宽频天线小型化设计理论及圆极化微带天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电磁学历经三百多年的发展,日臻成熟和完善。天线作为实现无线电应用的关键设备,顺应移动通信、广播、雷达、制导等无线电应用系统在不同阶段的需要而不断发展。今昔对比,天线在功能、设计及制造工艺上都发生了巨大变化。然而微电子技术与大规模集成电路技术的迅猛发展,使天线成为电子设备中较为庞大、笨重部件的问题日渐突出,因而对能和其它设备大小协调且具有有效电性能的小天线的需求愈加迫切。另外,微带天线作为一维小型化天线,以其低轮廓、可共形、易集成等颇具特色的优点顺应近代电磁学的发展与无线应用的众多需求,近年来在天线开发应用中独占鳌头,而高性能圆极化微带天线在当前的应用中愈加广泛。因此,天线小型化宽频带技术以及高性能圆极化技术,成为当前学术界研究的热点,这也是本文的主要研究内容。
     本文在综合国内外相关领域研究成果的基础上,应用电磁场与天线理论以及计算电磁学的数值方法,从小型化天线理论与设计关键技术、小型化平面螺旋天线设计与分析、单馈点双频圆极化的实现等方面进行了深入研究。研究内容既包括了平面螺旋天线的数值建模仿真和实验,也包括了对采用单馈点实现微带天线圆极化关键技术的研究和对仿真结果的分析、验证工作。
     研究工作的主要创新点如下:
     (1)首次采用将原始平面螺旋天线贴片分两层通过金属探针连接的方法实现该种天线的小型化,对于简单单圈螺旋天线,其尺寸缩减了约84%;
     (2)首次提出一种新型的小型化宽带平面螺旋天线,与常规平面螺旋天线相比较,其在尺寸不变的条件下,使原天线的初始低频降低了大约800MHz,相当于尺寸缩减了约56%,同时频带宽度与常规平面螺旋天线相比有了进一步的扩展。
     (3)针对我们所设计的新型平面螺旋天线,在其尺寸大大缩减的基础上,分析了其交叉极化过大的原因,并针对进行设计,提出了一种添加对称矩形接地板的结构,使新型天线的交叉极化大大降低,解决了原有天线交义极化过大的问题。
     (4)提出了一种结构简单的单馈点双频圆极化天线。该天线能够工作在2.45GHz和5.2GHz频段,适用于ISM频带应用。该天线能够通过单馈点实现右旋圆极化。同样,通过改变其馈电点的位置,能够实现左旋圆极化。其设计结构简单,避免了通常双馈点圆极化设计时的复杂附加馈电网络,符合天线小型化的要求。
After 300 years development of the modern electromagnetic theory, it is being perfected. As key equipments for achieving wireless applications, antennas are now developing continually. Nowadays, great changes have taken place in the function, design and manufacturing process of antennas. However, the fast development of microelectronics and large scale IC techniques makes the antenna to be a huge and heavy part of the electronic equipment. As a miniaturized antenna, the microstrip antenna has several advantages such as low-profile, conformal and easy to integrate. High performance circular polarization microstrip antennas are being used widely nowadays. Thus, the research on miniaturized wide-band and dual-band circular polarization antenna techniques has become the hot research point of the academic area, and this is the main content of this thesis.
     In this thesis, firstly, we composite the research results of the relative area, and use electromagnetic field and antenna theory and computational electromagnetic numerical methods to do research in miniaturized antenna theory and design key techniques, the simulation and test of the miniaturized planar spiral antenna and the achievement of the single-fed dual-band polarization. The research content contains theory and measurements.
     Following are the contribution of these work:
     (1) We proposed a new method to miniaturize the size of the planar spiral antennas for the first time, and it can achieve a 84% reduction in the antenna size;
     (2) We proposed a miniaturized wide-band planar spiral antenna. When it is compared to a conventional wide-band planar spiral antenna, it can have a 56% size reduction, and the bandwidth is wider.
     (3) We analysis the reason of cross-polarization and proposed a rectangle ground plane to reduced the large cross-polarization of the proposed antennas with vias.
     (4) We proposed a novel single-fed dual-band circular polarization antenna which has two operation frequences 2.45GHz and 5.2GHz, respectively. It can produce right hand circular polarization. And it can be used in ISM applications. Meanwhile, if changes the feeding point, it can produce left hand circular polarization. It has a simple structure and easy to fabricate, and avoiding complex feeding network of the conventional dual-fed circular. And it is satisfied the requirement of the antenna miniaturization.
