颈动脉粥样硬化斑块易损性的超声造影研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颈内动脉(Internal carotid artery,ICA)粥样硬化是引起缺血性脑血管病的重要的病理基础。ICA狭窄不稳定动脉斑块破裂,继发血栓形成或者破溃形成栓塞,是患者发生脑血管事件及致死的重要原因,因此准确的判定斑块的稳定性对预防脑梗死的发生有着至关重要的意义。有研究发现,斑块内新生血管形成可以诱发斑块内出血和斑块破裂,与斑块的易损性密切相关,因此对斑块内新生血管化的评估越来越受到人们的关注。超声造影(contrast-enhanced ultrasound,CEUS)技术可通过增强血流及组织回声的对比来判断斑块内新生血管的情况,因此被用来评价斑块的易损性。本研究利用这一先进的超声造影技术分析斑块内新生血管化的程度,并结合微栓子监测(microembolic signals,MESs)技术及头部核磁共振(magneticresonance imaging,MRI),进一步明确易损斑块的特征,探讨超声造影是否可以作为一种判定颈动脉斑块易损性的工具,为颈动脉狭窄患者的个体化治疗提供有价值的依据。本研究共分以下4部分:
     第一部分ICA狭窄斑块的易损性与斑块内新生血管化程度的相关性研究
     目的:探讨ICA狭窄斑块易损性与斑块内新生血管化程度的相关性。方法:选择33例有症状、13例无症状ICA粥样硬化性狭窄患者(狭窄程度≥50%),应用CEUS技术对ICA狭窄斑块进行检测,通过微泡造影剂增强显示新生血管,运用ACQ软件在机分析量化,增强的强度以分贝(decibel enhancement,db-E)为单位,比较两组患者的斑块内新生血管增强的程度。结果:有症状组斑块增强的例数及增强强度(22.76±1.95)明显高于无症状组(14.99±2.18),差异有统计学意义(P<0.01);同组间(有症状组或无症状组)比较斑块内造影剂达峰值时间(Time to peak intensity,TPI)均迟于颈动脉,差异有统计学意义(P<0.01);不同组别相同部位(斑块内或颈动脉管腔)的造影剂达峰值时间差异无统计学意义(P>0.05)。结论:CEUS可显示斑块内新生血管;有症状组ICA狭窄斑块新生血管化程度高于无症状组;CEUS可以根据斑块内造影剂增强强度评价斑块的易损性。
     第二部分ICA狭窄斑块性质与微栓子信号关系的研究
     目的:探讨ICA狭窄斑块的新生血管和回声性质与微栓子信号的关系。方法:选择46例ICA狭窄患者(狭窄程度≥50%),应用TCD进行MESs监测,应用CEUS及彩色多普勒超声(Color Doppler ultrasonography,CDUS)分析斑块内新生血管、斑块的回声性质与MESs数据的相关性。结果:CEUS检测共有30例患者在ICA狭窄斑块内检测到新生血管(65.2%);有新生血管组MESs发生率(50%)明显高于无新生血管组(12.5%),P=0.023。CDUS检测斑块内回声性质与MESs的发生率两者没有明显相关性,P=0.237。结论:存在新生血管的ICA狭窄斑块MESs发生率更高。CEUS在评估斑块易损性方面优于CDUS。
     第三部分ICA狭窄斑块易损性与缺血性脑血管事件关系的研究
     目的:探讨ICA狭窄斑块的易损性与缺血性脑血管事件的相关性。方法:选择32例ICA狭窄患者(狭窄程度≥50%),应用CEUS检测ICA狭窄斑块内新生血管,同时行头MRI检查,分析斑块新生血管与狭窄同侧梗死灶的相关性。结果:MRI显示同侧梗死灶的患者ICA狭窄斑块内增强强度较无梗死灶组明显增高(23.31±1.83比16.62±3.07,P<0.01)。结论:CEUS显示的ICA狭窄斑块内新生血管化的程度与同侧大脑缺血事件发生密切相关。
     第四部分超声造影与常规超声对ICA亚闭塞诊断价值的研究
     目的:比较CEUS与CDUS对ICA亚闭塞的诊断价值。方法:选择53例经CDUS检查(采用凸阵探头与线阵探头联合应用的方法)颈动脉狭窄(≥70%)的患者,行CEUS检查,比较二者的结果。结果:53例患者经CDUS检查,55条血管存在重度以上狭窄,其中7支诊断为闭塞(12.7%),5支诊断为亚闭塞(9.1%),43条存在重度狭窄(78.2%),与超声造影结果完全一致。结论:CDUS与CEUS在诊断ICA亚闭塞方面有较高的一致性。
Internal carotid artery (ICA) atherosclerosis is an important pathologicalbasis of the ischemic cerebrovascular disease. Unstable carotid plaque ruptureand thrombosis embolism is the important reason for the occurrence ofcerebrovascular events and death, so the accurate identification of the plaquesvulnerability to prevent the occurrence of cerebral infarction is extremelysignificant. Studies have suggested that plaque neovascularization can inducethe hemorrhage and rupture and be associated with plaque vulnerabilityclosely.There has been a growing body of interest in the assessment of plaqueneovascularization.Contrast-enhanced ultrasound (CEUS) technology canidentify plaque neovascularization by enhancing echo contrast between theblood flow and the tissue, and is used to evaluate the vulnerability of the plaques.In this study we analysised the degree of the plaque neovascularization useingCEUS technology combined with microembolic signals (MESs) monitoringtechnology and magnetic resonance imaging(MRI),to characterize thevulnerable ICA atherosclerotic plaques,and to prove the CEUS technique is apotentially promising noninvasive tool that can be used in stratifying strokerisk in patients with ICA atherosclerotic disease.
