用户名: 密码: 验证码:
非对称半波耦合滤波器的理论研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,尤其是GSM、WCDMA、 WIMAX、WLAN、UWB等的广泛应用,极大地刺激了通信系统的发展。微波滤波器是无线通信系统最重要的组成部分之一,无线通信系统的发展对滤波器的小型化、多频带及带外抑制等性能指标提出了更高的要求。计算机辅助设计(CAD)有助于缩短和降低微波滤波器的研发周期和研发成本。神经网络技术是一种信息处理技术,计算机辅助设计已经广泛地应用了神经网络技术。这是因为神经网络技术不仅可以对微波滤波器建立数学模型,而且可以优化滤波器的性能。本文以非对称半波耦合滤波器为基础,首先对其进行等效电路、神经网络建模的分析;然后围绕滤波器的小型化、多频带和带外抑制特性展开;最后提出了小型化、多频带和具有较好带外抑制特性的非对称半波耦合滤波器的设计方法,并设计了多款滤波器。具体描述如下:
     1.为了更加全面地分析非对称半波耦合滤波器的工作原理,对其建立了等效电路模型。之后根据滤波器的传输零点、谐振、耦合等特性,提取了等效电路参数。应用神经网络技术,将频率和滤波器的三个关键物理尺寸作为输入变量,将插入损耗和回波损耗作为输出变量,建立了非对称半波耦合滤波器的数学模型。
     2.针对两款应用了阶梯阻抗技术的小型化非对称半波耦合滤波器,提出了开槽的方法,这种方法可以使滤波器进一步小型化。之后应用开槽的方法对上述两款滤波器重新进行了设计,使滤波器面积分别减小了20%和37%。
     3.提出了利用并联开路枝节技术小型化非对称半波耦合滤波器的方法,与此同时,使用ABCD矩阵法和等效电路法分析了并联开路枝节技术。与未经过小型化的滤波器相比,运用并联开路枝节技术设计的三款滤波器,面积分别减小了70%、67%和76%。
     4.提出了利用并联开路枝节技术设计小型化多频带滤波器的方法,利用此方法设计了两款小型化双频带滤波器(中心频带2.4/5.7GHz),面积分别为12.5×10.5mm2和9.3×9.6mm2,与未经小型化的滤波器相比,面积分别减小了72%和81%。为了证明运用并联开路枝节技术可以设计多频带滤波器且通带两侧分别有传输零点,设计了三频带和四频带滤波器
     5.为了改善上述第三点中已设计出的小型化滤波器的带外抑制特性,提出了连接枝节末端的方法,这种方法能够将引起寄生通带的枝节的谐振频率降低50%。基于此方法,设计了三款具有较好的带外抑制特性的小型化非对称半波耦合滤波器。其中一款滤波器频率在1.25f0-3f0之间,插入损耗小于-20dB。
     6.基于非对称耦合滤波器,提出了可调滤波器、恒定带宽的可调滤波器、双频带可调滤波器的设计方案,并分析和论证了上述方案。
With the rapid development of wireless communication technology, especially the systems, such as GSM, WIMAX, WCDMA, WLAN and UWB, are widely used, which have spurred a tremendous development in communication system. Microwave filter is one of the most important part in the wireless communication system and the filters with smaller size, multi-band and harmonic suppression are required by the system. The research cycle and costs of the microwave filter can be reduced by Computer-aided design (CAD). Neural network technology often is used to process information and it has been used in computer aided design (CAD), because the mathematical model can be established and the filter performance can be optimized, expediently, by it. Based on the asymmetric half-wavelength resonators coupling filter, firstly, the equivalent circuit and neural network modeling are analyzed, then the filter design method of smaller size, multi-band, and harmonic suppression is presented. The filters with smaller size, multi-band, and harmonic suppression are designed. The author's works mainly consist of:
     1. In order to analysis asymmetric half-wavelength resonators coupling filter more comprehensive, the equivalent circuit model is established, then, according to the transmission zeros, resonance and coupling, the equivalent circuit parameters are extracted. Based on the neural network theory, the smart model of asymmetric half-wavelength resonators coupling filter is established. In the smart model, the input variables are frequency and three key structure dimensions of the filter, the output variables are insertion loss and return loss of the filter.
     2. According to two miniaturized asymmetric half-wavelength resonators coupling filters with stepped impedance resonators, the method of slotting is present to miniature them. Two new filters are designed by slotting and the sizes of the two new filters are reduced by20%and37%, respectively.
     3. The method of shunt open stubs is presented to miniature asymmetric half-wavelength resonators coupling filter and the method is analyzed by the method of ABCD matrix and equivalent circuit. Three filters are designed by the method and the sizes of them are reduced by70%,67%and76%, respectively.
     4. The method to design miniaturized multi-band filter is presented by shunt open stubs and two filters with the center frequency of2.4/5.7GHz are designed, the sizes of them are12.5×10.5mm2and9.3×9.6mm2and the sizes of them are reduced by72%and81%, respectively. For the multi-band filter designed by the method, in order to prove there are two transmission zeros on both sides of each passband, the tri-band and quad-band filters are designed.
     5. In order to improve the rejection band of the miniaturized filter, the method of connecting the shunt open stubs is presented; the resonance frequency of the parasitic pass band, caused by the shunt open stubs, can be reduced by half by the method. Based on the method, three filters with well rejection band is designed, the insertion loss of the one filter is less than-20dB between1.25f0and3f0.
     6. Based on the asymmetric half-wavelength resonators coupling filter, the methods to design tunable filter, constant bandwidth tunable filter and dual-band tunable filter are presented and the methods are analyzed and demonstrated.
