欠定松弛稀疏信号的盲分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欠定盲分离是指观测信号数目少于源信号的线性混叠问题,通常用基于信号稀疏表示的两步法来解决,第一步是估计混叠矩阵,第二步分离源信号。松弛稀疏是指混叠信号不完全满足稀疏性条件。论文正是针对松弛稀疏条件下的欠定的盲信号分离问题,旨在改善欠定盲信号分离的效果,提高恢复信号的信噪比。论文主要有如下四个方面的贡献。
     第一,在欠定的盲信号分离算法的基础之上,考虑语音信号与高斯噪声的混叠,该问题也属于语音去噪的范畴。当语音信号与噪声混叠后,信号并不具有稀疏性,但可以视为松弛稀疏性的条件。根据松弛稀疏性,我们提出了基于稀疏性的双通道的语音去噪算法,该算法将该算法利用语音增强中的门限,将观测信号所在的时频域划分为两个区域:非交错区(JA)和交错区(DA)。在两个区域采取了不同的去噪策略。在非交错区,它丢弃所有信号;在交错区,它删除在散落图中“十字架”上的噪声,并用平滑滤波来补偿失真。
     第二,稀疏性的条件是一个严格的条件,松弛稀疏性是一个宽松的条件,更加符合实际情况。时频掩码的方法是根据稀疏性确立的,与实际情况有较大的区别,为了能够获得更好的源信号恢复效果,我们提出了经时频掩码的盲提取算法,算法针对两个观测信号,融合了非完全稀疏信号的盲提取算法和DUET算法,它利用估计的混叠矩阵,计算源信号的提取矢量和源方向的法矢量,并经线性变换更新混叠信号和混叠矩阵,后采用时频掩码方法恢复源信号。算法在理论上增加了一定的计算复杂度,但在非完全稀疏的情况下,它的性能明显优于DUET算法。
     第三,在经时频掩码的盲提取算法上,我们进一步的研究旋转变换和DUET算法的关系,分析松弛稀疏性对源信号恢复的影响,提出一个改进的DUET算法。算法用混叠矩阵的任意两列作为旋转矩阵,先旋转接收信号和混叠矩阵,后执行DUET算法。因为DUET算法在不同的旋转变换下有不同的结果,所以该算法将估计信号进行相加,弥补DUET算法的失真,改善了源信号的信噪比。
     第四,在基于超平面法矢量聚类的基础上,我们针对k-SCA条件,提出了稀疏元分析的矩阵估计算法。算法仍然基于超平面法矢量的欠定盲信号分离算法,给出了k元区间的定义和检测方法。该算法的目的是寻找真正满足k-SCA条件的数据点和估计矩阵。
     以上四个方面的研究是本论文的主要工作,最后,我们也利用大量的实验仿真证实所提出的理论和算法。
Underdetermined Blind signal separation is the linear mixing problem that the number of the observed signals is less than one of the sources. It is usually resolved using the two-step method based on sparse representation of the signal. The first step is to estimate the marix and the second step is to estimate the sources. Relaxed sparse condition doesn't completely satisfy the sparse condition. It is relaxed sparse and underdetermined blind source separation that is studied in this thesis. Its purpose is to improve the SNR of the estimated sources and to obtain the good sources. There are four contributions in this thesis.
     Firstly, the mixing of the speech and Gaussian noise, which is belonged to speech denoising, is considered based on underdetermined blind source separation. The mixtures are not sparse but they are relaxed sparse when the speech is mixed into the noises. We propose a speech denoising based on sparsity according to the relaxed sparse. By the threshold in speech enhancement, the algorithm splits the time frequency domain of the observed signals into two areas that is in Non-Disjoint areas (NON-DA) and disjoints Area (DA). The algorithm adopts the different denoising strategies. In the NON-DA, it throws away the signals. In the DA, it deletes the noise on the "cross" and uses the smooth filter to compensate the distortion.