引文
[1]李宏儒,孙晓波.内置式双频手机贴片天线及双频光子带隙结构的研制[学位论文],中国科学院上海微系统与信息技术研究所,2003.
    [2]盛新庆.计算电磁学要论(第二版),中国科学技术出版社,2008.
    [3]R.Porath. Theory of miniaturized shorting-post microstrip antennas[J].IEEE Trans, Antennas Propagat,2000,48:41-46.
    [4]K. L. Wong, Y. F. Lin. Small broadband rectangular microstrip antenna with chip-resistor loading[J]. Electron. Lett.,1997,33:1593-1593.
    [5]T. K. Lo et al. Miniature aperture-coupled microstrip antenna of very high permitivity[J]. Electron. Lett.,1997,33:9-10.
    [6]K. L. Wony et al. Small dual-frequency microstrip antenna with cross slot[J]. Electron. Lett., 1997,33:1916-1917.
    [7]F Yang, X. X. Zhang. Slitted Small microstrip antenna[J]. IEEE Antennas Propagat.,1998, 1236-1239.
    [8]S. S. Pattnaik et al. Broadband active microstrip antenna for lower UHF application. Microwave Opt. Technol. Lett.,1997,14:28-31.
    [9]C. R. Rowell. A capacitively loaded PIFA for compact mobile telephone handsets. IEEE Trans. Antennas Propagat.,1997,45:837-842.
    [10]F. Yang. Wideband E-shaped patch antennas for wireless communications. IEEE Trans., Antennas Propagat,2001,49:1094-1100.
    [11]R. Chair, K., M., Luk, K., F., Lee. Miniature multiplayer shorted patch antenna. Electron. Lett.,2000,36:3-4.
    [12]S. C. K. Ko, R. D. Murch. Compact integrated diversity antenna for wireless communications. IEEE Trans. Antennas Propagat.,2001,49:954-960.
    [13]K. C. Gupta. Microstrip antenna design[M]. Artech House,1988.
    [14]K. L. Wong and Y. F. Lin. Circularly polarized microstrip antenna with a tuning stub[J]. Electron. Lett.,1998,34(9):831-832.
    [15]J. H. Lu and C. L. Tang. Circular polarization design of a single-feed equilateral-triangular microstrip antenna[J]. Electron. Lett.,1998,34(4):319-321.
    [16]K. L. Wong and J. Y. Wu. Sing-feed small circularly polarized square microstrip antenna[J]. Electron. Lett.,1997,33(22):1833-1834.
    [17]W. S. Chen, C. K. Wu and K. L. Wong. Compact circularly-polarized circular microstrip antenna with cross-slot and peripheral cuts[J]. Electron. Lett.,1998,34(11):1040-1041
    [18]W. S. Chen, C. K. Wu and K. L. Wong. Novel compact circularly polarized square microstrip antenna[J]. IEEE Trans. Antennas Propagat.,2001,49(3):340-341.
    [19]H. D. Chen and W. S. Chen. Probe-fed compact circular microstrip antenna for circular polarization[J]. Microwave Opt. Technol. Lett.,2001,29(1):52-54.
    [20]W. S. Chen, C. K. Wu and K. L. Wong. Compact circularly-polarized corner-truncated square microstrip antenna with four bent slots[J]. Electron. Lett.,1998,34(13):1278-1279.
    [21]J. H. Lu, C. L. Tang and K. L. Wong. Single-feed slotted equilateral-triangular microstrip antenna[J]. IEEE Trans. Antennas Propagat.,1999,47(7):1174-1178.
    [22]J. H. Lu. H. C. Yu and K. L. Wong. Compact circular polarization design for equilateral triangular microstrip antenna with spur lines[J]. Electron. Lett.,1989,34(21):1989-1990.
    [23]K. P. Yang and K. L. Wong. Dual-hand circularly polarzed square microstrip antenna[J]. IEEE Trans. Antennas Propagat.,2001,49(3):377-382.
    [24]S. A. Bokhari. A small microstrip patch antenna with a convenient tuning option[J]. IEEE Trans. Antennas Propagat.,1996,44(11):1521-1528.
    [25]L. I. basilio. The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas[J]. IEEE Trans. Antennas Propagat.,2001,49(1):45-47.
    [26]T. Vlasits, E. Korolkiewicz, A. Sambell and B. Robinson. Performance of a cross-aperture coupled single feed circularly polarized patch antenna[J]. Electron. Lett.,1996, 32(7):612-613.