引文
[1]J.C.Maxwell,A treatise on electricity and magnetism,Dover,N.Y.,1954.
    [2]Susskind C,"HeinrichHertz:a short life,"IEEE Trans.Microw.Theory Tech.,vol. 36,no.5,pp.802-805,May 1998.
    [3]R.G.L.Mattaei,L.Yong,and E.M.T.Jones,Microwave filters, Impedance-matching networks and coupling structures,New York,McGraw-Hill,1964.
    [4]清华大学《微带电路》编写组,微带电路.人民邮电出版社,1976.
    [5]Barrett R M,Microwave Printed Circuits-A Historical Survey [J].IEEE Transactions on Microwave Theory and Techniques,March 1955.3(2):1-9.
    [6]McQuiddy D N,Wassel J W,LaGrange J B,et al.Monolithic microwave integrated circuits:an historical perspective[J].IEEE Transactions on microwave theory and techniques,September 1984.32(9):997-1008.
    [7]Howe H,Microwave Integrated Circuits-An Historical Perspective[J].IEEE Transactions on microwave theory and techniques,September 1984.32(9):991-996.
    [8]E.Yablonovitch,T.J.Gmitter,and K.M.Leung,Photonic band structure:The face centered cubic case employing nonspherical atoms,Physical Review Letters,1991, 67(17):2295-2298.
    [9]J.I.Park,C.S.Kim,J.Kim,et al,Modeling of a photonic bandgap and its application for the low-pass filter design,Singapore:Asia Pacific Microwave Conference,1999.
    [10]C.S.Kim,J.I.Park,A.Dal,et al,A novel 1-D periodic defected ground structure for planar circuits,IEEE Microwave Guided Wave Lett.,2000,10(4):131-133.
    [11]Younkyu Chung,Seong-Sik Jeon,Shinho Kim,Dal Ahn,Jae-Ick Choi,and Tatsuo Itoh,Multifunctional Microstrip Transmission Lines Integrated With Defected Ground Structure for RF Front-End Application, IEEE Trans.Microw.Theory and Tech.,2004,52(5),1425-1432.
    [12]Yong-Chae Jeong,and Jong-Sik,A Novel Frequency Doubler Using Feedforward Technique and Defected Ground Structure,IEEE MicrowaveWireless Compon.Lett.,2004,14(12),557-559.
    [13]Jong-Sik Lim,Chul-Soo Kim,Jun-Seok Park,Dal Ahn and Sangwook Nam, Design of 10dB 90"branch line coupler using microstrip line with defected ground structure,electronic letters,2000,36(21),1784-1785.
    [14]M.Makimoto and S.Yamashita,Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators, IEEE Trans. Microw.Theory and Tech.,1980,28(12),1413-1417.
    [15]M.Sagawa,M.Makimoto,and S.Yamashita,Design Method of Bandpass Filters Using Dielectric-Filled Coaxial Resonators,IEEE Trans.Microw.Theory and Tech.,1985,33(2),152-157.
    [16]M.Sagawa,M.Makimoto and S.Yamashita,Geometrical Structures and Fundamental Characteristics of Microwave Stepped-Impedance Resonators,IEEE. Trans.Microw.Theory and Tech.,1997,45(7),1078-1085.
    [17]M.Sagawa,K.Takashita and M.Makimoto,Miniaturized Hairpin Resonator Filters and Their Application to Receiver Front-End MIC's,IEEE Trans.Microw. Theory and Tech.,1989,37(12).1991-1997.
    [18]J.T.Kuo and E.Shih,Microstrip Stepped Impedance Resonator Bandpass Filter With an Extended Optimal Rejection Bandwidth, IEEE Trans. Microw. Theory and Tech.,2003,51(5),1554-1559.
    [19]A.Djaiz and T.A.Denidni,A New Compact Microstrip Two-Layer Bandpass Filter Using Aperture-Coupled SIR-Hairpin Resonators With Transmission Zeros, IEEE Trans.Microw.Theory and Tech.,2006,54(5),1929-1936.
    [20]Y.Cassivi,L.Perregrini,P.Arcioni,et al,"Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw.Wireless Compon.Lett.,vol.12, no.9,pp.333-335,Sep.2002.
    [21]F.Xu,Y.L.Zhang,W.Hong,et al,"Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,"IEEE Trans.Microw.Theroy Tech.,vol.51.no.11,pp.2221-2226,Nov.2003.
    [22]Y.L.Zhang,W.Hong,F.Xu,et al,"Analysis of guided-wave problems in substrate integrated waveguides numerical simulations and experimental results,"in IEEE MTT-S Int.Microwave Symp.Dig.,pp.2049-2052,Jun.2003.
    [23]Z.C.Hao,W.Hong,H.Li,et al,"A broadband substrate integrated waveguides (SIW)filter,"in IEEE MTT-S Int.Microwave Symp.Dig.,pp.598-601,2005.
    [24]X.P.Chen,W.Hong,J.X.Chen,et al,"Substrate integrated waveguide elliptic filter with high mode,"in APMC'05 Proceedings,2005.
    [25]Z.C.Hao,W.Hong,J.X.Chen,et al,"Compact super-wide bandpass substrate integrated waveguide(SIW)filters,"IEEE Trans.Microw.Theroy Tech.,2005, 53(9),2968-2977.
    [26]Y.L.Zhang,W.Hong,K.Wu,et al,Novel substrate integrated waveguide cavity filter with defected ground structure,IEEE Trans.Microw.Theroy Tech.,2005, 53(4),1280-1287.
    [27]http://blog.sina.com.cn/s/blog_643d5f130100nskj.html.
