基于光纤布喇格光栅智能周界安防方法及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周界安防是保护重要设施和资产的第一道防线,高效的周边安全技术和方法可以更好的消除或减少来自外界的威胁。随着社会的不断发展,人们对于高效的安防需求越来越强烈,应用最广泛、历史最久的传统的电类安防产品主要有红外对射、泄露电缆、电子脉冲围栏等,它们都是室外有源的,易受电磁干扰,容易受气象、环境的影响,误报率高,定址不准确,新兴的光纤周界安防技术主要包括利用后向散射的光时域反射定位技术(ODTR)和基于干涉技术的光纤周界定位系统。ODTR对多点入侵的定位分析复杂,很难准确定位,而基于干涉原理的周界技术由于是相位调制型,所以对入射光的偏振态和外界的影响比较敏感,误报率高,精确定位也是其面对的难题。面对目前周界技术难以克服的难题以及安防市场的迫切需求,提出一种基于光纤布喇格光栅(FBG)传感技术的周界安防方法。设计了周界安防FBG振动传感单元,采用振动光缆建立光无源传感网络,实现多点入侵智能识别和精确定址的分布式监测,具有室外无源、监测距离长、抗雷击电闪、抗电磁干扰、本质安全、体积小、耐腐蚀等优点,特别适合野外敷设,可以满足各种复杂环境的周界防范应用,它是一种全新的周界安防方法,在国内外尚属首创。
     本文对基于FBG周界安防的新方法以及关键技术方面做了深入的研究,主要研究工作如下:
     (1)提出了基于FBG传感技术的周界安防新方法,结合现代周界安防对周界技术的总体要求,将FBG安防的关键技术以及拟解决的关键问题进行细化,给出了FBG应用到周界安防的总体的方法模型,按照从低到高的层次划分为物理层、实现层、算法层和应用层,分析了了每个层次的关键技术问题。从智能定址、智能感知、耐候性、降低成本等几个方面详细论证了实现这种方法的可行性。
     (2)为了深入探讨周界入侵行为与FBG感知信息的内在关系,根据FBG传感原理,特别是FBG波长与温度和应变的关系,结合单质点弹性绳振动理论,设计了一种基于FBG振动传感的数学模型,并对结构模型进行了理论分析与计算,得到各个结构参数对整个系统的振动位移和固有频率影响的一般关系。根据分析结果,设计相关实验方案,建立实验装置,实验结果验证了模型计算的正确性,并且同时确定了传感单元的具体结构参数,通过封装等方式进一步提高了传感的性能,满足了周界安防对传感单元性能参数的要求。
     (3)在FBG传感单元的基础上,提出了将“准全同FBG振动安防”的新概念应用到区域安防中,每个区域安防采用同一波长FBG振动传感单元,可实现对每个防区精确定址,在现有解调能力的情况下,扩充了传感网络中每个光路的容量,分析了准全同振动监测实现安防的方法理论与实际的可操作性,通过实验验证,虽然准全同传感器在使用的过程中会有不同程度的灵敏度损失,但是仍然满足周界安防对传感单元的要求,实际可操作性强。
     (4)实现了基于FBG振动传感的周界安全防范的分布式检测。FBG振动传感器是波长调制型,属于点对点检测。以往的各种FBG传感器只能检测传感单元所在物理位置的参数信息,仅能通过密集传感探测点而实现准分布式检测。在这里我们要应用FBG振动传感器实现周界安防的分布式检测,即在周界安防的任意一点发生入侵,系统都要对其做出响应,绝对禁止安防”盲点”的出现。这一点对于周界安全防范来说至关重要。但是对于FBG其它传感器而言是不可能实现的。在FBG周界安防方法里,根据波分复用原理建立了FBG振动光缆光无源传感网络。通过设计不同安装介质的处理方法与安装方式,以实验的方法给出每种安装方式合适的传感单元间距。实际应用验证这种方法非常有效,而且真正实现了基于FBG振动传感的分布式安防监测。
     (5)安防技术的另一关键技术就是如何提高安防的报警准确率。论文通过在时域内动态提取基准值、正确获取入侵事件起点的方法,有效地将入侵可疑信号锁定,通过时间片断的划分、统计、标注的方法,有效地屏蔽了环境温度和外界干扰对系统的影响,在频域内,应用快速傅里叶变换(FFT),提出了单峰检测法。此方法将时域预报警传感信号进行快速傅立叶变换,通过与人为入侵信号进行分析对比,发现了传感器自振的单峰现象,从而有效地滤除了由于外界振动干扰引起的传感器自振误报警,使得报警准确率得到进一步的保证。
     (6)提出了一种基于时频分析的新颖的周界安防入侵识别算法。通过分析人为入侵的信号频率以及作用时间在信号时域上的反映,利用加窗傅立叶变换(STFT)的时频分析方法,给出了相应的窗函数、窗长,从而确定了时间分辨率与频率分辨率,利用时域峰值结合STFT时频能量积分的方法进行入侵的识别。这种算法可以使得入侵事件的漏报率趋于零,同时大幅降低误报率。
     通过本课题的研究将有效解决传统周界防范领域内的误报率高、不能精确定址、耐候性差、安装复杂等问题,有效提高我国的公共安防技术水平。
Perimeter security is the first line of defense to protect critical facilities and assets, effective perimeter security technologies and methods can eliminate or reduce the threat from the outside world. With the continuous development of society, people increasingly strong demand for efficient security defence.The most widely used, the longest history year-old traditional electric infrared security products are radios, leaked cables, electronic pulse fence and so on, They are outdoor active, susceptible to electromagnetic interference, and vulnerable to the weather, the environmental impact, the false positive rate, addressing inaccurate. Emerging fiber optic perimeter security technology including the use of backward scattering of the optical time domain reflect meter positioning technology (ODTR) and interference technology based fiber perimeter Positioning System. Positioning the ODTR of multi invasion analysis is complex, it is difficult to accurately locate. The perimeter of the technology based on the principle of interference is a phase modulation type. It's the polarization state of the incident light and the outside