     Part one The study of the correlation between ICA plaque vulnerabilityand plaque neovascularization
     Objective: The aim of this study was to compare the plaqueneovascularization properties between symptoms and asymptomatic ICAatherosclerotic stenosis using CEUS technique. Methods:CEUS were acquiredin33patients with symptomatic and13patients with asymptomatic ICA atherosclerotic stenosis (≥50%).,Contrast microbubbles detected within theplaque indicated neovascularisation and were quantified by decibel enhancement(dB-E) using the ACQ analysis software in the machine, the results of ICAplaques on CEUS were compared between the two groups. Results: In46patients, dB-E was significantly greater in symptomatic (22.76±1.95) vs.asymptomatic (14.99±2.18) patients (P<0.01). In the same group the arrival time(AT) and the time to peak intensity(TPI) have significantly difference indifferent position (P<0.01), and did not have significantly difference in the sameposition of different group (P>0.05).Conclusion: Different density ofintraplaque nevascularization in carotid arteries were observed betweensymptomatic and asymptomatic ICA stenosis. The real-time CEUS can observethe neovascularization within carotid atherosclerotic plaque non-invasively andquantitatively and can be used to assess the plaque vulnerability.
     Part Two An assessment of the vulnerability of carotid plaques: acomparative study of intraplaque neovascularization and plaqueechogenicity
     Objective: The aim of this study was to compare CEUS and CDUS in theassessment of plaque vulnerability using transcranial color Doppler (TCD)monitoring of microembolic signals (MES) as a reference technique. Methods: Atotal of46subjects with arterial stenosis (≥50%) underwent a carotid duplexultrasound, TCD monitoring of MES and CEUS (SonoVue doses of2.0mL)within a span of3days. The agreement between the CEUS, CDUS, and MESfindings was assessed with a chi-square test. A p-value less than0.05wasconsidered statistically significant.Results: Neovascularization was observed in30lesions (65.2%). The vascular risk factors for stroke were similar and therewere no age or gender differences between the2groups. Using CEUS, MES wereidentified in2patients (12.5%) within class1(non-neovascularization) as opposed to15patients (50.0%) within class2(neovascularization)(P=0.023).CDUS revealed no significant differences in the appearance of the MES betweenthe2groups (hyperechoic and hypoechoic)(P=0.237). Conclusion: MESs wereobserved more frequently in the neovascularization group detected by CEUS.CEUS may be better in identifying plaque vulnerability than CDUS.
     Part three The study of plaque neovascularization by contrast-enhancedultrasound: Correlation with the ipsilateral infarcts
     Objective: The aim of this study was to compare the correlation betweenthe plaque neovascularization properties and ipsilateral infarcts of the ICAatherosclerotic stenosis using MRI.Methods: A total of32patients withICA stenosis (≥50%)underwent CEUS and MRI.The results of ICAplaques on CEUS and the MRI were compared. Results: The ipsilateral lesionsof the ICA atherosclerotic stenosis at MRI were correlated with higher dB-E(23.31±1.83vs.16.62±3.07, P<0.01) plaques. Conclusion: The plaqueneovascularization degree showed a high correlation with the ipsilateral brainischemia event.