     Secondly, the sparsity is a strick condition and the relaxed sparsity is a relaxed condition which is near to the actual case. Time-frequency mask method is far away the real circumvent as it uses the sparse condition. To obtain a good result, a blind extraction algorithm via time-frequency mask is proposed. The algorithm combines the non-completely sparse blind extraction with the DUET. It can compute the extraction vector of the source and the normal vector of the source direction; it also renews the mixtures and the mixing matrix using a linear transform. Subsequently, the source is recovered using time-frequency mask. Although it has higher computation complexity theoretically, its performance is obviously better than the DUET.
     Thirdly, based on the blind extraction via time-frequency mask, we continuly study the relation between the rotatotion transform and the DUET algorithm. An improved DUET algorithm is proposed in this thesis. The algorithm rotates the mixtures and mixing matrix using a rotation matrix, which is formed by any two columns in the mixing matrix, and then do DUET algorithm. Because the results are different in DUET algorithms under different rotations, the algorithm sums the estimated signal to improve the distortion.
     Finally, a matrix estimation of sparse component analysis is proposed for k-SCA condition based on the normal vector of hyperplain. The algithm is the extention of the underdetermined BSS based on the normal vector of hyper plain. It gives a definition of k-component interval and the method to identify it. The algorithm is to detect the samples of k-SAC and estimate the matrix.
     The above four works are main contributions of this thesis. We also do many experiments to testify our theory and algorithms in this thesis.
引文
[1]A. Cichocki, S. Amari. Adaptive blind signal and image processing:learning algorithms and applications[M].John Wiley and Sons, LTD, June 2002.
    [2]C. Jutten, J. Herault. Blind separation of sources, Part I:An adaptive algorithm based on neuromimetic[J]. Signal Processing,1991,24(1),1-10.
    [3]A. Hyvarinen, E. Oja. Independent component analysis:algorithms and applications [J]. Neural Networks, June 2000, vol.13(4-5),411-430.
    [4]S. Shimauchi, S. Makino. Stereo projection echo canceller with tree echo path estimation[A]. Proc. ICASSP-1995,3059-3062.
    [5]S. Choi, A. Cichocki, H. M. Park, et al. Blind source separation and independent component analysis:A review. Neural Information Processing-Letters and Reviews[J]. January 2005, Vol.6, No.1,1-57
    [6]A. Cichocki. Blind signal processing methods for analyzing multichannel brain signals[J]. International Journal of Bioelectromagtism,6(1),2004.
    [7]R. R. Gharieb, A. Cichocki. Noise reduction in brain evoked potentials based on third-order correlations[J].IEEE Transactions on Biomedical Engineering,2001, vol.48, 501-512.
    [8]G. Hori, K. Aihara, Y. Mizuno, Y. Okuma. Blind source separation and chaotic analysis of EEG for judgment of brain death[J]. Artificial Life Robotics, vol.5,2001,10-14.
    [9]H. Bakardjian, A. Uchida, H. Endo, et al. Magnetoencephalographic study of speed-dependent responses in apparent motion[J]. Clinical Neurophysiology, vol.113, 2002,1586-1597.
    [10]A. Funase, T. Yagi, A. K. Barros, et al. Analysis on saccade-related EEG with independent component analysis[J]. International Journal of Applied Electromagnetics and Mechanics, vol.14,2002,353-358.
    [11]S. Vorobyov, A. Cichocki. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis[J]. Biological Cybernetics, Apr. 2002, vol.86, no.4293-303.
    [12]A. Cichocki, S. L. Shishkin, T. Musha, et al. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease[J]. Clinical Neurophysiology, Vol.116,2005,729-737
    [13]A.J. Bell, T.J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995, vol.7,1004-1034.
    [14]S. Amari, A. Cichocki, H. Yang. A new learning algorithm for blind signal separation[A]. D.S. Touretzky, M.C. Mozer, M.E. Hasselmo(Eds.), Advances in Neural Information Processing Systems[C].1996, vol.8,757-763
    [15]J.F. Cardoso, B. Laheld. Equivalent adaptive source separation[J]. IEEE Trans. Signal Processing,1996, vol.44 (12),3017-3030.
    [16]A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. Neural Networks, May 1999, vol.10 (3),626-634.
    [17]E.Warsitz, M. R. Haeb-Umbach. Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition[J].IEEE Transactions on Audio, Speech, and Language Processing,2007,Vol 15(5),1529-1539.