influences are more sensitive to the high rate of false positives, precise positioning is also it's problems. In face of perimeter insurmountable challenges and urgent needs of the security market, we propose a perimeter security method based on fiber Bragg grating (FBG) sensing technology. FBG perimeter security method using the FBG wavelength modulation, has a strong ability to reuse. It can simultaneously determine multi intrusion and achieve multi-point accurate addressing, it is outdoor passive, anti-thunder and lightning, anti-electromagnetic interference, intrinsically safe, small size, corrosion resistance, etc. Particularly suitable for field laying perimeter to prevent the application to meet a variety of complex environment, it is a new perimeter security methods. At home and abroad is still first.
     In this paper, the new method based on FBG perimeter security and the key technology to do in-depth study and research work are as follows:
     (1) Based FBG sensing technology, perimeter security methods, combined with modern perimeter security perimeter of the overall requirements, the FBG security key technologies and key issues to be addressed are refined, given FBG application to the perimeter security overall security model, in accordance with low to high levels divided into physical layer, layer, algorithms, and application layers, and analysis of the key technical issues for each level. The feasibility of this method is demonstrated in detail from intelligent addressable IntelliSense, weather resistance, reduce costs aspects.
     (2) In order to further investigate the intrinsic relationship of perimeter intrusion FBG sensing, based on the principle of FBG sensing, especially the FBG wavelength with temperature and strain relations, combined with single-particle elastic rope vibration theory, design a FBG vibrating mathematical model and structure model theoretical analysis and calculation, the general relationship of the impact of various structural parameters on the vibration displacement and natural frequency of the entire system. According to the analysis, we design experimental program, the establishment of the experimental apparatus, the experimental results verify the correctness of the model calculations, and at the same time to determine the specific structural parameters of the sensing unit to further improve the performance of the sensor through the package, to meet the perimeter security requirements on the performance parameters of the sensing unit.
     (3) on the basis of FBG sensing unit, we proposed "identical FBG vibration security "concept applied to regional security, each regional security with the same wavelength FBG vibration sensor unit can achieve precise addressing of each zone, existing demodulation capability case, the expansion of the capacity of each of the optical path in a sensor network, analysis the isotactic vibration monitoring method to achieve security theoretical and practical operability, verified by experiment, although the sensor in use isotactic the process there will be varying degrees of sensitivity loss, but still meet the perimeter security requirements of the sensor unit, and with the actual operability.