     Part four The study of the diagnostic concordance between colourDoppler ultrasonography and contrast-enhanced ultrasound in assessingcarotid artery near-occlusion(NO)
     Objective: The aim of this study was to evaluate the diagnostic concordancebetween colour Doppler ultrasonography and contrast-enhanced ultrasound inassessing carotid artery occlusion and NO.Methods: A total of53consecutivepatients with internal carotid artery (ICA) disease,who were diagnosed severestenosis(≥70%)by CDUS(Combining the linear array and the convexarray),all the53patients were performed CEUS. The results of CEUS andCDUS were compared.Results: In53patients,55vessels were investigated byCDUS, all these vessels were underwent by CEUS for analysis. In these vessels 43of55(78.2%)were diagnosed severe stenosis,7of55(12.7%)were diagnosedocclusion and5of55(9.1%) NO by CDUS.All the Results agree with CEUS.NOvessels diagnosed occlusion by CDUS while diagnosed NO byCEUS.Conclusion: CDUS and CEUS indicateD a high concordance in theappreciation of carotid artery occlusion or subtotal occlusions.
引文
[1]. Bamford, J., et al., Classification and natural history of clinically identifiable subtypesof cerebral infarction. Lancet,1991.337(8756): p.1521-6.
    [2]. Markus, H.S. et al.,, Asymptomatic embolization detected by Doppler ultrasoundpredicts stroke risk in symptomatic carotid artery stenosis. Stroke,2005.36(5): p.971-5.
    [3]. Naghavi, M., et al., From vulnerable plaque to vulnerable patient: a call for newdefinitions and risk assessment strategies: Part I. Circulation,2003.108(14): p.1664-72.
    [4]. Gronholdt, M.L., et al., Macrophages are associated with lipid-rich carotid arteryplaques, echolucency on B-mode imaging, and elevated plasma lipid levels. J VascSurg,2002.35(1): p.137-45.
    [5]. El-Barghouty, N.M., et al., Histological verification of computerised carotid plaquecharacterisation. Eur J Vasc Endovasc Surg,1996.11(4): p.414-6.
    [6]. Gronholdt, M.L., et al., Lipid-rich carotid artery plaques appear echolucent onultrasound B-mode images and may be associated with intraplaque haemorrhage. EurJ Vasc Endovasc Surg,1997.14(6): p.439-45.
    [7]. Gronholdt, M.L., et al., Echo-lucency of computerized ultrasound images of carotidatherosclerotic plaques are associated with increased levels of triglyceride-richlipoproteins as well as increased plaque lipid content. Circulation,1998.97(1): p.34-40.
    [8]. Takaya, N., et al., Presence of intraplaque hemorrhage stimulates progression ofcarotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study.Circulation,2005.111(21): p.2768-75.
    [9]. Moreno, P.R., et al., Plaque neovascularization is increased in ruptured atheroscleroticlesions of human aorta: implications for plaque vulnerability. Circulation,2004.110(14): p.2032-8.
    [10]. deBoer, O.J., et al., Leucocyte recruitment in rupture prone regions of lipid-richplaques: a prominent role for neovascularization? Cardiovasc Res,1999.41(2): p.443-9.
    [11]. McCarthy, M.J., et al., Angiogenesis and the atherosclerotic carotid plaque: anassociation between symptomatology and plaque morphology. J Vasc Surg,1999.30(2): p.261-8.
    [12]. Feinstein, S.B., et al.,Contrast ultrasound imaging of the carotid artery vasa vasorumand atherosclerotic plaque neovascularization. J Am Coll Cardiol,2006.48(2): p.236-43.
    [13]. Hoogi, A., et al., Carotid plaque vulnerability: quantification of neovascularization oncontrast-enhanced ultrasound with histopathologic correlation. AJR Am J Roentgenol,2011.196(2): p.431-6.
    [14]. Staub, D., et al., Vasa vasorum and plaque neovascularization on contrast-enhancedcarotid ultrasound imaging correlates with cardiovascular disease and pastcardiovascular events. Stroke,2010.41(1): p.41-7.
    [15]. Faggioli, G.L., et al., Identification of carotid 'vulnerable plaque' by contrast-enhancedultrasonography: correlation with plaque histology, symptoms and cerebral computedtomography. Eur J Vasc Endovasc Surg,2011.41(2): p.238-48.
    [16]. Leen, E., et al., Potential impact and utilization of ultrasound contrast media. EurRadiol,2004.14Suppl8: p. P16-24.
    [17]. Granada, J.F.,et al.,Imaging of the vasa vasorum. Nat Clin Pract Cardiovasc Med,2008.5Suppl2: p. S18-25.
    [18]. Shah, F., et al., Contrast-enhanced ultrasound imaging of atherosclerotic carotidplaque neovascularization: a new surrogate marker of atherosclerosis? Vasc Med,2007.12(4): p.291-7.
    [19]. Coli, S., et al., Contrast-enhanced ultrasound imaging of intraplaque neovascular-ization in carotid arteries: correlation with histology and plaque echogenicity. J AmColl Cardiol,2008.52(3): p.223-30.
    [20]. Bogousslavsky, J., et al., Atherosclerotic disease of the middle cerebral artery. Stroke,1986.17(6): p.1112-20.