    [18]L. Parra, P. Sajda. Blind source separation via generalized eigenvalue decomposition[J]. Journal of learning machine research,2003, vol.4,1261-1269.
    [19]L. Molgedey, H.G. Schuster. Separation of a mixture of independent signals using time delayed correlations[J].Physical Review Letters,72(23),1994,3634-3637.
    [20]A. Beloouchrani, A.M. Karim, J.F. Cardoso, et al. A blind source separation technique using second-order statistics[J]. IEEE Trans. Signal Process,1997, vol.45 (2),434-443.
    [21]A. Ziehe, K. R.M"uller, G. Nolte, et al. Artifact reduction in biomagnetic recordings based on time-delayed second order correlations [J]. IEEE Trans, on Biomedical Engineering,47,2000,75-87.
    [22]S. Choi, A. Cichocki, L. Zhang, et al. Approximate maximum likelihood source separation using the natural gradient[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, January 2003, E86-A(1),198-205.
    [23]A. Cichocki, A. Belouchrani. Sources separation of temporally correlated sources from noisy data using bank of band-pass filters [A]. In Third International Conference on Independent Component Analysis and Signal Separation (ICA-2001), pages 173-178, San Diego, USA, Dec.2001,9-13.
    [24]K. Matsuoka, M. Ohya, M. Kawamoto. A neural net for blind separation of nonstationary signals[J].Neural Networks,1995,8(3),411-419.
    [25]S. Choi, A. Cichocki, A. Belouchrani. Second order nonstationary source separation[J]. Journal of VLSI Signal Processing,32(1-2), August 2002,93-104.
    [26]L. Parra, C. Spence. Convolutive blind source separation of non-stationary sources[J]. IEEE Trans. Speech and Audio Processing, May 2000, vol.8 (3),320-327.
    [27]T. Melia, S. Rickard, C. Fearon. Extending the DUET blind source separation technique[A]. Proceedings of Signal Processing with Adaptative Sparse Structured Representations Workshop (SPARS'05), Rennes, France, November 2005.
    [28]K. R. M"uller, P. Philips, A. Ziehe. JADETD:Combining higher-order statistics and temporal information for blind source separation (with noise)[A]. Proc. ICA'99, Aussois, France,1999,87-92.
    [29]A. Belouchrani. Separation Autodidacte de Sources:Algorithme, Performances et Application a des Signaux Exp'erimentaux[D]. PhD thesis, ENST, Telecom Paris, July 1995.
    [30]A. Belouchrani, A. Cichocki. Robust whitening procedure in blind source separation context[J]. Electronics Letters, Nov.2000,36(24),2050-2051.
    [31]G. H. Golub, C. F. Van Loan. Matrix Computations[J].2nd edition. Johns Hopkins,1993.
    [32]J. F. Cardoso. Jacobi angles for simultaneous diagonalization[J]. SIAM J. Mat. Anal. Appl,1996,17(1),161-164.
    [33]D. T. Pham. Joint approximate diagonalization of positive definite hermitian matrices[A]. Technical Report LMC/IMAG, University of Grenoble, France,2000.
    [34]E.Warsitz, M. R. Haeb-Umbach. Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition[J].IEEE Transactions on Audio, Speech, and Language Processing,2007,Vol 15(5),1529-1539.
    [35]L. Tong, R. Liu, V.C. Soon, et al, Indeterminacy and identifiability of blind identification[J]. IEEE Trans on Circuits and systems,1991, vol.38 (5),499-509.
    [36]Y. Li, J. Wang, J. M. Zurada. Blind extraction of singularly mixed source signals[J]. IEEE Trans on Neural Networks,2000,11(6),1413-1422.
    [37]Y. Li, J. Wang. Sequential blind extraction of instantaneously mixed sources, IEEE Trans[J]. Signal processing, May 2002, vol.50, no.5,997-1006.
    [38]P. Comon. Independent component analysis, a new concept? [J] Signal Processing,1994, vol.36,287-314.
    [39]X. Cao, R. Liu. A general approach to blind source separation [J]. IEEE Trans Signal Processing,1996,44,562-571.
    [40]J. Zhang, S. Xie, Z. He, Separability theory for blind signal separation[J]. ACTA AUTOMATICA SINICA, April 2004, vol.30 (3),337-344.