     (4) We have to achieve a distributed detection based on the FBG vibration sensing perimeter security defense. FBG vibration sensor is a wavelength modulation type, belonging to a point-to-point detection. The various FBG sensors can only detect the physical location of the sensing unit parameters, quasi-distributed detection can only be achieved through intensive sensing probe points. Here we want to apply the FBG vibration sensor distributed detection perimeter security, that the invasion at any perimeter security point, the system should respond it, absolutely prohibit the emergence of security "blind spots". This is essential for perimeter security. But For FBG other sensors, it is impossible to achieve. Based on wavelength division multiplexing principle, we establish the FBG vibration of cable optical passive sensor network. Design approach of the different installation media installation is given to experimental methods suitable sensing element spacing for each installation. Practical application to verify that this method is very effective, but realize the distributed security monitoring based on FBG vibration sensor.
     (5) The another key technology is how to improve the security alarm accuracy. Through dynamic extraction of the reference value in the time domain to obtain the correct starting point for the invasion, the invasion suspicious signal lock by time fragments division, statistics, marked, effectively shielding the ambient temperature and the outside interference of system influence. In the frequency domain, we present the fast Fourier transform (FFT) method, a single peak detection method. This method is the time domain pre-alarm sensing signal to the Fast Fourier Transform, for analysis and comparison with human intrusion signal and found the sensor self-vibration phenomenon of a single peak, thus effectively filtered out natural vibration false alarm due to external vibration disturbance, so that the alarm accuracy to obtain further assurance.
     (6) We put forward one novel perimeter security intrusion recognition algorithm based on time-frequency analysis. By analyzing the signal frequency, and duration of action of human intrusion reflect on the signal in time domain, application windowed Fourier transform (STFT) time-frequency analysis method, we give the corresponding window function, the window length, thereby determining the time resolution and the frequency resolution. The peak time-domain binding STFT frequency energy integral method can be used for the identification of the invasion. This algorithm can make the false negative rate of intrusion events tends to zero, while significantly reducing the false alarm rate.
     Through the study of the subject will be an effective solution to the field of traditional perimeter security the high rate of false positives, and cannot accurately addressing, vulnerable to the environmental impact, the installation of complex issues such as, effectively improve the technical level of China's Public Security.
引文
[I]Keith Harman,Wayne K.Meaaner. Outdoor perimeter security sensors a forty year perspective[C].Security Technology(ICCST),2012 IEEE International Carnahan Conference,2012:1-9.
    [2]Ding Aixia, Dan Wang. The security experience of wireless local area network at Ningbo University[J].Advanced Materials Research,2012,488-489:1603-1608.
    [3]R. L. Barnard, Intrusion Detection Systems[M],2nd Edition, Butterworth Publishers 2008.
    [4]Mahmoud, Seedahmed S. Katsifolis, Jim. Performance investigation of real-time fiber opticperimeter intrusion detection systems using event classification[C]. Security Technology (ICCST),2010 IEEE International Carnahan Conference on. Digital Object Identifier.2010:387-393.
    [5]Davis, A, Hwa Chang. Airport protection using wireless sensor networks[C]. Homeland Security (HST),2012 IEEE Conference on Technologies for Digital Object Identifier.2012:36-42.
    [6]Lin, Han, Ross, Michael, Mack, Thomas. Design of a physical security perimeter fencing system[C]. Security Technology (ICCST),2010 IEEE International Carnahan Conference on Digital Object Identifier.2010:205-210.
    [7]Libby, Vibeke. A wireless perimeter protection and intrusion detection system[C] Security Technology (ICCST),2010 IEEE International Carnahan Conference on Digital Object Identifier.2010:364-368.
    [8]Syed Raheel, Hassan SyrameMaxime, Bourgeois, Julien. Protecting grids from cross-domain attacks using security alert sharing mechanisms[J]. Future Generation Computer Systems,2013,29(2):536-547.
    [9]Wang Hua, Zhao GuoHong, Shi BoShan, MengXianJun. The security protection and technology analysis of information system[J].Applied Mechanics and Materials,2013, 263-266:3130-3134.
    [10]Zhang Chaoyang, Pan Baochang, ZhengShenglin, et al.Motion object detection of video based on principal component analysis[C]//Proceedings of the Seventh International Conference on Machine Learning and Cybernetics.Kunming, China,2011:2938-2943.