    [21]. Wong, K.S., et al., Mechanisms of acute cerebral infarctions in patients with middlecerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoringstudy. Ann Neurol,2002.52(1): p.74-81.
    [22]. Masuda, J., et al., Atheromatous embolism in the brain: a clinicopathologic analysis of15autopsy cases. Neurology,1994.44(7): p.1231-7.
    [23]. Pollanen, M.S.,et al.,The mechanism of embolic watershed infarction: experimentalstudies. Can J Neurol Sci,1990.17(4): p.395-8.
    [24]. Moustafa, R.R., et al., Microembolism versus hemodynamic impairment in rosary-likedeep watershed infarcts: a combined positron emission tomography and transcranialDoppler study. Stroke,2011.42(11): p.3138-43.
    [25]. NASCET Collaborators,Beneficial effect of carotid endarterectomy in symptomaticpatients with high-grade carotid stenosis. North American Symptomatic CarotidEndarterectomy Trial Collaborators. N Engl J Med,1991.325(7): p.445-53.
    [26]. Warlow, C,et al., MRC European Carotid Surgery Trial: interim results forsymptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis.European Carotid Surgery Trialists' Collaborative Group. Lancet,1991.337(8752): p.1235-43.
    [27]. Grant, E.G., et al., Carotid artery stenosis: gray-scale and Doppler US diagnosis-Society of Radiologists in Ultrasound Consensus Conference. Radiology,2003.229(2):p.340-6.
    [28]. Sidhu, P.S. et al.,Ultrasound assessment of internal carotid artery stenosis. Clin Radiol,1997.52(9): p.654-8.
    [29]. Filis, K.A., et al., Duplex ultrasound criteria for defining the severity of carotidstenosis. Ann Vasc Surg,2002.16(4): p.413-21.
    [30]. Nicolaides, A.N., et al., Angiographic and duplex grading of internal carotid stenosis:can we overcome the confusion? J Endovasc Surg,1996.3(2): p.158-65.
    [31]. Oates, C.P., et al., Joint recommendations for reporting carotid ultrasoundinvestigations in the United Kingdom. Eur J Vasc Endovasc Surg,2009.37(3): p.251-61.66
    [32]. Halliday, A., et al., Prevention of disabling and fatal strokes by successful carotidendarterectomy in patients without recent neurological symptoms: randomisedcontrolled trial. Lancet,2004.363(9420): p.1491-502.
    [33]. Jaff, M.R., et al., Imaging of the carotid arteries: the role of duplex ultrasonography,magnetic resonance arteriography, and computerized tomographic arteriography. VascMed,2008.13(4): p.281-92.
    [34]. Koenig, W. et al., Biomarkers of atherosclerotic plaque instability and rupture.Arterioscler Thromb Vasc Biol,2007.27(1): p.15-26.
    [35]. Virmani, R., et al., Pathology of the vulnerable plaque. J Am Coll Cardiol,2006.47(8Suppl): p. C13-8.
    [36]. Rudd, J.H., et al., Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation,2002.105(23): p.2708-11.
    [37]. Kerwin, W., et al., Quantitative magnetic resonance imaging analysis ofneovasculature volume in carotid atherosclerotic plaque. Circulation,2003.107(6): p.851-6.
    [38]. Kietselaer, B.L., et al., Noninvasive detection of plaque instability with use ofradiolabeled annexin A5in patients with carotid-artery atherosclerosis. N Engl J Med,2004.350(14): p.1472-3.
    [39]. Cappendijk, V.C., et al., In vivo detection of hemorrhage in human atheroscleroticplaques with magnetic resonance imaging. J Magn Reson Imaging,2004.20(1): p.105-10.
    [40]. El-Barghouty, N., et al., The identification of the high risk carotid plaque. Eur J VascEndovasc Surg,1996.11(4): p.470-8.
    [41]. el-Barghouty, N., et al., Computer-assisted carotid plaque characterisation. Eur J VascEndovasc Surg,1995.9(4): p.389-93.
    [42]. Gronholdt, M.L., et al., Ultrasonic echolucent carotid plaques predict future strokes.Circulation,2001.104(1): p.68-73.
    [43]. Mathiesen, E.B., et al., Echolucent plaques are associated with high risk of ischemiccerebrovascular events in carotid stenosis: the tromso study. Circulation,2001.103(17): p.2171-5.
    [44]. Polak, J.F., et al., Hypoechoic plaque at US of the carotid artery: an independent riskfactor for incident stroke in adults aged65years or older. Cardiovascular Health Study.Radiology,1998.208(3): p.649-54.
    [45]. Biasi, G.M., et al., Carotid plaque echolucency increases the risk of stroke in carotidstenting: the Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS) study.Circulation,2004.110(6): p.756-62.