    [28]http://zhidao.baidu.com/question/156306005.html.
    [29]孙义闯,孙维耀,“滤波器发展的两次重大飞跃”,系统工程与电子技术,1990年第2期,31-37.
    [30]http://www.bscfilters.com.
    [31]http://www.klmicrowave.com.
    [32]R.R.Mansour,Filter technologies for wireless base stations,IEEE Microwave Magazine,2004,5(1):68-74.
    [33]王小林,微波滤波技术在通信系统中的应用,空间电子技术,2001,4:52-54.
    [34]J.S.Hong and M.J.Lancaster,Cross-coupled microstrip hairpin-resonator filters,' IEEE Trans.Microw.Theory Tech.,1998,46(1),118-122.
    [35]J.T.Kuo,M.J.Maa,and P.H.Lu,A microstrip elliptic function filter with compact miniaturized hairpin resonators,"IEEE Microw.Guided Wave Lett.,2000,10(3), 94-95.
    [36]C.M.Tsai.S.Y.Lee.and C.C.Tsai,Performance of a planar filter using a 0 feed structure, IEEE Trans. Microw.Theory Tech.,2002,50(10),2362-2367.
    [37]G.L.Matthaei,Interdigital bandpass filters,IEEE Trans.Microw.Theory Tech., vol.IEEE Trans.Microw.Theory Tech.,1962,10(11),479-491.
    [38]E.G.Cristal,"Tapped-line coupled transmission lines with applications to interdigital and combline filter,"IEEE Trans.Microw.Theory Tech.,vol.IEEE Trans.Microw.Theory Tech.,1975,23(12),1007-1012.
    [39]Y.-C.Zhang,K.A.Zaki,A.J.Piloto,and J.Tallo,Miniature Broadband Bandpass Filters Using Double-Layer Coupled Stripline Resonators,IEEE Trans.Microwave Theory Tech.,2006,54(8):3370-3377.
    [40]J.-T.Kuo,and M.Jiang,Enhanced Microstrip Filter Design With a Uniform Dielectric Overlay for Suppressing the Second Harmonic Response,IEEE MicrowaveWireless Compon.Lett.,2004,14(9):419-421.
    [41]森荣二(日),LC滤波器设计与制作,北京:科学出版社,2006.
    [42]J.Brian Thomas,Cross-Coupling in Coaxial Cavity Filters—A Tutorial Overview, IEEE Trans.Microwave Theory Tech.,2003,51(4),1368-1376.
    [43]徐鸿飞,朱成枉,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微波学报,2004,20(2):5-8.
    [44]Nicola Coetzee,Asymmetrical S-Band Coupled Resonator Filters,Thesis for the Master degree at the University of Stellenbosch,Dec.2005.
    [45]G.I.Panaitov,R.Ott,and N.Klein,Dielectric Resonator With Discrete Electromechanical Frequency Tuning,IEEE Trans.Microwave Theory Tech., 2005,53(11):1-7.
    [46]D.Kajfez and P.Guillon,et al,Dielectric Resonators,MA:Artech House,1998.
    [47]J.S.Sun,Y.L.Huang,Design and implementation of an X-Band DR bandpass fitler, Microwave journal,1999,42(11),92-103.
    [48]Okaya and Barash,the dielectric microwave resonator,Proc.IRE.1962,50, 2081-2092.
    [49]A.W.Glisson,D.Kajfez,J.James,Evaluation of modes in dielectric resonators using a surface integral equation formulation,IEEE Trans.Microwave Theory Tech..1983,31,1023-1029.
    [50]J.V.Bladel.On the resonances of a dielectric resonator of very high permittivity, IEEE Trans.Microwave Theory Tech.,1979,23,195-208.
    [51]Christen Rauscher,Design of Dielectric-Filled Cavity Filters With Ultrawide Stopband Characteristics,IEEE Trans.Microwave Theory Tech.,2005.53(5), 1777-1786.
    [52]N.Marcuvitz. Waveguide Handbook,McGraw-Hill,New York,1951.
    [53]A.Wexler,Solution of waveguide discontinuities by modal analysis,IEEE Trans. Microwave Theory Tech.,1967,15(7):508-517.
    [54]R.Mittra,S.W.Lee,Analytic techniques in the theory of guided waves,New York: Macmillan,1971.
    [55]J.Bomemann.A new class of E-plane integrated millimeter-wave filters,IEEE MTT-S Int.Microwave Symp.,1989,599-602.
    [56]S.Amari and J.Bornemann,Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters,IEEE Microw. Guided Wave Lett.,1999,9(10),404-406.
    [57]M.Piloni,R.Ravenelli,and M.Guglielmi,Resonant aperture filters in rectangular waveguide,IEEE MTT-S Int.Microwave Symp.Dig.,Anaheim,CA,1999, 911-914.
    [58]C.Quendo,E.Rius,and C.Person,Narrow bandpass filters using dualbehavior resonators,IEEE Trans.Microw.Theory Tech.,2003,51(3),734-743.
    [59]李胜先,傅君眉,吴须大,星载高功率微波波导低通滤波器的精确设计,西安交通大学学报,2006,40(2):195-202.
    [60]杨小明,模式匹配法在微波波导器件中的应用,西安电子科技大学硕士学位论文,2007.
    [61]J.Bornemann,S.Amari,J.Uher and R.Vahldieck,Analysis and design of circular ridged waveguide components,IEEE Trans.Microwave Theory Tech.,1999,47(3): 330-335.
    [62]钱云福,特高频通信设备中带通滤波器—螺旋谐振腔滤波器的设计与制作,常州技术师范学院学报,1995,1:10-14.