    [27]C. Y. Huang, J. Y. Wu and K. L. Wong. Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization[J]. IEEE Trans. Antennas Propagat.,1999, 47(4):605-609.
    [28]C. Y. Huang. Circularly polarized square microstrip antenna using an inclined asymmetric coupling slot[J]. Microwave Opt. Technol. Lett.,2001,28(1):43-45.
    [29]S. Matsuzawa and K. Ito. Circularly polarized printed antenna fed by coplanar waveguide[J]. Electron. Lett.,1996,32(22):2035-2036.
    [30]C. Y. Huang. A circularly polarized microstrip antenna using a coplanar-waveguide feed with an inset tuning stub[J]. Microwave Opt. Technol. Lett.,2001,28(4):311-312.
    [31]L. Giauffret. Study of various shapes of the coupling slot in CPW-fed microstrip antennas[J]. IEEE Trans. Antennas Propagat.,1997,45(4):642-646.
    [32]D. H. Schaubert. Microstrip antennas with frequency agility and polarization diversity[J]. IEEE Trans. Antennas Propagat.,1981,29(1):118-123.
    [33]K. L. Wong and J. Y. Wu. Bandwidth enhancement of circularly-polarised microstrip antenna using chip-resister loading[J]. Electron. Lett.,1997,33(21):1749-1751.
    [34]C. Y. Huang, J. Y. Wu and K. L. Wong. Broadband circularly polarized square microstrip antenna using chip-resister loading[J]. IEEE Proc. Microw. Antennas Propag.,1999, 146(1):94-96.
    [35]S. D. Targonski and D. M. Pozar. Design of wideband circularly polarized aperture-coupled microstrip antennas[J]. IEEE Trans. Antennas Propagat.,1993,41(2):214-219.
    [36]H. M. Chen, Y. F. Lin and T. W. Chiou. Broadband circularly polarized aperture-coupled microstrip antenna mounted in a 2.45GHz wireless communication system[J]. Microwave Opt. Technol. Lett.,2001,28(2):100-101.
    [1]周朝栋,杨恩耀。电小天线。西安:西安电子科技大学。1990:1-15.
    [2]K.Fujimoto, A. Henderson, K. Hirasawa et al. Small Antennas. John Wiley & Sons,1987.
    [3]Arthr D. Yaghjian, Steven R. Best Impedance, bandwidth and Q of antennas. IEEE Trans. Antennas and Propagation,2005(53):1298-1324.
    [4]D.R.Rhodes. Observable stored energies of electromagnetic systems. Journal of the Franklin Institute,1976(302):225-237.
    [5]L.J.Chu. Physical limitaions of omni-directional antennas. Journla of Applied Physics, vol. 1948(19):1163-1175.
    [6]R.F.Harrington. Effect of antenna size on gain, bandwidth, and efficiency. J.Res.Nat.Bureau Stand.,1960(64):1-12.
    [7]R.E.Collin and S. Rothschild. Evaluation of antenna Q. IEEE Trans. Antennas and Propaga. 1964(12):23-27.
    [8]R.L.Fante. Quality factor of general ideal antennas. IEEE Trans. Antennas. Propaga.,1969(17): 151-155.
    [9]J.S. Mclean. A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas. Propaga.,1996(44):672-676.
    [10]W. Geyi, P. Jarmuszewski, and Y. Qi.The foster reactance theorem for antennas and radiation Q. IEEE Trans. Antennas. Propaga.,2000(48):401-408.
    [11]Arto Hujanen, Jan Holmberg, and Johan Carl-Erik Sten. Bandwidth limitations of impedance matched ideal dipoles. IEEE Trans. Antennas Propaga.,2005(53):3236-3209.
    [12]R.M. Fano. Theoretical limitations on the broadband matching of arbitrary impedances. Journal of the Franklin Institute,1950(249):57-154.
    [13]R. L. Fante. Maximum possible gain for an arbitrary ideal antenna with specified quality factor. IEEE Trans. Antennas and Propagation,1992(40):1586-1588.
    [14]W. Geyi. Physical limitations of antenna. IEEE Trans. Antennas Propaga., 2003(51):2116-2123.
    [15]T. James Aberle, Two-port representation of an antenna with application to non-foster matching networks. IEEE Trans. Antennas and Propaga.,2008(56):1218-1222.
    [16]B. R. Strickland, N. F. Audeh. Diode-loaded dipole antenna modeling and design [J]. IEEE Transactions on antennas and propagation,1993,41(3):239-243.