    [11]Mahmoud Seedahmed S. Visagathilagar, Yuvaraja; Katsifolis, Jim. Real-time distributed fiber optic sensor for security systems:Performance, event classification and nuisance mitigation[J], Photonic Sensors,2012,2(3):225-236.
    [12]Mohammadi Mehdi, Raahemi, BijanAkbari Ahmad, NassersharifBabak. New class-dependent feature transformation for intrusion detection systems[J], Security and Communication Networks,2012,5(12):1296-1311.
    [13]The Secure Fence Future Fiber Technologies corporation. http://www. fftsecu-rity. com/.
    [14]Fiber Instrument Sales, Inc.,America,www.Fiber-fence.com.
    [15]Mohammadi Mehdi, Raahemi, BijanAkbari Ahmad, NassersharifBabak. New class-dependent feature transformation for intrusion detection systems[J]. Security and Communication Networks,2012,5(12):1296-1311.
    [16]The Secure FenceFutureFiber Technologiescorporation.2009.11.9. http://www.fftsecu-rity. com/.
    [17]徐海燕.分布式光纤振动传感器及其定位技术研究[D].2011,上海:复旦大学,材料科学.
    [18]孙志峰.分布式光纤振动传感网络周界防入侵系统[D].2010,湖北:华中科技大学,光学工程.
    [19]王立.基于分布式光纤传感的智能环境感知技术研究[D].2008,天津:南开大学,控制科学与工程.
    [20]王立新,罗强,刘晓光,等.基于Sagnac环的光纤围栏报警系统[J].光通信技术,2007,4:60-61.
    [21]蓝天,张春熹,李立京,等.全光纤周界安全防范系统[J].光学技术,2008,34(2):259-261.
    [22]Wang, Zinan, JiaXinhong, RaoYunjiang, Jiang Yun, Zhang Weili. Novel long-distance fiber-optic sensing systems based on random fiber lasers[C]. Proceedings of SPIE-The International Society for Optical Engineering,2012,8351.
    [23]Future Fibre Technologies Corporation. FFT secure fence:Perimeter security system. [Z/OL]. [2009-09-21]. http://www. fftsecurity. com/products_fence. php.
    [24]Sun Q Z, liu D M, Wang J. et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer, optics [J]. Communications,2008.281:1538-1544.
    [25]songMuping, Bao Chong, QiuChaoeta..A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J].ActaOptica Sinica,2010,30(3):650~654.
    [26]Cui zhang lixin wang. Perimeter security alarm system based on fiber Bragg grating[A],Proc. SPIE[C],2010,7853:M1-M7.
    [27]Zhang Cui, Wang Lixin, Lin Bin, etal. Fiber Bragg Grating Vibration Sensor Used for Perimeter Security[J].Semiconductor Optoelectronics,2012,33(4):566-569.
    [28]Bo Dong,Jian zhanzhong Hao.Varghese Paulose. Armored-cable-based FBG security fence for perimeter intrusion detection with higher performance[J].Sensor and Actuators A.2012,180:15-18
    [29]蒋祺.基于FBG传感器的超长距离光纤围栏报警系统[D].重庆:重庆大学,2010.15-30.
    [30]吴亮,谢箭.基于概率神经网络光纤周界传感信号处理研究[J].中国电子科学研究院学报,2011,6(4):436-440.
    [31]吴媛,卞庞,肖倩.基于相位载波服用的光纤周界安防系统及其实现方法[J].光子学报,2011,40(7):967-971.
    [32]TANG Huang, WU Hong-yan, ZHANG Hua,etal.Application of fiber-optic encoding technology in multiplezone intrusion detection system [J].Chinese Journal ofScientific Instrument,2010,31(4):912-915.
    [33]李琛,张春熹,梁生,等.用于周界报警干涉型光纤传感器的光缆技术[J].测试技术学报,2010,24(3):277-281.
    [34]姜芸,贾新鸿,王子南,张伟利,饶云江.基于随机分布式反馈光纤激光器的100km布里渊光时域分析系统[J].光电子.激光,2013,24(1):45-49.
    [35]董小鹏,郑俊达.基于波分复用的光纤多防区周界传感系统[J],中国激光,2012,39(9):1-4.
    [36]Loizos, Andreas; Plati, Christinal; Papavasiliou, Vasilis. Fiber optic sensors for assessing strains in cold in-place recycled pavements [J]. International Journal of Pavement Engineering,2013,:125-133.