    [63]吴振金,六腔螺旋滤波器设计,中国有线电视,1998,4:35-37.
    [64]Peter Vizmuller,Filters with Helical and Folded Helical Resonators,Artech Hose, Inc.Norwood,MA,1987.
    [65]S.J.Fiedziuszko,R.S Kwok,Novel helical resonator filter structures,Microwave Symposium Digest,1998 IEEE MTT-S International,1998,3,1323-1326.
    [66]Kwok,R.S.;Fiedziuszko,S.J.;"Dual-mode helical resonators",IEEE Trans. Microwave Theory Tech.,2000,48(3),474-477.
    [67]http://baike.baidu.com/view/1035184.htm.
    [68]K.-Y.Wong.W.-Y.Tam,Analysis of the Frequency Response of SAW Filters Using Finite-Difference Time-Domain Method,IEEE Trans.Microwave Theory Tech.,2005,53(11):3364-3370.
    [69]Jianzhong Gu; Fei Zhang; Chuang Wang; Zan Zhang; Ming Qi; Xiaowei Sun "Miniaturization and Harmonic Suppression Open-loop Resonator Bandpass Filter with Capacitive Terminations" Microwave Symposium Digest,2006. IEEE MTT-S International Publication Year:2006, Page(s):373-376.
    [70]Mokhtaari, M.; Bornemann, J.; Amari, S.;"New Reduced-Size Step-Impedance Dual-Band Filters with Enhanced Bandwidth and Stopband Performance" Microwave Symposium Digest,2006. IEEE MTT-S International Publication Year:2006, Page(s):1181-1184.
    [71]Xiu Yin Zhang; Quan Xue "Novel Centrally Loaded Resonators and Their Applications to Bandpass Filters" Microwave Theory and Techniques, IEEE Transactions on Volume:56, Issue:4 Publication Year:2008, Page(s):913-921.
    [72]Xiu Yin Zhang; Quan Xue; "High-Selectivity Tunable Bandpass Filters With Harmonic Suppression" Microwave Theory and Techniques, IEEE Transactions on Volume:58, Issue:4 Publication Year:2010, Page(s):964-969.
    [73]赖鑫,微带多通带及宽带滤波器研究,西安电子科技大学博士学位论文,2009
    [74]李奇,无线通信中微带滤波器的研究与设计,西安电子科技大学博士论文,2011
    [75]吴边,无线通信中微波滤波器的比较设计法与应用研究,西安电子科技大学博士论文,2008
    [1]Qi-Jun Zhang; Gupta, K.C.; Devabhaktuni, V.K., "Artificial neural networks for RF and microwave design-from theory to practice,"IEEE Trans. Microwave Theory Tech., vol.51, pp.1339-1350, Apr.2003.
    [2]Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave Design. Boston:Artech House,2000.
    [3]P. M. Watson and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," IEEE Trans. Microwave Theory Tech., vol.45, no.12, pp.2515-2523, Dec.1997.
    [4]C. Ydiz and M. Turkmen, "Very accurate and simple CAD models based on neural networks for coplanar waveguide synthesis," Int. J. RF Microwave Comput.-Aided Eng., vol.15, no.2, pp.218-224, Mar.2005.
    [5]D. Nihad, A. Jehad, and O. Amjad, "CAD modeling of coplanar waveguide interdigital capacitor," Int. J. RF Microwave Comput.-Aided Eng., vol.15, no.6, pp.551-558, Nov.2005.
    [6]J. P. Garcia, F. Q. Pereira, D. C. Rebenaque, J. L. G. Tornero, and A. A. Melcon, "A neural-network method for the analysis of multilayered shielded microwave circuits," IEEE Trans. Microwave Theory Tech., vol.54, no.1, pp.309-320, Jan. 2006.
    [7]Y. Kim, S. Keely, J. Ghosh, and H. Ling, "Application of artificial neural networks to broadband antenna design based on a parametric frequency model,' IEEE Trans. Antennas Propagat, vol.55, no.3, pp.669-674, Mar.2007.
    [8]H. J. Delgado, M. H. Thursby, and F. M. Ham, "A novel neural network for the synthesis of antennas and microwave devices," IEEE Trans. Neural Networks, vol.16, no.6, pp.1590-1600, Nov.2005.
    [9]V. Rizzoli, A. Costanzo, D. Masotti, A. Lipparini, and F. Mastri, "Computer-aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation," IEEE Trans. Microwave Theory Tech., vol.52, no. 1, pp.362-377, Jan.2004.
    [10]V. Rizzoli, A. Neri, D. Masotti, and A. Lipparini, "A new family of neural network-based bidirectional and dispersive behavioral models for nonlinear RF/microwave subsystems," Int. J. RF Microwave Comput.-Aided Eng., vol.12, no.1, pp.51-70, Jan.2002.
    [11]G. L. Creech, B. J. Paul, C. D. Lesniak, T. J. Jenkins, and M. C. Calcatera, "Artificial neural networks for fast and accurate EM-CAD of microwave circuits," IEEE Trans. Microwave Theory Tech., vol.45, no.5, pp.794-802, May 1997.
    [12]D. M. M.-P. Schreurs, J. Verspecht, S. Vandenberghe, and E. Vandamme, "Straightforward and accurate nonlinear device model parameter-estimation method based on vectorial large-signal measurements," IEEE Trans. Microwave Theory Tech., vol.50, no.10, pp.2315-2319, Oct.2002.
    [13]V. B. Litovski, J. I. Radjenovic, Z. M. Mrcarica, and S. L. Milenkovic, "MOS transistor modeling using neural network," Electron. Lett., vol.28. no.18, pp. 1766-1768, Aug.1992.