    [41]A. Belouchrani, M.G. Amin. A new approach for blind source separation using time-frequency distributions[J].Proc. SPIE,1996,2846,193-203.
    [42]O. Yilmaz, S. Rickard. Blind separation of speech mixtures via time-frequency masking[J]. IEEE trans on signal processing. Vol.52,7,1830-1847.
    [43]F. Abrard, Y. A. Deville. Time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal processing 2005,85,1389-1403
    [44]S. Rickard, T. Melia, C. Fearon. DESPRIT-histogram based blind source separation of more sources than sensors using subspace methods[A]. Proceedings of the IEEE Workshop on Applications of Signal Processing in Audio and Acoustics, New Paltz, NY, USA, October 2005,5-8.
    [45]D. L. Donoho, Martin Vetterli, Ronald A. DeVore, Ingrid Daubechies:Data Compression and Harmonic Analysis [J]. IEEE Transactions on Information Theory (1998) 44(6),2435-2476.
    [46]T. W. Lee, M.S. Lewicki, M. Girolami, et al. Blind source separation of more sources than mixtures using overcomplete representation[J]. IEEE Signal processing letter,1999, 6(4),87-90.
    [47]M. Zibulevsky, B.A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural computation, April 2001, vol.13, no.4,863-882.
    [48]M. Zibulevsky, P. Kisilev, Y.Y. Zeevi, B.A. Pearlmutter (2000). Blind source separation via multinode sparse representation[A]. NIPS-2001
    [49]P. Bofill, M. Zibulevsky. Underdetermined source separation using sparse representation[J]. Signal processing,2001,81,2353-2362.
    [50]M. Zibulevsky, Y. Y. Zeevi (2002). Extraction of a single source from multichannel data using sparse decomposition[J]. Neurocomputing 49,163-173.
    [51]Y. Li, A. Cichocki, S. Amari. Analysis of sparse representation and blind source separation[J]. Neural computation, June 2004, vol.16, no.6,1193-1234.
    [52]F. J. Theis, W. E. Lang, C. G. Puntonet (2004). A geometric algorithm for overcomplete linear ICA[J]. Neurocomputing. Vol.56,381-398.
    [53]何昭水,谢胜利,傅予力.稀疏表示及其病态混叠盲信号分离[J].《中国科学》E辑:信息科学,2006,Vol.36(8),864-879.
    [54]Z. He, S. Xie, Y. Fu. Sparse Representation and Blind Source Separation of Illposed Mixtures[J]. Science in China Series F-Information Sciences,2006, Vol.49 (5),639-652.
    [55]肖明,谢胜利,傅予力:“基于超平面法矢量的欠定盲信号分离算法”,自动化学报,2008,32(2),142-149.
    [56]Z. Yang, Z. He, S. Xie, Y. Fu. Adaptive blind separation of underdetermined mixtures based on sparse component analysis[J]. Science in China Series F:Information Sciences (2008) 51(4),381-393
    [57]Y. Li, S. Amari, A. Cichocki, et al. Underdetermined Blind Source Separation Based on Sparse Representation [J]. IEEE Transactions On Signal Processing, Vol.54, No.2, February 2006,423-437.
    [58]P. G. Georgiev, F. J. Theis, A. Cichocki. Blind source separation and sparse component analysis of overcomplete mixtures[A]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP2004), Montreal, Canada, May 2004, IEEE Signal Processing Society, vol. V,493-496.
    [59]P. S. Bradley, O. L. Mangasarian. k-plane clustering[J]. Journal of Grobal Optimization. January 2000, vol.16, no.1,23-32.
    [60]F. J. Theis, P. G. Georgiev, A. Cichocki. Robust overcomplete matrix recovery for sparse sources using a generalized hough transform[A]. Proceedings of 12th European Symposium on Artificial Neural Networks (ESANN2004), (Bruges, Belgium) Apr.2004, 343-348.