    [46]. Reiter, M., et al., Plaque echolucency is not associated with the risk of stroke incarotid stenting. Stroke,2006.37(9): p.2378-80.
    [47]. Shalhoub, J., et al., The use of contrast enhanced ultrasound in carotid arterial disease.Eur J Vasc Endovasc Surg,2010.39(4): p.381-7.
    [48]. Clevert, D.A., et al., Contrast-enhanced ultrasound versus conventional ultrasound andMS-CT in the diagnosis of abdominal aortic dissection. Clin Hemorheol Microcirc,2009.43(1-2): p.129-39.
    [49]. Kopp, R., et al., First experience using intraoperative contrast-enhanced ultrasoundduring endovascular aneurysm repair for infrarenal aortic aneurysms. J Vasc Surg,2010.51(5): p.1103-10.
    [50]. Clevert, D.A. et al.,Contrast-enhanced ultrasound for endovascular grafting ininfrarenal abdominal aortic aneurysm in a single patient with risk factors for the use ofiodinated contrast. J Vasc Interv Radiol,2008.19(8): p.1241-5.
    [51]. Zhou, L.X., et al.,[Impact of instantaneous uniformity of SonoVue microbubbles onbinding characteristics of a new contrast agent targeted to choriocarcinoma cells invitro]. Ai Zheng,2008.27(7): p.692-7.
    [52]. Sidhu, P.S., et al., Diagnostic efficacy of SonoVue, a second generation contrast agent,in the assessment of extracranial carotid or peripheral arteries using colour andspectral Doppler ultrasound: a multicentre study. Br J Radiol,2006.79(937): p.44-51.
    [53]. Cosgrove, D., et al.,Ultrasound contrast agents: an overview. Eur J Radiol,2006.60(3):p.324-30.
    [54]. Barger, A.C., et al., Hypothesis: vasa vasorum and neovascularization of humancoronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl JMed,1984.310(3): p.175-7.
    [55]. Geiringer, E., et al., Intimal vascularization and atherosclerosis. J Pathol Bacteriol,1951.63(2): p.201-11.
    [56]. Doyle,B.et al.,Plaque neovascularization and antiangiogenic therapy foratherosclerosis. J Am Coll Cardiol,2007.49(21): p.2073-80.
    [57]. Moreno, P.R., et al., Neovascularization in human atherosclerosis. Circulation,2006.113(18): p.2245-52.
    [58]. Langheinrich, A.C., et al., Vasa vasorum and atherosclerosis-Quid novi? ThrombHaemost,2007.97(6): p.873-9.
    [59]. Moulton, K.S., Angiogenesis in atherosclerosis: gathering evidence beyondspeculation. Curr Opin Lipidol,2006.17(5): p.548-55.
    [60]. Chen, Y.X., et al., Immunohistochemical expression of vascular endothelial growthfactor/vascular permeability factor in atherosclerotic intimas of human coronaryarteries. Arterioscler Thromb Vasc Biol,1999.19(1): p.131-9.
    [61]. Fleiner, M., et al., Arterial neovascularization and inflammation in vulnerable patients:early and late signs of symptomatic atherosclerosis. Circulation,2004.110(18): p.2843-50.
    [62]. Moulton, K.S., et al., Inhibition of plaque neovascularization reduces macrophageaccumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A,2003.100(8): p.4736-41.
    [63]. Celletti, F.L., et al., Vascular endothelial growth factor enhances atherosclerotic plaqueprogression. Nat Med,2001.7(4): p.425-9.
    [64]. Kolodgie, F.D., et al., Intraplaque hemorrhage and progression of coronary atheroma.N Engl J Med,2003.349(24): p.2316-25.
    [65]. Huang, P.T., et al., Assessment of neovascularization within carotid plaques in patientswith ischemic stroke. World J Cardiol,2010.2(4): p.89-97.
    [66]. Kumamoto, M., Y. et al., Intimal neovascularization in human coronary atherosclerosis:its origin and pathophysiological significance. Hum Pathol,1995.26(4): p.450-6.
    [67]. Kockx, M.M., et al., Phagocytosis and macrophage activation associated withhemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol,2003.23(3): p.440-6.
    [68]. Mofidi, R., et al., Association between plaque instability, angiogenesis andsymptomatic carotid occlusive disease. Br J Surg,2001.88(7): p.945-50.
    [69]. Dunmore, B.J., et al., Carotid plaque instability and ischemic symptoms are linked toimmaturity of microvessels within plaques. J Vasc Surg,2007.45(1): p.155-9.
    [70]. Tureyen, K., et al., Increased angiogenesis and angiogenic gene expression in carotidartery plaques from symptomatic stroke patients. Neurosurgery,2006.58(5): p.971-7;discussion971-7.