    [14]F. Wang and Q. J. Zhang, "Knowledge based neural models for microwave design," IEEE Trans. Microwave Theory Tech., vol.45, no.12, pp.2333-2343, 1997.
    [15]K. Shirakawa, M. Shimizu, N. Okubo, and Y. Daido, "Structural determination of multilayered large signal neural-network HEMT model," IEEE Trans. Microwave Theory Tech., vol.46, no.10, pp.1367-1375, Oct.1998.
    [16]T. Liu, S. Boumaiza, and F. M. Ghannouchi, "Dynamic behavioral modeling of 3G power amplifier using real-valued time delay neural networks," IEEE Trans. Microwave Theory Tech., vol.52, no.3, pp.1025-1033, Mar.2004.
    [17]M. Isaksson, D. Wisell, and D. Ronnow, "Wide-band modeling of power amplifiers using radial-basis function neural networks," IEEE Trans. Microwave Theory Tech., vol.53, no.11, pp.3422-3428, Nov.2005.
    [18]B. O'Brien, J. Dooley, and T. J. Brazil, "RF power amplifier behavioral modeling using a globally recurrent neural network," in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006, pp.1089-1092.
    [19]J. Wood, D. E. Root, and N. B. Tufillaro, "A behavioral modeling approach to nonlinear model-order reduction for RF/microwave ICs and systems," IEEE Trans. Microwave Theory Tech., vol.52, no.9, pp.2274-2284, Sept.2004.
    [20]Y. Wang, M. Yu, H. Kabir, and Q. J. Zhang, "Effective design of cross-coupled filter using neural networks ad coupling matrix," in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006, pp.1431-1434.
    [21]H. Kabir, Y. Wang, M. Yu, and Q. J. Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Trans. Microwave Theory Tech., vol.56, no.4, pp.867-879, Apr.2008.
    [22]M. M. Vai, S. Wu, B. Li, and S. Prasad, "Reverse modeling of microwave circuits with bidirectional neural network models," IEEE Trans. Microwave Theory Tech., vol.46, pp.1492-1494, Oct.1998.
    [23]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartis, Microstrip Lines and Slotlines, Second Edition, Artech House, Boston,1996.
    [24]T. Edwards. Foundations for Microstrip Circuit Design, Second Edition, Wiley, Chich-ester, U.K.,1991.
    [25]M. Kirschning, R. H. Jansen, and N. H. L. Koster, "Accurate model for open end effect of microstrip lines," Electronics Letters,17, Feb.1981,123-125.
    [26]甘本祓,吴万春,现代微波滤波器的结构与设计(匕下册),科学出版社1973.
    [27]Ickjin Kwon, Minkyu Je, Kwyro Lee,Hyungcheol Shin,A Simple and Analytical Parameter-Extraction Method of a Microwave MOSFET, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO.6, JUNE 2002.
    [28]Jianjun Gao, Andreas Werthof, Scalable Small-Signal and Noise Modeling for Deep-Submicrometer MOSFETs, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.57, NO.4, APRIL 2009.
    [29]S.-Y. Lee and C.-M. Tsai, "New cross-coupled filter design using improved hairpin resonators," IEEE Trans. Microwave Theory Tech., vol.48, pp. 2482-2490, Dec.2000.
    [30]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines,2nd ed. Boston, MA:Artech House, ch.3.
    [31]Lung-Hwa Hsieh, Kai Chang, "Tunable Microstrip Bandpass Filters With Two Transmission Zeros," IEEE Trans. Microwave Theory Tech, VOL.51, NO.2, February 2003.
    [32]李知新,微波带状线设计参考资料,电子动态编辑部.
    [33]X. LI, J. GAO and J.-G. YOOK" An equivalent circuit parameters extraction technique for bandpass filters," International Journal of Electronics Vol.92, No. 5, May 2005,303-311.
    [34]J.-S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York:John Wiley & Sons, Inc.,2001.
    [35]Humayun Kabir,Lei Zhang, Ming Yu,Peter H. Aaen,John Wood and Qi-Jun Zhang, Smart Modeling of Microwave Devices, IEEE Microwave Mag., vol.9, no.6,pp.105-117, May.2010.
    [1]C. H. Liang and C. Y. Chang, "Compact wideband bandpass filters using stepped-impedance resonators and interdigital coupling struc-tures," IEEE Microw. Wireless Compon. Lett., vol.19, no.9, pp.551-553, Sep.2009.
    [2]C. H. Liang, C. H. Chen, and C. Y. Chang,"Fabrication-tolerant mi-crostrip quarter-wave stepped-impedance resonator filter," IEEE Trans. Microw. Theory Tech., vol.57, no.5, pp.1163-1172, May 2009.
    [3]R. J.Mao,X.H. Tang, L.Wang, and G.H.Du, "Miniaturized hexagonal stepped-impedance resonators and their applications to filter,''IEEE Trans. Microw. Theory Tech., vol.56, no.2, pp.440-448, Feb.2008.
    [4]T. N. Kuo, S. C. Lin, C. H. Wang, and C. H. Chen, "Compact band-pass filters based on dual-plane microstrip/coplanar waveguide struc-turewith quarter-wave length resoantors," IEEE Trans.Microw. Theory Tech., vol. MTT-17, no.3, pp. 178-180, Mar.2007.
    [5]C. F. Chen, T. Y. Huang, and R. B. Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.755-762, Feb.2006.
    [6]A. Djaiz and T. A. Denidni, "Compact bandpass filters based on dual-plane microstrip/coplanar waveguide structure with quarter-wave length resonators,' IEEE Trans. Microw. Theory Tech., vol.54, no.5, pp.1929-1936, May.2006.