    [61]Z. He, A. Cichocki. K-Subspace Clustering and its Application in Sparse Component Analysis [A]. The 14th European Symposium on Artificial Neural Networks, ESANN-2006 Bruges (Belgium), April 26-28,2006
    [62]Y. Washizawa, A. Cichocki. On Line K-Plane Clustering Learning Algorithm for Sparse Component Analysis[A].2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, May,2006, Toulouse, France.
    [63]M. S. Lewicki, T.J. Sejnowski. Learning overcomplete representations [J]. Neural computation,2000, vol.12,337-365.
    [64]I.Takigawa, M. Kudo, J. Toyama (2004). Performance analysis of minimum 11-norm solutions for underdetermined source separation[J]. IEEE Trans in Signal Processing,52 (3),582-591.
    [65]P. G. Georgiev, F. J. Theis, A. Cichocki. Blind source separation and sparse component analysis of overcomplete mixtures[A]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP2004), Montreal, Canada, May 2004, IEEE Signal Processing Society, vol. V,493-496.
    [66]F. J. Theis, P. G. Georgiev, A. Cichocki. Robust overcomplete matrix recovery for sparse sources using a generalized hough transform[A]. Proceedings of 12th European Symposium on Artificial Neural Networks (ESANN2004), (Bruges, Belgium) Apr.2004, 343-348.
    [67]Y. Washizawa, A. Cichocki. On Line K-Plane Clustering Learning Algorithm for Sparse Component Analysis[A].2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, May,2006, Toulouse, France.
    [68]Doron, E., Yeredor, A., and Tichavsky, P.:'Cramer-Rao-induced bound for blind separation of stationary parametric Gaussian sources', IEEE Signal Process Letters., 2007,14, (6),417420
    [69]Zayyani, H., Babaie-Zadeh, M., Haddadi, F., and Jutten, C.:'On the Cramer Rao Bound for estimating the mixing matrix in noisy Sparse Component Analysis', IEEE Signal Process Letters.,2008,15,609-612
    [70]E. De Carvalho, D.T.M. Slock. Cramer-Rao bounds for semi-blind, blind and training sequence based channel estimation. Signal Processing Advances in Wireless Communications,1997 First IEEE Signal Processing Workshop on Issue Date:16-18 Apr 1997,129-132
    [71]N.Q.K. Duong, E. Vincent, R. Gribonval. Spatial covariance models for under-determined reverberant audio source separation. Applications of Signal Processing to Audio and Acoustics,2009. WASPAA'09. IEEE Workshop on,2009, 129-132
    [72]N.Q.K. Duong, E. Vincent, R. Gribonval. Under-Determined Reverberant Audio Source Separation Using a Full-Rank Spatial Covariance Model. IEEE Trans. Audio, Speech, and Language Processing, Vol.18 (7),2010,1830-1840
    [73]Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Trans, on Commun.1975, vol.23 (6),679-682.
    [74]D.N. Godard. Self-recovering equalization and carrier tracking in two-dimension data communication systems, IEEE Trans on Commun,1980, vol.28 (11),1867-1875.
    [75]A. Benveniste, M. Goursat. Blind Equalizers[J]. IEEE Trans on Commun,1984, vol.32 (8),871-883.
    [76]S. Bellini, Bussgang. Techniques for Blind Deconvolution and Blind Equalization[M]. Englewood Cliffs:Prentice-Hall,1994.
    [77]C. Platt, F. Faggin. Networks for the separation of sources that are superimposed and delayed[J]. Advances In Neural Information Processing Systems.1991,730-737.
    [78]T. Nomura, M. Eguchi, H. Niwamoto, et al, An extension of the herault-jutten network to signal including delays for blind separation[A]. In Proceedings of IEEE Workshop on Neural Networks for Signal Processing. Kyoto,1996,443-452
    [79]D. Yellin, E. Wensten. Criteria for multichannel signal separation[J]. IEEE Trans. Signal Processsing,1994, vol.42 (8),2158-2168.
    [80]谭丽丽,韦岗,多输入多输出盲解卷问题的最大熵解法[J].电子学报,2000,28(1),114-116
    [81]A. Dapena, L. Castedo. A novel frequency domain approach for separating convolutive mixtures of temporally-white signals[J]. Digital Signal Processing,2003, vol. 13,301-316.