    [71]. McCarthy, M.J., et al., Vascular surgical society of great britain and ireland:angiogenesis and the atherosclerotic carotid plaque: association betweensymptomatology and plaque morphology. Br J Surg,1999.86(5): p.707-8.
    [72]. Kono, Y., et al., Carotid arteries: contrast-enhanced US angiography--preliminaryclinical experience. Radiology,2004.230(2): p.561-8.
    [73]. Vicenzini, E., et al., Imaging of carotid plaque angiogenesis. Cerebrovasc Dis,2009.27Suppl2: p.48-54.
    [74]. Giannoni, M.F., et al., Contrast carotid ultrasound for the detection of unstable plaqueswith neoangiogenesis: a pilot study. Eur J Vasc Endovasc Surg,2009.37(6): p.722-7.
    [75]. Xiong, L., et al., Correlation of carotid plaque neovascularization detected by usingcontrast-enhanced US with clinical symptoms. Radiology,2009.251(2): p.583-9.
    [76]. Magnoni, M., et al., Contrast-enhanced ultrasound imaging of periadventitial vasavasorum in human carotid arteries. Eur J Echocardiogr,2009.10(2): p.260-4.
    [77]. Caplan, L.R. et al., Impaired clearance of emboli (washout) is an important linkbetween hypoperfusion, embolism, and ischemic stroke. Arch Neurol,1998.55(11): p.1475-82.
    [78]. Abbott, A.L., et al.,Medical (nonsurgical) intervention alone is now best for preventionof stroke associated with asymptomatic severe carotid stenosis: results of a systematicreview and analysis. Stroke,2009.40(10): p. e573-83.
    [79]. Spence, J.D., et al., Effects of intensive medical therapy on microemboli andcardiovascular risk in asymptomatic carotid stenosis. Arch Neurol,2010.67(2): p.180-6.
    [80]. Spence, J.D., Cerebrovascular disease: Identifying high-risk patients from carotidplaque composition. Nat Rev Cardiol,2010.7(8): p.426-8.
    [81]. Hellings, W.E., et al., Composition of carotid atherosclerotic plaque is associated withcardiovascular outcome: a prognostic study. Circulation,2010.121(17): p.1941-50.
    [82]. Greis, C., Quantitative evaluation of microvascular blood flow by contrast-enhancedultrasound (CEUS). Clin Hemorheol Microcirc,2011.49(1-4): p.137-49.
    [83]. Saloner, D., Determinants of image appearance in contrast-enhanced magneticresonance angiography. A review. Invest Radiol,1998.33(9): p.488-95.
    [84]. Krinsky, G.A., et al., The effects of apnea on timing examinations for optimization ofgadolinium-enhanced MRA of the thoracic aorta and arch vessels. J Comput AssistTomogr,1998.22(5): p.677-81.
    [85]. Mead, G.E., S.C. Lewis, and J.M. Wardlaw, Variability in Doppler ultrasoundinfluences referral of patients for carotid surgery. Eur J Ultrasound,2000.12(2): p.137-43.
    [86]. Furst, G., et al., Reliability and validity of noninvasive imaging of internal carotidartery pseudo-occlusion. Stroke,1999.30(7): p.1444-9.
    [87]. Risk of stroke in the distribution of an asymptomatic carotid artery. The EuropeanCarotid Surgery Trialists Collaborative Group. Lancet,1995.345(8944): p.209-12.
    [88]. Willinsky, R.A., et al., Neurologic complications of cerebral angiography: prospectiveanalysis of2,899procedures and review of the literature. Radiology,2003.227(2): p.522-8.
    [89]. Leffers, A.M. et al., Neurologic complications of cerebral angiography. A retrospectivestudy of complication rate and patient risk factors. Acta Radiol,2000.41(3): p.204-10.
    [90]. Hammond, C.J., et al., Assessment of apparent internal carotid occlusion onultrasound: prospective comparison of contrast-enhanced ultrasound, magneticresonance angiography and digital subtraction angiography. Eur J Vasc Endovasc Surg,2008.35(4): p.405-12.
    [91]. Yoshida, J., et al., Treatment of ischemic limbs based on local recruitment of vascularendothelial growth factor-producing inflammatory cells with ultrasonic microbubbledestruction. J Am Coll Cardiol,2005.46(5): p.899-905.
    [92]. Dijkmans, P.A., et al., Adverse reactions to ultrasound contrast agents: is the riskworth the benefit? Eur J Echocardiogr,2005.6(5): p.363-6.
    [93]. Yanagisawa, K., et al., Phagocytosis of ultrasound contrast agent microbubbles byKupffer cells. Ultrasound Med Biol,2007.33(2): p.318-25.