    [7]S.-S.Myoung and J.-G. Yook, "Miniaturisation and harmonic suppres-sionmethod of parallel coupled-line filters using lumped capacitors and grounding," Electron. Lett., vol.41, no.15, pp.849-851, Jul.2005.
    [8]S.-S.Myoung and J.-G. Yook, "A miniaturized method of parallel cou-pled-line filters using lumped capacitors and grounding," Microw. J., vol.48, no.6, pp. 94-100, Jun.2005.
    [9]S.-S. Myoung, Y. Lee, and J.-G. Yook, "Bandwidth-compensation method for miniaturized parallel coupled-line filters," IEEE Trans. Microw. Theory Tech., vol.55, no.7, pp.1531-1538, Jul.2007.
    [10]R. J. Cameron, "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., vol.51, no.1, pp.1-10, Jan.2003.
    [11]J. Lee and K. Sarabandi, "Synthesizing microwave resonator filters," Microw. Mag., vol.10, no.1, pp.57-65, Feb.2009.
    [12]C. W. Tang and S. F. You, "Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.717-723, Feb.2006.
    [13]M. M. Mendoza, J. S. G. Diaz, and D. C. Rebenaque, "Design of bandpass transversal filters employing a novel hybrid structure," IEEE Trans. Microw. Theory Tech.. vol.55. no.12, pp.2670-2678, Dec.2007.
    [14]M. Bekheit, S. Amari, and W. Menzel, "Modeling and optimization of compact microwave bandpass filters," IEEE Trans. Microw. Theory Tech., vol.56, no.2. pp.420-430, Feb.2008.
    [15]S. Amari and G. Macchiarella, "Synthesis of inline filters with arbi-trarily placed attenuation poles by using nonresonating nodes," IEEE Trans. Microw. Theory Tech., vol.53, no.10, pp.3075-3081. Oct.2005.
    [16]J. C. Lu, C. K. Liao, and C. Y. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet," IEEE Trans. Microw. Theory Tech., vol.56, no.9, pp.2101-2111, Sep.2008.
    [17]C. L.Hsu and J. T.Kuo, "Design of cross-coupled quarter-wave SIR fil-ters with plural transmission zeros," in IEEEMTT-S IntMicrow. Symp. Dig.,2006, pp. 1205-1208.
    [18]Y. H. Jeng, S. F. Chang, and H. K. Lin, "A high stopband-rejection LTCC filter with multiple transmission zeros," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.633-6381, Feb.2006.
    [19]M.Sagawa, K.Takahashi, and M. Makimoto. Miniaturized hairpin resonator filters and their application to receiver front-end MIC's. IEEE Trans. Theory Tech.1989,37(12):1991-1997.
    [20]J.-T.Kuo, M.-J. Maa, and P.-H. Lu. A microstrip elliptic function filter with compact miniaturized hairpin resonators. IEEE Microw. Guided Wave Lett.2000, 10(3):92-95.
    [21]C.-M. Tsai, S.-Y.Lee, and H.-M. Lee. Transmission-line filters with capacitively loaded coupled lines. IEEE Trans. Theory Tech.2003,51(5):1517-1524.
    [22]P.-H. Deng, Y.-S, C.-H.Wang. and C.-H. Chen. Compact microstrip bandpass filters with good selectivity and stopband rejection. IEEE Trans. Theory Tech. 2006,54(2):533-539.
    [23]J.-T.Kuo, C.-L.Hsu, and E. Shih. Compact planar quasi-elliptic function filter with inline stepped-impedance resonators. IEEE Trans. Theory Tech.2007, 55(8):1747-1755.
    [24]王建朋,无线通信系统中的高性能小型化无源元件研究,电子科技大学博士学位论文,2004.
    [25]MakimotoM,.. Yamashita S. BandPass filter suing Parallel coupled stripline stepped impedance resonators. IEEE Trans. Theory Tech.1980. 28(12):1413-1417
    [26]Jianzhong Gu, Fei Zhang, Chuang Wang, Zan Zhang,Ming Qi, and Xiaowei Sun. "Miniaturization and Harmonic Suppression Open-loop Resonator Bandpass Filter with Capacitive Terminations", Microwave Symposium Digest,2006. IEEE MTT-S International, Year:2006, Page(s):373-376
    [27]S.-Y. Lee and C.-M. Tsai, "New cross-coupled filter design using improved hairpin resonators," IEEE Trans. Microwave Theory Tech., vol.48, pp. 2482-2490, Dec.2000.
    [28]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines,2nd ed. Boston, MA:Artech House, ch.3.
    [29]Lung-Hwa Hsieh, Kai Chang, "Tunable Microstrip Bandpass Filters With Two Transmission Zeros," IEEE Trans. Microwave Theory Tech, VOL.51, NO.2, February 2003.
    [30]Lung-Hwa Hsieh, Kai Chang, " Tunable Microstrip Bandpass Filters With Two Transmission Zeros," IEEE Trans. Microwave Theory Tech, VOL.51, NO.2, February 2003.
    [31]Fu-Chang Chen and Qing-Xin Chu, Novel Multistub Loaded Resonator and Its Application to High-Order Dual-Band Filters, IEEE Trans. Microwave Theory Tech, VOL.58, NO.6, February 2010.
    [32]Wen-Hua Tu, and Kai Chang, Compact Second Harmonic-Suppressed Bandstop and Bandpass Filters Using Open Stubs, IEEE Trans. Microwave Theory Tech, VOL.54, NO.6, February 2006.
    [33]R. S. Kwok and J. F. Liang, "Characterization of high-Q resonators for microwave-filter applications," IEEE Trans. Microwave Theory Tech.,vol.47, pp. 111-114, Jan.1999.
