Zhai Y, Shen XD, O’Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependentMyD88-independent pathway J Immunol ,2004, 173:7115- 7119.
    73. Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol, 2005, 175:7661-7668.
    74. Bettinger DA, Pellicane JV, Tarry WC, et al. The role of inflammatory cytokines in wound healing: accelerated healing in endotoxin-resistant mice. J Trauma, 1994, 36:810-813.
    75. Mollen KP AR, Tsung A, et al. Emerging paradigm:Toll-like receptor 4-sentinel for the detection of tissue damage. Shock,2006, 26(5): 430-437.
    76. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med, 2005, 11(11): 1173-1179.
    77. Qureshi ST, Zhang X, Aberg E, et al. Inducible activation of TLR4 confers resistance to hyperoxia-induced pulmonary apoptosis. J Immunol, 2006, 176(8): 4950-4958.
    78. Zhang X, Shan P, Qureshi S, et al. Cutting edge: TLR4 deficiency confers susceptibility to lethal oxidant lung injury. J Immunol, 2005, 175(8): 4834-4838.
    79. Hoth JJ, Hudson WP, Brownlee NA, et al. Toll-like receptor 2 participates in the response to lung injury in a murine model of pulmonary contusion. Shock, 2007, 28(4): 447-452.
    80.张伟,蒋耀光,谢志坚,等.急性肺损伤肺间质巨噬细胞TLR4的表达及意义.中国危重病急救医学, 2004 ,16(10): 622-625.
    81.张伟,蒋耀光,吕凤林,等.大鼠严重胸部创伤肺泡巨噬细胞TLR4的表达及意义.创伤外科杂志, 2005 ,7(2): 88-91.
    82. Perl M, Gebhard F, Knoferl MW, et al. The pattern of preformed cytokines in tissues frequently affected by blunt trauma. Shock, 2003, 19(4): 299-304.
    83. Moore FA, Sauaia A, Moore EE, et al. Postinjury multiple organ failure: a bimodal phenomenon. . J Trauma, 1996, 40:501-510
    84. Ayala A, Chung CS, Lomas JL, et al. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. Am J Pathol, 2002, 161:2283-2294.
    85. Zellweger R, Ayala A, Zhu XL, et al. Effect of surgical trauma on splenocyte and peritoneal macrophage immune function. J Trauma, 1995, 39(4): 645-650.
    86. McCarter MD, Mack VE, Daly JMea. Trauma-induced alterations in macrophage function. Sugery, 1998, 123:96-101.
    87. Perl M, Gebhard F, Bruckner UB, et al. Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge. Crit Care Med, 2005, 33(6): 1351-1358.
    88. Murphy TJ, Paterson HM, Mannick JA, et al. Injury, sepsis, and the regulation of Toll-like receptor responses. J Leukoc Biol, 2004, 75:400-407.
    89. Paterson HM, Murphy TJ, Purcell EJ, et al. Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol, 2003, 171(3): 1473-1483.
    90. Ikushima H, Nishida T, Takeda K, et al. Expression of Toll-like receptors 2 and 4 is downregulated after operation. Surgery, 2004, 135(4): 376-385.
    91. Sawa H, Ueda T, Takeyama Y, et al. Role of toll-like receptor 4 in the pathophysiology of mice sever acute pancreatitis. Surg Today, 2008, in press.
    92. Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol, 2006, 176:3070-3079.
    93. Kilmartin B, Reen DJ. HSP60 induces self-tolerance to repeated HSP60 stimulation and cross-tolerance to other pro-inflammatory stimuli. Eur J Immunol, 2004, 34(7): 2041-2051.
    94. Miettinen M, Sareneva T, Julkunen I, et al. IFNs activate toll-like receptors gene expression in viral infections. Gene Immun, 2001, 2:349-355.
    95. Krutzik SR, Ochoa MT, Sieling PA, et al. Activation and regulation of Tool-like receptors 2 and 1 in human leprosy. Nat Med, 2003, 9:525-532.
    96. Mita Y, Dobashi K, Endou K, et al. Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Let, 2002, 81(1): 71-75.
    97. Bosisio D, Polentarutti N, Sironi M, et al. Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-γ: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood, 2002, 99 :3427-3431.
    98. Matsuguchi T, Musikacharoen T, Ogawa T, et al. Gene expressions of Toll-likereceptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages 2000, 165:5767-5772.
    99. Woiciechowsky C, Schoning B, Lanksch WR, et al. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med, 1999, 77(11): 769-780.
    100. Lancaster GI, Khan Q, Drysdale P, et al. The physiological regulation of toll-like receptor expression and function in humans. J Physiol, 2005, 563(3): 945-955.
    101. Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol Biol, 2004, 31:463-469
    102. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev, 2000, 52(4): 595-638.
    103. Sternberg EM. Neural regulation of innate immunity:a coordinated nonspecific host response to pathogens. Nat Rev Immunol, 2006,6: 318-328.
    104. Renshaw M, J. R, Engleman C, et al. Cutting edge:impaired Toll-like receptor expression and function in aging. J Immunol, 2002, 169:4697-4701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700