    [94]. Kaufmann, B.A., et al., Molecular imaging of inflammation in atherosclerosis withtargeted ultrasound detection of vascular cell adhesion molecule-1. Circulation,2007.116(3): p.276-84.
    [95]. Leong-Poi, H., et al., Assessment of endogenous and therapeutic arteriogenesis bycontrast ultrasound molecular imaging of integrin expression. Circulation,2005.111(24): p.3248-54.
    [96]. Landry, A., et al.,, Measurement of carotid plaque volume by3-dimensionalultrasound. Stroke,2004.35(4): p.864-9.
    [97]. Nanayakkara, N.D., et al., Nonrigid registration of three-dimensional ultrasound andmagnetic resonance images of the carotid arteries. Med Phys,2009.36(2): p.373-85.
    [98]. Tinkov, S., et al., Microbubbles as ultrasound triggered drug carriers. J Pharm Sci,2009.98(6): p.1935-61.
    [99]. Tsutsui, J.M., et al., The use of microbubbles to target drug delivery. CardiovascUltrasound,2004.2: p.23.
    [100]. Tsutsui, J.M., et al., Drug and gene delivery and enhancement of thrombolysis usingultrasound and microbubbles. Cardiol Clin,2004.22(2): p.299-312, vii.
    [101]. Milei, J., et al., Carotid rupture and intraplaque hemorrhage: immunophenotype androle of cells involved. Am Heart J,1998.136(6): p.1096-105.
    [102]. Bates, E.R., et al., ACCF/SCAI/SVMB/SIR/ASITN2007clinical expert consensusdocument on carotid stenting: a report of the American College of CardiologyFoundation Task Force on Clinical Expert Consensus Documents (ACCF/SCAI/SVMB/SIR/ASITN Clinical Expert Consensus Document Committee on CarotidStenting). J Am Coll Cardiol,2007.49(1): p.126-70.
    [103]. Juan-Babot, J.O., et al.,[Neovascularization in human coronary arteries with lesionsof different severity]. Rev Esp Cardiol,2003.56(10): p.978-86.
    [104]. Fisher, M., et al., Carotid plaque pathology: thrombosis, ulceration, and strokepathogenesis. Stroke,2005.36(2): p.253-7.
    [105]. Rajaram, V., et al., Role of surrogate markers in assessing patients with diabetesmellitus and the metabolic syndrome and in evaluating lipid-lowering therapy. Am JCardiol,2004.93(11A): p.32C-48C.
    [106]. Seo, Y., et al., Echolucent carotid plaques as a feature in patients with acute coronarysyndrome. Circ J,2006.70(12): p.1629-34.
    [107]. Ogata, T., et al., Morphological classification of mobile plaques and their associationwith early recurrence of stroke. Cerebrovasc Dis,2010.30(6): p.606-11.
    [108]. Staub, D., et al., Correlation of carotid artery atherosclerotic lesion echogenicity andseverity at standard US with intraplaque neovascularization detected atcontrast-enhanced US. Radiology,2011.258(2): p.618-26.
    [109]. Geroulakos, G., et al., Characterization of symptomatic and asymptomatic carotidplaques using high-resolution real-time ultrasonography. Br J Surg,1993.80(10): p.1274-7.
    [110]. Basic identification criteria of Doppler microembolic signals. Consensus Committeeof the Ninth International Cerebral Hemodynamic Symposium. Stroke,1995.26(6): p.1123.
    [111]. Gao, S., et al., Microembolic signal predicts recurrent cerebral ischemic events inacute stroke patients with middle cerebral artery stenosis. Stroke,2004.35(12): p.2832-6.
    [112]. Tegos, T.J., et al., Echomorphologic and histopathologic characteristics of unstablecarotid plaques. AJNR Am J Neuroradiol,2000.21(10): p.1937-44.
    [113]. Sztajzel, R., et al., Stratified gray-scale median analysis and color mapping of thecarotid plaque: correlation with endarterectomy specimen histology of28patients.Stroke,2005.36(4): p.741-5.
    [114]. Nighoghossian, N., et al., The vulnerable carotid artery plaque: current imagingmethods and new perspectives. Stroke,2005.36(12): p.2764-72.
    [115]. Nordestgaard, B.G., et al., Echolucent rupture-prone plaques. Curr Opin Lipidol,2003.14(5): p.505-12.
    [116]. Johnson, J.M., et al., Natural history of asymptomatic carotid plaque. Arch Surg,1985.120(9): p.1010-2.
    [117]. Reiter, M., et al., Increasing carotid plaque echolucency is predictive of cardiovascularevents in high-risk patients. Radiology,2008.248(3): p.1050-5.