    [1]A. Bailey, W. Foley, M. Hageman, C. Murray, A. Piloto, K. Sparks, and K. Zaki, "Miniature LTCC filters for digital receivers," presented at IEEE MTT-S International,1997, pp.999-1002.
    [2]C. Q. Scrantom and J. C. Lawson, "LTCC technology:where we are and where we're going. II," presented at Technologies for Wireless Applications,1999. Digest.1999 IEEE MTT-S Symposium on,1999, pp.193-200.
    [3]J. S. Hong and M. J. Lancaster, "Bandpass characteristics of new dualmode microstrip square loop resonators," Electron. Lett., vol.31, no.11, pp.891-892, May 1995.
    [4]A. Gorur, "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Trans. Microw. Theory Tech., vol. 52, no.2, pp.671-677. Feb.2004.
    [5]R.-J. Mao and X.-H. Tang, "Novel dual-mode bandpass filters using hexagonal loop resonator," IEEE Trans. Microw. Theory Tech., vol.54. no.9, pp. 3526-3533, Sep.2006.
    [6]M. Matsuo, H. Yabuki, and M. Makimoto, "Dual-mode stepped impedance ring resonator for bandpass filter applications," IEEE Trans. Microw. Theory Tech., vol.49, no.7, pp.1235-1240, Jul.2001.
    [7]J.-T. Kuo and C.-Y. Tsai, "Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stipband charateristies," IEEE Trans. Microw. Theory Tech., vol.54, no.3, pp.1107-1112, Mar.2006.
    [8]L. Zhu and K.Wu, "A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits," IEEE Trans. Microw. Theory Tech., vol.47, no.10, pp. 1938-1948, Oct.1999.
    [9]L.-H. Hsieh and K. Chang, "Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs," IEEE Trans. Microw. Theory Tech., vol.50, no.5, pp.1340-1345, May 2002.
    [10]J. S. Hong and M. J. Lancaster, "Microstrip bandpass filter using degenerate modes of a novel meander loop resonator," IEEE Microw. Guided Wave Lett., vol.5, no.11, pp.371-372, Nov.1995.
    [11]Y.-H. Jeng, S.-F. R. Chang, Y.-M. Chen, and Y.-J. Huang, "A novel self-coupled dual-mode ring resonator and its applications to bandpass filters," IEEE Trans. Microw. Theory Tech., vol.47, no.10, pp.1938-1948, Oct.1999.
    [12]M. K. M. Salleh, G. Prigent, O. Pigaglio, and R. Crampagne, "Quarter-wavelength side-coupled ring resonator for bandpass filters," IEEE Trans. Microw. Theory Tech., vol.56, no.1, pp.156-162, Jan.2008.
    [13]A. C. Kundu and I. Awai, "Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter," IEEE Trans. Microw. Theory Tech., vol.49, no.6, pp.1113-1117, Jun.2001.
    [14]S. Sun and L. Zhu, "Compact dual-band microstrip bandpass filterwithout external feeds," IEEE Microw. Wireless Compon. Lett., vol.15, no.10, pp. 644-646, Oct.2005.
    [15]Y. P. Zhang and M. Sun, "Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes," IEEETrans. Microw. Theory Tech., vol.54, no.10, pp.3779-3885. Oct.2006.
    [16]J.-T. Kuo, T.-H. Yeh, and C.-C. Yeh, "Design of microstrip bandpassfilter with a dual-passband response," IEEE Trans. Microw. Theory Tech., vol.53, no.4, pp. 1331-1337, Apr.2005.
    [17]L. K. Yeung and K.-L. Wu, "A dual-band coupled-line balun filter,"IEEE Trans. Microw. Theory Tech., vol.55, no.11, pp.2406-2411.Nov.2007.
    [18]R. J. Cameron, "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microw. Theory Tech., vol.47, no.4, pp. 433-442, Apr.1999.
    [19]U. Rosenberg and S. Amari, "Novel coupling schemes for microwave resonator filters," IEEE Trans. Microw. Theory Tech., vol.50, no.12, pp.2896-2902, Dec. 2002.
    [20]S. Amari and U. Rosenberg, "Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design," IEEE Trans. Microw. Theory Tech., vol.53, no.10, pp.3135-3141, Oct.2005.
    [21]Marjan Mokhtaari, Jens Bornemannl and Smain Amari, "New Reduced-Size Step-Impedance Dual-Band Filters with Enhanced Bandwidth and Stopband Performance", Microwave Symposium Digest,2006. IEEE MTT-S International,2006, Page(s):1181-1184
    [22]Wen-Hua Tu, Huifeng Li,Krzysztof A. Michalski, and Kai Chang,"Microstrip Open-Loop Ring Bandpass Filter Using Open Stubs for Harmonic Suppression", Microwave Symposium Digest,2006. IEEE MTT-S International,2006, Page(s):357-360
    [1]M. Makimoto, and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microwave Theory Tech., no.12, pp.1413-1417, Dec.1980.
    [2]J.-T. Kuo and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microwave Theory Tech., no.5, pp.1554-1559, May 2003.
    [3]J.-R. Lee, J.-H. Cho and S.-W. Yun, "New compact bandpass filter using microstrip i/4 resonators with open stub inverter," IEEE Microwave Wireless Comp. Lett., vol.13. no.1, pp.16-18, Jan.2003.
    [4]L. Zhu and W. Menzel, "Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator," IEEE Microwave Wireless Comp. Lett., vol.13, no.1, pp.16-18, Jan.2003.