    [37]Hauswirth, D.; Iten, M.; Puzrin, A.M.. Detection of ground movements using soil-embedded distributed fiber optic sensors [C]. Geotechnical and Geophysical Site Characterization 4-Proceedings of the 4th International Conference on Site Characterization 4, ISC-4,2013,579-586.
    [38]Zhang Zhi Feng; Tao,Xiao Ming. Intrinsic temperature sensitivity of fiber bragg gratings in PMMA-based optical fibers [C]. IEEE Photonics Technology Letters,2012,25(3): 310-312.
    [39]Huang Jun, Zhou Zude, Wen Xiaoyan, etal. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation [J]. Meas J Int Meas Confed.2013,5778:1041-1046.
    [40]Tsuda Hiroshi, Sato Eiichi, Nakajima Tomiol, Sato Akiyoshi. Development of fiber optic broadband vibration-detection system-Simultaneous measurement of both strain and acoustic emission using a fiber Bragg grating sensor [J]. Synthesiology,2013,6(1):45-54.
    [41]Song Le, Fang Fengzhou, Zhao Jibo. Study on viscosity measurement using fiber Bragg grating micro-vibration [J]. Measurement Science and Technology,2013,24(1):015301.
    [42]Li Dongming, Chen Jun, Ge Huiliang, Sang Weibing. Water sound sensor using the optical fiber grating sensitivity enhanced through side pressure and end surface pulling [J]. Guangxue Xuebao,2012,32(5):0506001.
    [43]Lee, Jongki. Sound detection monitoring in the transformer oil using fiber optic sensor [C]. Proc SPIE Int Soc Opt Eng,2012,83700W.
    [44]Mizushima Yuki, Sakamoto Akihiro, Saito Takayuki. Measurement technique of bubble velocity and diameter in a bubble column via single-tip optical-fiber probing with judgment of the pierced position and angle [J]. Chemical Engineering Science,2013, 1803-1806.
    [45]Peng Feng, Li Xingliang, Wu Bing, Yuan Yonggui. Etal. A compact fiber optic accelerator [C]. Proc SPIE Int Soc Opt Eng,2011.77535Y.
    [46]Song Guang dong,Wang Jinyu,Liu TongYu.etal. Optical fiber grating strain acceleration sensors ground vibration experimental research[C]. Procedia Engineering,2011,784-793.
    [47]Rahman H.A., Rahim H.R.A., Harun S.W.etal. Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor[J]. Optics and Laser Technology,2013,336-341.
    [48]张翠,甘维兵.应用光纤Bragg光栅测量光纤基本参数的研究[J].武汉理工大学学报,2009,23(3):43—44.
    [49]Rodrigues, Carlos, Cavadas, Filipe; Felix, Carlos; Figueiras, Joaquim. FBG based strain monitoring in the rehabilitation of a centenary metallic bridge[J]Engineering Structures,2012,44:281-290.
    [50]PiaoChunde; QuYongzhao Study on the bearing mechanism of squeezed branch pile based on BOTDR[J].Advanced Materials Research,2012,368-373:2065-2070.
    [51]Mokhtar M.R., Owens K., Kwasny J.; Taylor S.E., etal. Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring[J]. IEEE Sensors Journal,2012,12(5):1470-1476.
    [52]Rodrigues, Carlos, Cavadas, Filipe; Felix, Carlos; Figueiras, Joaquim. FBG based strain monitoring in the rehabilitation of a centenary metallic bridge[J]Engineering Structures,2012,44:281-290.
    [53]Chen, Shuli, Su, Mubiao. The optical fiber strain monitoring technology of large-scale bridge[J]. Advanced Materials Research,2012,446-449:3417-3421,2012, Trends in Civil Engineering
    [54]Zhang, Yong, Gu, Zhengqi; Wang, Zhen; Yu, Yong. Study on influence law of urban architectural structure on the automobile exhaust diffusion based on CFD[J]. Applied Mechanics and Materials,2012,178-181:751-755.
    [55]Lee Yeon-Gwan, Kim Dae-Hyun, Kim, Chun-Gon. Performance of a single reflective grating-based fiber optic accelerometer[J].2012,23(4):045101.
    [56]Basumallick, N., Chatterjee I., Biswas P., Dasgupta K., Bandyopadhyay S. Fiber Bragg grating accelerometer with enhanced sensitivity[J],2012,173(1):108-115.