    [82]S. Choi, A. Cichocki, S. Amari. Two spatiotemporal decorrelation learning algorithms and their application to multichannel blind deconvolution[J]. Proc. Int. Conf. Acoust., Speech, and Signal Processing,1999,1085-1088.
    [83]T. W. Lee, A. J. Bell, R. Lambert. Blind separation of delayed and convolved sources[J]. Advances in Neural Information Processing Systems9. Cambridge, MA:MIT Press, 1997,758-764.
    [84]Y. Zhou, B. Xu. Blind source separation in frequency domain[J]. Signal Processing,2003, vol.83,2037-2046.
    [85]A. Taleb, C. S. Jutten, A. Xichocki. Information back-propagation for blind separation of sources from non-linear mixtures:An entropy-based algorithm[A], in Proc of ICASSP. Washinton, ICASSP,1998,2089-2092.
    [86]A. Taleb, C. Jutten. Source separation in post-nonlinear mixtures[J]. IEEE Trans. Signal Processing, October 1999, Vol.47 (10),2807-2820.
    [87]T.W. Lee, A.J. Bell, R. Orgmeister, Blind source separation of real world signals[A]. in Proc of ICNN, Hoaston:ICNN,1997,2129-2134.
    [88]J. Karbunen, A. Hyvarinen. Application of neural blind separation to signal and image processing[A]. in Proc ICASSP, Germany:Munich,1997,131-134.
    [89]M.J. Mckeown, T.P. Jung, S. Makeig, et al. Spatially independent activity patterns in functional MRI data during the stroop corlor-naming task[A]. In Proc Natl Acad Sci, 1998, vol.95,803-810.
    [90]A. K. Barros, A. Mansour, N. Ohnishi. Removing the artifacts from eletrocardiographic signals using independent analysis[J]. Neurocomputing,1998, vol.22 (1-3),173-186.
    [91]R. Vigario, J. Sarela, V. Jousmaki, et al. Independent component analysis for identification of artifacts in magnetoencephalographic recordings [J]. Adv. Neural Inform. Process, Systems,1998, vol.10,229-235.
    [92]凌燮亭,近场宽带信号源的盲分离[J].电子学报,1996,vol.24(7),87-92.
    [93]何振亚,刘琚,杨绿溪,盲均衡和信道参数估计的一种ICA和进化计算方法[J].中国科学(E辑),2000,vo1.30(1),1-7.
    [94]Z. He, J. Liu, L. Yang. Blind separation of mages using edgeworth expansion based ICA algorithm[J]. Chinese Journal of Electrorrics,1999, vol.8 (3),278-282.
    [95]Z. He, L. Yang, J. Liu. Blind source separation using cluster-based multivariate density estimation algorithm[J]. IEEE Trans. Signal Processing,2000, vol.48 (2),575-579.
    [96]D. Feng, X. Zhang, Z. Bao, An efficient multistage decomposition approach for independent components[J]. Signal Processing,2003, vol.83,181-197.
    [97]朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离[J].中国科学(E辑),2002年第5期,32(5):693-703
    [98]冯大政,保铮,张贤达.信号盲分离问题多阶段分解算法[J].自然科学进展,2002 年第3期:12(3),324-328
    [99]冯大政,保铮,张贤达.信号盲分离问题多阶段分解算法[J].自然科学进展,2002年第3期:12(3),324-328
    [100]S. Lou, X. Zhang. Fuzzy-based learning rate determination for blind source separation[J]. IEEE Trans. Fuzzy Systems,2003, vol.11(3),375-383.
    [101]楼红伟、胡光锐,基于小波域的非平稳卷积混合语音信号的自适应盲分离[J].控制与决策,2004年1月,第19卷,第1期:73-76
    [102]刘建强,冯大政,脉冲噪声中非平稳源的盲分离算法[J].电子学报,2003年12月,第31卷,第12期,1921-1923
    [103]谢胜利,章晋龙,基于旋转变换的最小互信息量盲分离算法[J].电子学报,2002,30(5):628-631.