    [17]B. R. Strickl, N. F. Audeh. Numerical analysis technique for diode-loaded dipole antennas [J]. IEEE Transactions on electromagnetic compatibility,1993,35(4):480-484.
    [18]T. Schmid, O. Egger, N. Kuster. Automated E-field scanning system for dosimetric assessments [J]. IEEE Trans. Microwave Theory Tech.,199644:105-113.
    [19]"Guidelines for evaluating the environmental effects of radiofrequency radiation," Report and Order, ET Docket no.93-62, FCC 96-326, Federal Communications Commission (FCC), Washington, D.C.,1996.
    [20]"Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," International Commission on Non-Ionizing Radiation Protection, Health Physics, vol.74, no.4, pp.494-522,1998.
    [21]D. Hill. Waveguide technique for the calibration of miniature implantable electric-field probes for use in microwave-bioeffects studies [J]. IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.92-99, Jan.1982.
    [22]Lord Rayleigh, "On the Passage of Electric Waves Through Tubes," Philos. Mag., vol.43, pp.125-132,1897. Reprinted in Collected Papers, Cambridge Univ. Press,1903.
    [23]K. S. Packard, "The Origin of Waveguide:A Case of Multiple Rediscovery,"IEEE Trans. Microwave Theory and Tech, vol. MTT-32, pp.961-969, September 1984.
    [24]Edward E. Alshuler. Electrically small self-resonant wire antennas optimized using a genetic algorithm. IEEE Trans on Antennas and Propagation,2002(50):297-300.
    [25]B.B.Mandelbrot. The fractal geometry of nature. New York, W. H. Freeman.1983.
    [26]John Gianvittorio. Fractal antennas:design, characterization, and application. University of California, LosAngeles.2000.
    [27]Nathan Cohen. Fractal antenna applications in wireless telecommunications. IEEE,1997.
    [28]谢处方等。加载与媒质中天线。成都:电子科技大学出版社。1990::45-82。
    [29]Wen Shyang, Chen C. Wu., Kinlu Wong. Compact circularly polarized microstrip antenna with bent slots. Electronics Letters,1998(34):1278-1279.
    [30]M. F. Abedin and M. Ali. Modifying the ground plane and its effect on planar inverted-F antennas for mobile phone handsets. IEEE Trans. Antennas and Propaga.,2003(2):226-229.
    [31]G. H. Zhang, Y. Q. Fu, C. Zhu, et.al. A circular waveguide antenna using high-impedance ground plane. IEEE Trans. Antennas and Propaga.,2003(51):86-88.
    [32]Jie Nie. ASH transceiver antenna impedance matching. Available on:www.rfm.com.
    [33]林吕禄。天线工程手册。北京:电子工业出版社。2002:218-236
    [34]P. L. Teng and K. L. Wong. Planar monopole folded into a compact structure for very low profile multiband mobile phone antenna. Microwave and Optical Techenology Letters. 2002(33):22-25.
    [35]Yong-Sun Shin, Seong-Ook Park, and Manjai Lee. A broadband interior antenna of planar monopole type in handsets. IEEE Antennas and Wireless Propagation Letters,2005(4):9-12.
    [36]C. W. Chiu, E. L. Lin. Compact dual-band PIFA with multi-resonators. Electronics Letters, 2002,38(12):538-540.
    [37]Marta Martinez-Vazquez, Oliver Litschke, Matthias Gerssler, et al. Integrated planar multiband antennas for personal communication handsets. IEEE Trans. Antennas and Propaga.,2006(54):384-291.
    [38]Yong an Lee, Hyung-jun Lim, Hong-min Lee. Triple-band Compact chip antenna using coupled meander line structure for mobile RFID/PCS/WiBro. IEEE Antennas and Propagation Society International Symposium,2006:2649-2652.
    [39]Nathan Cohen. Fractals' new ear in military antenna design. Available on:rfdesign. Com/mag/508RFDSF.pdf.
    [40]K. J. Vinoy, Jose K. Abraham, and Vijay K. Varadan. On the relationship between fractal dimension and the performance of multi-resonant dipole antenns using Koch curves. IEEE Trans. Antennas and Propagation,2003(51):2296-2303.
    [1]W. S. Chen. Singleifeed duar-frequency rectangular microstrip antenna with square slot[J]. Electron. Lett.,1998,34:231-232.