    [57]Pierre Tihon, Linze Nicolas, Verlinden Olivier, Megret Patrice, Wuilpart Marc. Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation[C], Proceedings of SPIE-The International Society for Optical Engineering,2012,8439.
    [58]张敬花,乔学光,冯忠耀,忽满利,高宏,周锐,杨扬.基于弯曲伸张结构的光纤光栅传感研究[J].物理学报,2012,61(5):17.
    [59]Zhang Xixi, AlemohammadHamidreza, ToyserkaniEhsan. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings[J].Measurement Science and Technology,2013,24(2).1-11.
    [60]龚善初.物理学与工程技术中非线性振动的常见求解方法[M].北京:中国科学文化出版社,2006.38-39.
    [61]Pan Bo, Lu Jun; Shang Fulin. Frequency analysis of nonlinear free vibration of a cross string[J]. Nonlinear Dynamics,2013:1-12.
    [62]陈文涛.单质点弦振子振动分析[J].湖南:湖南文理学院学报,2007,19(4):49-53.
    [63]Chatjigeorgiou, Ioannis K. Numerical simulation of the chaotic lateral vibrations of long rotating beams [J]. Applied Mathematics and Computation,2013,219(10):5592-5612.
    [64]Xie, Longhan. Study on a nonlinear oscillator of elastic string and its application in energy harvesting Source[J]. Advanced Materials Research,2013,629:900-905.
    [65]Ege, Kerem, Boutillon, Xavier; Rebillat, Marc. Vibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low-and mid-frequency ranges[J]. Journal of Sound and Vibration,2013,332(5):1288-1305.
    [66]Webb S., Peters K., Zikry M.A., Chadderdon S., Nikola S., Selfridge R., Schultz S.. Full-Spectral Interrogation of Fiber Bragg Grating Sensors Exposed to Steady-State Vibration[J]. Experimental Mechanics,2012,p 1-18.
    [67]Lee Cheng-Ling,Lee Chung-Fen, Li Chai-Ming, Chiang Tsai-Ching, Hsiao Ying-Li. Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer[J]. Applied Physics Letters,2012,101(2):1-4.
    [68]Yuan Lei, Wei Tao, Han Qun, Wang Hanzheng, Huang Jie,JiangLan, Xiao Hai. Fiber inline Michelson interferometer fabricated by a femtosecond laser[J].Optics Letters,2012,37(21):4489-4491.
    [69]Loizos, Andreas; Plati, Christinal; Papavasiliou, Vasilis. Fiber optic sensors for assessing strains in cold in-place recycled pavements [J]. International Journal of Pavement Engineering,2013,:125-133.
    [70]Hauswirth, D.; Iten, M.; Puzrin, A.M.. Detection of ground movements using soil-embedded distributed fiber optic sensors [C]. Geotechnical and Geophysical Site Characterization 4-Proceedings of the 4th International Conference on Site Characterization 4, ISC-4,2013,579-586.
    [71]Zhang Zhi Feng; Tao,Xiao Ming. Intrinsic temperature sensitivity of fiber bragg gratings in PMMA-based optical fibers [C]. IEEE Photonics Technology Letters,2012,25(3): 310-312.
    [72]Huang Jun, Zhou Zude, Wen Xiaoyan, etal. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation [J]. Meas J Int Meas Confed.2013,5778:1041-1046.
    [73]Tsuda Hiroshi, Sato Eiichi, Nakajima Tomiol, Sato Akiyoshi. Development of fiber optic broadband vibration-detection system-Simultaneous measurement of both strain and acoustic emission using a fiber Bragg grating sensor [J]. Synthesiology,2013,6(1):45-54.
    [74]Song Le, Fang Fengzhou, Zhao Jibo. Study on viscosity measurement using fiber Bragg grating micro-vibration [J]. Measurement Science and Technology,2013,24(1):015301.
    [75]Li Dongming, Chen Jun, Ge Huiliang, Sang Weibing. Water sound sensor using the optical fiber grating sensitivity enhanced through side pressure and end surface pulling [J]. Guangxue Xuebao,2012,32(5):0506001.
    [76]Lee, Jongki. Sound detection monitoring in the transformer oil using fiber optic sensor [C]. Proc SPIE Int Soc Opt Eng,2012,83700W.