    [118]. Markus, H., et al., Monitoring embolism in real time. Circulation,2000.102(8): p.826-8.
    [119]. Markus, H.S. et al., Experimental aspects of high-intensity transient signals in thedetection of emboli. J Clin Ultrasound,1995.23(2): p.81-7.
    [120]. Ringelstein, E.B., et al., Consensus on microembolus detection by TCD. InternationalConsensus Group on Microembolus Detection. Stroke,1998.29(3): p.725-9.
    [121]. Iguchi, Y., et al., Microembolic signals after7days but not within24hours of strokeonset should be predictor of stroke recurrence. J Neurol Sci,2007.263(1-2): p.54-8.
    [122]. Sliwka, U., et al., Prevalence and time course of microembolic signals in patients withacute stroke. A prospective study. Stroke,1997.28(2): p.358-63.
    [123]. Iguchi, Y., et al., Microembolic signals at48hours after stroke onset contribute to newischaemia within a week. J Neurol Neurosurg Psychiatry,2008.79(3): p.253-9.
    [124]. Lang, E.W., et al., Variability of vascular territory in stroke. Pitfalls and failure ofstroke pattern interpretation. Stroke,1995.26(6): p.942-5.
    [125]. Moustafa, R.R., et al., Watershed infarcts in transient ischemic attack/minor strokewith> or=50%carotid stenosis: hemodynamic or embolic? Stroke,2010.41(7): p.1410-6.
    [126]. Mofidi, R., et al., Angiogenesis in carotid atherosclerotic lesions is associated withtiming of ischemic neurological events and presence of computed tomographiccerebral infarction in the ipsilateral cerebral hemisphere. Ann Vasc Surg,2008.22(2):p.266-72.
    [127]. Mehigan, J.T. et al.,The carotid "string" sign. Differential diagnosis and management.Am J Surg,1980.140(1): p.137-43.
    [128]. Gonzalez, A., et al., Internal carotid artery stenting in patients with near occlusion:30-day and long-term outcome. AJNR Am J Neuroradiol,2011.32(2): p.252-8.
    [129]. Morgenstern, L.B., et al., The risks and benefits of carotid endarterectomy in patientswith near occlusion of the carotid artery. North American Symptomatic CarotidEndarterectomy Trial (NASCET) Group. Neurology,1997.48(4): p.911-5.
    [130]. Horn, M., et al., Carotid endarterectomy without arteriography: the preeminent role ofthe vascular laboratory. Ann Vasc Surg,1994.8(3): p.221-4.
    [131]. Shifrin, E.G., et al., Carotid endarterectomy without angiography. Br J Surg,1996.83(8): p.1107-9.
    [132]. Titi, M., et al., Comparison of carotid Doppler ultrasound and computerisedtomographic angiography in the evaluation of carotid artery stenosis. Surgeon,2007.5(3): p.132-6.
    [133]. Langenberger, H., et al., Agreement of duplex ultrasonography vs. computedtomography angiography for evaluation of native and in-stent SFAre-stenosis--findings from a randomized controlled trial. Eur J Radiol,2012.81(9): p.2265-9.
    [134]. Anzidei, M., et al., Diagnostic accuracy of colour Doppler ultrasonography, CTangiography and blood-pool-enhanced MR angiography in assessing carotid stenosis:a comparative study with DSA in170patients. Radiol Med,2012.117(1): p.54-71.
    [135]. Aleksic, N., et al., Color duplex sonography in the detection of internal carotid arteryrestenosis after carotid endarterectomy: comparison with computed tomographicangiography. J Ultrasound Med,2011.30(12): p.1677-82.
    [136]. Rothwell, P.M. et al., Low risk of ischemic stroke in patients with reduced internalcarotid artery lumen diameter distal to severe symptomatic carotid stenosis: cerebralprotection due to low poststenotic flow? On behalf of the European Carotid SurgeryTrialists' Collaborative Group. Stroke,2000.31(3): p.622-30.
    [137]. Terada, T., et al., Endovascular treatment for pseudo-occlusion of the internal carotidartery. Neurosurgery,2006.59(2): p.301-9; discussion301-9.
    [138]. Puech-Leao, P., et al., Angioplasty and stent placement in symptomatic internal carotidocclusion. J Vasc Interv Radiol,2010.21(4): p.465-9.
    [139]. Crisan, S., et al., Carotid ultrasound. Med Ultrason,2011.13(4): p.326-30.
    [140]. Leonardo, G., et al., Improvement in accuracy of diagnosis of carotid artery stenosiswith duplex ultrasound scanning with combined use of linear array7.5MHz andconvex array3.5MHz probes: validation versus489arteriographic procedures. J VascSurg,2003.37(6): p.1240-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700