    [2]K. L. Wong, and K. P. Yang. Small dual-frequency microstrip antenna with cross slot[J]. Electron. Lett.,1997,33:1916-1917.
    [3]X. L. Bao and M. J. Ammann. Compact annalr-ring embedded circular patch antenna with cross-slot ground plane for circular polarization[J], Electron. Lett.,2006,42:192-193.
    [4]H. Nakano and S. Okuzawa. Two arm slot spiral antenna[J]. Electron. Lett.,1994,14:397-413.
    [5]J. L. Volakis, M. W. Nurnberger, and D. S. Filipovic. A broadband cavity-backed slot spiral antenna[J]. IEEE antennas Propagat.,2001,43:15-26.
    [6]Gschwentdtner D E, Loffler D, and Wiesbeck W. Spiral antenna with external feeding for planar applications[C], IEEE 1999 5th Africon Conf.,1999,2:1011-1014.
    [7]Nurnberger M W, and Volakis J L. A new planar feed for slot spiral antennas[J], IEEE Trans. Antennas Propagat.,1996,44:130-131.
    [8]Wang C J and Hsu D F. A frequency-reduction scheme for spiral slot antenna[J], IEEE antennas and wireless propagation letters,2002,1:161-164.
    [9]王元坤,李玉权。线天线的宽频带技术。西安电子科技大学出版社,1995年。
    [10]林吕禄,聂在平。天线工程手册。电子工业出版社,2002年
    [11]T. D. Taylor. Introduction to ultra-wide band radar systems[J]. CRC Press, USA,1995,13-18.
    [12]袁乃吕。新型集成超宽带开槽天线的研制及其应用[J]。电子学报。1997,25(9):43-46。
    [13]谢处方,邱文杰。天线原理与设计。西北电讯工程学院,1985。
    [14]R. Bawer and J. J. Wolfe. The spiral antenna[C], IRE Int Conv. Rec,1960,84-95.
    [15]K. M. P. Aghdam, R. Faraji-Dana and J. Rashed-Mohassel, Compact dual-polarization planar log-periodic antennas with integrated feed circuit[J]. IEEE Proc. Microw. Antenna Propag, 2005,152.
    [16]H. Nakano, K. Nagami, S. Arai, H. Mimaki and J. Yamauchi. A spiral antenna backed by a conducting plane reflector[J]. IEEE Trans. Antenna and Prop,1986,34:791-796.
    [17]M. C. Liang, K. C. Huang, M. L. Lo and S. A. Yang. A low frequency tunable broadband design using printed dual-spiral c-patch antenna strip[C],2003 IEEE Antennas and Propagation Society Symposium and 2003 USNCRTRSI National Radio Science Meeting, 2003,4:540-543.
    [18]K. Hirose, and H. Nakano. An eccentric spiral antenna printed on a dielectric substrate[C]. IEEE Atennas Propag. Soc. Int. Symp,1995,1:190-193
    [19]H. Nakano, S. R. Kerner, and N. G. Alexopoulos. The moment method solution of printed wire antennas of arbitrary configuration [J]. IEEE Trans. Antennas Propag.,1988, 36(12):1667-1674.
    [20]Xiaolei Zhang, K. K. Mei, Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities[J]. IEEE Trans. Microw. Theory Tech.,1988,36:1775-1787.
    [21]J. H. Lu, C. L. Tang, and K. L. Wong. Single-feed slotted equilateral-triangular microstrip antenna for circular polarization [J]. IEEE Trans. Antennas Propagat.,1993,41:214-220.
    [22]F. E. Gardiol and J. F. Zuercher. Broad-band patch antennas-A SSFIP update[C]. IEEE AP-S Int. Symp. Dig.,1996,2-5.
    [23]J. A. Kaiser. The Archimedean two-wire spiral antenna[J]. IRE Trans. Antennas Propagat., 1960,8:312-323.
    [24]R. M. Edwards, S. K. Khamas and G. G. Cook. Design of printed eccentric spiral antennas using genetic algorithm optimization[C]. Proc. National Conf. on Antennas and propagation, 1999,461:375-379.
    [25]S. K. Khamas, G. G. Cook, R. J. Waldron, and R. M. Edwards. Moment method analysis of printed single arm wire spirals using curved segments[J]. IEEE Proc. Microw. Antenna Propaga.,1997,144(4):261-265.
    [26]薛睿峰,钟顺时。微带天线小型化技术[J]。电子技术(上海),2002,29(3):62-64.