    [77]Mizushima Yuki, Sakamoto Akihiro, Saito Takayuki. Measurement technique of bubble velocity and diameter in a bubble column via single-tip optical-fiber probing with judgment of the pierced position and angle [J]. Chemical Engineering Science,2013, 1803-1806.
    [78]Peng Feng, Li Xingliang, Wu Bing, Yuan Yonggui. Etal. A compact fiber optic accelerator [C]. Proc SPIE Int Soc Opt Eng,2011,77535Y.
    [79]Song Guang dong,Wang Jinyu,Liu TongYu.etal. Optical fiber grating strain acceleration sensors ground vibration experimental research[C]. Procedia Engineering,2011,784-793.
    [80]Rahman H.A., Rahim H.R.A., Harun S.W.etal. Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor[J]. Optics and Laser Technology,2013,336-341.
    [81]张翠,甘维兵.应用光纤Bragg光栅测量光纤基本参数的研究[J].武汉理工大学学报,2009,23(3):43—44.
    [82]Rodrigues, Carlos, Cavadas, Filipe; Felix, Carlos; Figueiras, Joaquim. FBG based strain monitoring in the rehabilitation of a centenary metallic bridge[J]Engineering Structures,2012,44:281-290.
    [83]PiaoChunde; QuYongzhao. Study on the bearing mechanism of squeezed branch pile based on BOTDR[J].Advanced Materials Research,2012,368-373:2065-2070.
    [84]Mokhtar M.R., Owens K., Kwasny J.; Taylor S.E., etal. Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring[J]. IEEE Sensors Journal,2012,12(5):1470-1476.
    [85]Chen, Shuli, Su, Mubiao. The optical fiber strain monitoring technology of large-scale bridge[J]. Advanced Materials Research,2012,446-449
    [86]Wang C.N., Cheng Y.S.; Tse, C.C. Application of fiber bragg grating sensor in fip structural strain measurements[J].Journal of Taiwan Society of Naval Architects and Marine Engineers,2012,31(2):103-111.
    [87]ZaidiFarhan, NannipieriTiziano; Soto Marcelo A..etal. Integrated hybrid Raman/fiber Bragg grating interrogation scheme for distributed temperature and point dynamic strain measurements[J]. Applied Optics,2012,51(30):7268-7275.
    [88]Zhou, Qian; Ning, Ti-gang; Pei, Li. etal. Temperature-insensitive fiber Bragg grating strain sensor[J]. Optoelectronics Letters,2012,8(6):414-417.
    [89]Li, Xin, Li, Qiang; Zhou, Hong.etal. Rapid, on-site identification of explosives in nanoliter droplets using a UV reflected fiber optic sensor[J].AnalyticaChimica Acta,2012,751:112-118.
    [90]Li Hui Jiang, Xiang-Ming Liu, Feng Zhang. ULTI-TARGET RECOGNITION USED IN AIRPOTY FIBER FENCEWARNING SYSTEM[C]. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 2010(4):1126-1129.
    [91]Li, Feng, Zhang, Wentao; Li, Fang; Du, Yanliang.Fiber optic inclinometer for landslide monitoring[J]. Applied Mechanics and Materials,2012,166-169:2623-2626.(滑坡监测的光纤倾角传感器)
    [92]Li, Xiaolei, Sun Qizhen; WoJianghai; Zhang Manliang; Liu Deming Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection[J]. Journal of Lightwave Technology,2012,30(8):1113-1120.
    [93]Zhang Ying, Chen Jiamei; Li Gang; Li Hongjie; Wu Yanwei; Li Wei. Location method of distributed fiber-optic perimeter security system based on Mach-Zehnder interferometer[J] ZhongguoJiguang/Chinese Journal of Lasers,2012,39(6):1-4.
    [94]刘泉,蔡林均,李政颖,唐智浩,杜峰,赵猛.高速度高精度光纤布喇格光栅解调的寻峰算法研究[J].光电子.激光.2012,23(7):1233-1239.
    [95]李政颖,周祖德,童杏林,熊涛,唐智浩,蔡林均,赵猛.高速大容量光纤光栅解调仪的研究[J].光学学报,2012,32(3):1-6.
    [96]黄钊,赵建林,姜碧强,秦川.基于匹配光纤光栅法布里—珀罗干涉仪的应变解调方法[J].光子学报,2012,41(7):845—849.