    [104]何昭水、谢胜利、章晋龙,基于QR分解的盲源分离几何算法[J].控制理论与应用,2005,2,Vol.22(1):17-22
    [105]谢胜利,章晋龙,基于QR分解的最大负熵盲分离算法[J].通信学报,2004年,Vol.25(4):75-83
    [106]章晋龙,何昭水,谢胜利,基于遗传算法的有序盲信号提取[J].电子学报,2004年,Vol.32(4):616-619
    [107]章晋龙、何昭水、谢胜利等,多个源信号混叠的盲分离几何算法[J].计算机学报,April 2004,Vol.32(4),616-619
    [108]J. V. Stone. Blind source separation using temporal predictability[J]. Neural Computation,2001, vol.13,1559-1574.
    [109]J. V. Stone, Blind deconvolution using temporal predictability [J]. Neurocomputing, 2002, vol.49,79-86.
    [110]S. Xie, Z. He, Y. Fu. A Note on Stone's Conjecture of Blind Signal Separation.Neural computation[J]. Feb.2005, Vol.17 (2),321-330.
    [111]谢胜利谭北海傅予力,基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007年第17卷第6期,795-800
    [112]肖明,谢胜利,傅予力,基于频域单源区间的具有延迟的欠定盲分离[J]。电子学报,2007,35(12):37-41
    [113]谢胜利,孙功宪,肖明,欠定和非完全稀疏性的盲信号提取.电子学报,2010,Vol.38(5):1028-1031
    [114]J. Lia, L. Zhang(张丽清),Regularized tensor discriminant analysis for single trial EEG classification in BCI. Pattern Recognition Letters,2010,Vol.31(7),619-628
    [115]马晓红,孙长富.基于盲源分离的小波域多重音频水印方法.电子与信息学报,2008,2307-2310
    [116]Lin Wang, Heping Ding, Fuliang Yin(殷福亮).A Region-Growing Permutation Alignment Approach in Frequency-Domain Blind Source Separation of Speech Mixtures. IEEE Trans. Audio, Speech, and Language Processing, Vol.19(3),2011,549-557
    [117]潘帆,何培宇, 吴景田:基于后级滤波处理的频域语音盲信号分离,四川大学学报:自然科学版,2009,46(2),
    [118]蔡权伟, 魏平:基于能量算子的单信道重叠信号盲分离方法,中国科学E辑:信息科学2008 Vol.38(4):607-619
    [119]蔡权伟,魏平,肖先赐,基于时变AR模型的重叠信号分量,中国科学F辑:信息科学2007,37(8)1045-1054
    [120]王刚, 饶妮妮:基于高阶统计量的盲源提取算法获取房颤信号,中国科学F辑:信息科学2008,38(12),2212-2225
    [121]刘琨,杜利民,王劲林:基于时频域单源主导区的盲源欠定分离方法刘琨,中国科学F辑:信息科学2008,38(8)1284-1301
    [122]罗志增李文国:基于小波变换和盲信号分离的多通道肌电信号处理方法,电子学报,200937(4):823-827
    [123]Y. Ephraim and I. Cohen, "Recent advancements in speech enhancement," in The Electrical Engineering Handbook. Boca Raton, FL:CRC,2006
    [124]S. Doclo, A. Spriet, J. Wouters, and M. Moonen, "Frequency-domain criterion for speech distortion weighted multichannel Wiener filter for robust noise reduction," Speech Commun., vol.49, no.7-8, pp.636-656, Jul.-Aug.2007.
    [125]S. Doclo, M. Moonen, Tim Van den Bogaert, Member, and J. Wouters. Reduced-Bandwidth and Distributed MWF-Based Noise Reduction Algorithms for Binaural Hearing Aids. IEEE Trans. on Audio, Speech, And Language Processing, Vol. 17, No.1, Non-DAn.2009,pp38-51
    [126]谢胜利孙功宪肖明等:欠定和非完全稀疏性的盲信号提取.电子学报,2010Vol.38(5):1028-1031
    [127]Vincent, E., Araki, S., Bofill, P.:The 2008 signal separation evaluation campaign:A community-based approach to large-scale evaluation. In:Proc. ICA. (2009) 734-741
    [128]Emiya, V., Vincent, E., Harlander, N., Hohmann, V.:Subjective and objective quality assessment of audio source separation. IEEE Trans. on Audio, Speech and Language Processing. Vol (99),2011,1-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700