    [1]IEEE standard definitions of terms for antennas. IEEE Trans. Antennas Propagat.1969, 17:262-269.
    [2]A.C. Ludwig. The definition of cross polarization. IEEE Trans. Antennas Propagat.,1973, 21:116-119.
    [3]代大海,王雪松,等。交义极化干扰建模及其欺骗效果分析。航天电子对抗,2004,(3):21-25.
    [4]王卫民。频率复用通信系统中的交义计划问题。微波学报,2005,21(5):157-159.
    [5]田车辇,段玉虎,高富民。天线交义极化和线极化面偏离对方向图的影响。无线通信技术,1998,1:17-20.
    [6]K. K. Mei. On the integral equations of thin wire antennas[J]. IEEE Trans. Ant. Prop.,1965, 13(3):374-378.
    [7]王建,彭仲秋,司巍。匕机垂尾上的平面螺旋天线辐射特性研究[J]。电子对抗技术,1993,(44):1-11。
    [8]H. Nakano and J. Yamauchi. Characteristics of modified spiral and helical antennas[J]. IEEE Proc.1982,129(5):232-237.
    [9]H. Nakano. Sunflower spiral antanna[C]. The Transaction of the IECE of Jampan,1981,64: 763-765.
    [10]S. K. Nhamas and G. G. Cook. Moment-method analysis of printed wire spirals using curved piecewise sinusoidal subdomain basis and testing functions[J]. IEEE Trans. Antennas and Propagat.,1997,45(6):1016-1022.
    [11]周斌,刘其中,郭景丽。螺旋天线的快速分析及宽带化设计[J]。电波科学学报,2005,20(5):647-650.
    [1]王伟.射频识别技术及其应用的研究[J].安徽师范大学学报(自然科学版),2008,31(2):139-143.
    [2]A.G. Derneryd.Analysis of the microstrip disk antenna element,IEEE Trans.Antenna and Propagat.,1979,27(5):660-664
    [3]C.Shen,S.A.Long,M.R.Allerding,and M.D.Walton.Resonant frequency of a circular disc printed-circuit antenna,IEEE Trans.Antenna and Propagat.,1977,25(4):445-449.
    [4]J.Watking.Circular resonant structures in microstrip,Electronics Letters,1969,21(5): 524-525.
    [5]G.Ramesh.Microstrip antenna design handbook,Artech House,2001,ISBN 0-89006-513-6.
    [6]钟顺时.微带天线理论与应用[M].西安电子科技大学出版社,1991.
    [7]张均,刘克诚,张贤铎等.微带天线理论与工程[M].国防工业出版社,1988.
    [8]Tang C. L., Lu J. H. etal., Circularly polarizedequilateral-triangular microstrip antenna with truneated tip. [J].Electron. Lett.34(13)1998:1277-1278.
    [9]Wong K. L.and Lin Y. F., Circularly polarized microstrip antenna with a tuning stub [J]. Eleetron. Lett.,,34(9),1998:831-832.
    [10]Lu J. H. and Tang C. L., Circular polarization design of a single-feede quilateral-triangular microstrip antenna. Eleetron. Lett.,34(4),1998:319-321.
    [11]Aksun M. I., Chuang S. L., On slot-coupled microstrip antennas and their applications to CP operation-Theory and experiment [J]. IEEE Trans. Antennas ProPagat.,38(8)1990: 1224-1230.
    [12]Wen Shyang, Chen C. Wu., Kinlu Wong. Compact circularly polarized microstrip antenna with bent slots. Electronics Letters,1998(34):1278-1279.
    [13]W. S. Chen. Singleifeed duar-frequency rectangular microstrip antenna with square slot[J]. Electron. Lett.,1998,34:231-232.
    [14]J. H. Lu, C. L. Tang, and K. L. Wong. Single-feed slotted equilateral-triangular microstrip antenna for circular polarization[J]. IEEE Trans. Antennas Propagat.,1993,41:214-220.
    [15]Edward E. Alshuler. Electrically small self-resonant wire antennas optimized using a genetic algorithm. IEEE Trans on Antennas and Propagation,2002(50):297-300.
    [16]X. L. Bao and M. J. Ammann. Compact annalr-ring embedded circular patch antenna with cross-slot ground plane for circular polarization[J], Electron. Lett.,2006,42:192-193.
    [17]Gschwentdtner D E, Loffler D, and Wiesbeck W. Spiral antenna with external feeding for planar applications[C], IEEE 1999 5th Africon Conf.,1999,2:1011-1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700