    [97]Shang, Ying, Liu, Xiaohui; Wang, Chang,etal. Study of non-intrusion optical fiber fluid flow monitoring system using flow-induced pipe vibration[C].Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, ICICEE 2012, p 1284-1286.
    [98]HaoJianzhong, Dong Bo; Varghese Paulose; PhuaJiliang; Foo Siang Fook. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2012,8332.
    [99]Wu, H., Wang, J.; Wu, X.; Wu, Y. Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds[J]. Sensor Letters,2012,10(7):1557-1561.
    [100]Seedahmed,S.Mahmoud, Jim Katsifolis. Elimination of Rain Induced Nuisance Alarms in Distributed FiberOptic Perimeter Intrusion Detection Systems[C].SPIEProceedings of Fiber Optic Sensors and Application2009,Vol:7316-7326.
    [101]N.Fang, L.T Wang. D.J.Jia.etc.Walking intrusion signalrecognition method for fiber fence system[C], IEEECommunications and Photonics conference andExhibition,2009. ACP 2009. Asia Vol:1-6.
    [102]孙丽.光纤光栅传感应用问题解析[M].北京:科学出版社,2012,35-60.
    [103]李振兴孟庆海.时频分析技术及其工程应用[J],大连海事大学出版社,2011.9,35.
    [104]GovindK.Sharma,AnishKumar, C.BabuRao,T.Jayakumar,BaldevRaj. Short time Fourier transform analysis forunder standing frequency dependent attenuation in austenitic stainless steel[J]. NDT&E International,2013,53:1-7.
    [105]Park, Chun, Peters, Kara.Comparison of damage measures based on fiber Bragg grating spectra[J],Measurement Science and Technology.2012,23(2):1-14.
    [106]Li, Yi, Wang, Xiaozhen; Bao, Xiaoyi.Sensitive acoustic vibration sensor using single-mode fiber tapers [J],Applied Optics.2011,50(13):1873-1878.
    [107]封根泉.人体工程学[M].兰州:甘肃人民出版社,1990:120-130.
    [108]张颖,陈佳妹,李刚,李红杰,吴艳微,李伟.马赫—曾德尔分布式光纤周界防范系统定位算法研究[J],中国激光,2012,39(6):1—4.
    [109]邓遂,邓瀚林,梁庆伟,曹红兵,刘海涛.周界监测中的阈值优化和多模态节点协同检测算法[J],西安交通大学学报,2013,47(2):1-6.
    [110]Park, Minwoo; Brocklehurst, Kylel; Collins, Robert T.; Liu, Yanxi. Image de-fencing revisited[C].10th Asian Conference on Computer Vision, ACCV 2010,6495(4):422-434.
    [111]单超,方捻,王陆唐,等.混沌光纤围栏系统及其入侵定位方法[J].光学学报,2010,30(2):335-339.
    [112]C.N.Bapat,Liang, Tsair-Chun, Lin, Yung-Li. Ground vibrations detection with fiber optic sensor[J], Optics Communications,2012,285(9):2363-2367.
    [113]Manojlovic, Lazo M.A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers[J].IEEE Sensors Journal.2011,11(7): 1541-1547.
    [114]Sun, An; Semenova, Yuliya; Farrell, Gerald.A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure [J] Microwave and Optical Technology Letters,2011,53(2):442-445.
    [115]Goharrizi,AminYazdanpanah,Sepehri,Nariman. Interna leakage detection in hydraulic actuators using empirical mode decomposition and hilbert spectrum[C]. IEEE Transactions on Instrumentation and Measurement,2012,61(2):368-378.
    [116]Jingchuan, Zhang,Zhoumo.Zeng,Feng.Hao.etcy ARecognition Method of Petroleum Pi-peline Safetydetection Events Using the largest Lyapunov Exponentand Wavelet Threshold Denoising[C],IEEE The NinthInternational Conference on Electronic Measurement&Instruments, Tianjin, China,2009,Vol:140-144.
    [117]Wang, H.S., Wang, Y.N.; Wang, Y.C. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network[J]. Expert Systems with Applications,2013,40(2):418-428.
    [118]王道成,胡修林,张蕴玉.基于短时相关性和极值点的语音边界检测[J].华中理工大学学报,Vol.28 No.12,2000,13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700