    [5]J.-T. Kuo, W.-H. Hsu, and W.T. Huang, "Parallel coupled microstrip filters with suppression of harmonic response," IEEE Microwave Wireless Comp. Lett., vol. 12, no.10, pp.383-385, Oct.2002.
    [6]T. Lopetegi, M.A.G. Laso, J. Hemandez, M. Bacaicoa, D. Benito, M.J. Garde, M. Sorolla, and M. Guglielmi, "New microstrip "Wiggly-Line" filters with spurious passband suppression," IEEE Trans. Microwave Theory Tech., vol.49, no.9, pp. 1593-1598, Sept.2001.
    [7]L. G. Maloratsky, "Improved BPF performance with wiggly coupled lines," Microwave & RF, pp.53-62, April 2002.
    [8]Wen-Hua Tu, Huifeng Li,Krzysztof A. Michalski, and Kai Chang,"Microstrip Open-Loop Ring Bandpass Filter Using Open Stubs for Harmonic Suppression" Microwave Symposium Digest,2006. IEEE MTT-S International,2006 Page(s):357-360
    [1]W. W. Peng and I. C. Hunter, "A new class of low-loss high-linearity electronically reconfigurable microwave filter," IEEE Trans. Microw. Theory Tech., vol.56, no.8, pp.1945-1953, Aug.2008.
    [2]R. Zhang and R. R. Mansour, "Novel digital and analogue tunable lowpass filters," IET Microw., Antennas, Propag., vol.1, no.3, pp.549-555, Jun.2007.
    [3]Y. H. Chun, H. Shaman, and J.-S. Hong, "Switchable embedded notch structure for UWB bandpass filter," IEEE Microw. Wireless Compon. Lett., vol.18, no.9, pp.590-592, Sep.2008.
    [4]M. Houssini, A. Pothier, A. Crunteanu, and P. Blondy, "A 2-pole digitally tunable filter using local one bit varactors," in IEEE MTT-S Int. Microw. Symp. Dig., Jun.2008, pp.37-40.
    [5]P. S. June and G. M. Rebeiz. "Low-loss two-pole tunable filters with three different predefined bandwidth characteristics." IEEE Trans. Microw. Theory Tech., vol.56, no.5, pp.1137-1148, May 2008.
    [6]Y. H. Chun, J.-S. Hong, P. Bao, T. Jackson, and M. J. Lancaster, "Tunable bandstop filters using BST varactor chips," in Proc.37th Eur. Microw. Conf., Oct.2007, pp.110-113.
    [7]K. Entesari. K. Obeidat. A. R. Brown, and G. M. Rebeiz. "A 25-75-MHz RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech., vol.55. no.11, pp. 2399-2405. Nov.2007.
    [8]B. W. Kim and S. W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Trans. Microw. Theory Tech., vol.52, no. 4, pp.1279-1283, Apr.2004.
    [9]M. S. Chung, I.-S. Kim, and S. W. Yun, "Varactor-tuned hairpin bandpass filter with an attenuation pole," in Proc. Asia-Pacific Conf., Dec.2005, vol.4,4 pps.
    [10]C.-K. Liao, C.-Y. Chang, and J. Lin, "A reconfigurable filter based on doublet configuration," in IEEE MTT-S Int. Microw. Symp. Dig., Jun.2007, pp. 1607-1610.
    [11]Y. H. Chun and J.-S. Hong, "Electronically reconfigurable dual-mode microstrip open-loop resonator filter," IEEE Microw.Wireless Compon.Lett., vol.18, no.7, pp.449-451, Jul.2008.
    [12]H. Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., vol.44, p.10.1109/22.543968,1996.
    [13]S. J. Park, K. Van Caekenberghe, and G. M. Rebeiz, "A miniature 2.1-GHz low loss microstrip filter with independent electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, vol.14, pp.496-498,2004.
    [14]M. A. El-Tanani et al., "Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters," IEEE Trans. Microwave Theory Tech., vol. 58, no.4, pp.956-963, April 2010.
    [15]W. J. Keane, "Narrow-band YIG filters aid wide open receivers," Micro Waves, vol.17, no.9, pp.50-54, Sep.1978.
    [16]M. Koochakzadeh and A. Abbaspour-Tamijani, "Tunable filters with nonuniform microstrip coupled lines," IEEE Microw. Wireless Compon. Lett., vol.18, no.5, pp.314-316, May 2008.
    [17]A. Tombak, J.-P. Maria, F. T. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, "Voltage-controlled RF filters employing thin-film barium-strontium-titanate tunable capacitors," IEEE Trans. Microw. Theory Tech., vol.51, no.2, pp.462-467, Feb.2003.
    [18]L. Dussopt and G. M. Rebeiz, "Intermodulation distortion and power handling in RF MEMS switches, varators, and tunable filters,"'IEEE Trans. Microw. Theory Tech., vol.51, no.4, pp.1247-1256. Apr.2003.
    [19]C. Palego, A. Pothier, A. Crunteanu, M. Chatras. P. Blondy, C. Champeaux, P. Tristant, and A. Catherinot, "A two-pole lumpedelement programmable filter with MEMS pseudodigital capacitor banks," IEEE Trans. Microw. Theory Tech., vol.56, no.3, pp.729-735, Mar.2008.
    [20]S. Park, M. A. El-Tanani, I. Reines, and G. M. Rebeiz, "Low-loss 4-6 GHz tunable filter with 3-bit high-Q orthogonal bias RF-MEMS capacitance network," IEEE Trans. Microw. Theory Tech., vol.56, no.10, pp.2348-2355, Oct.2008.
    [21]K. Entesari and G. M. Rebeiz, "A differential 4-bit 6.5-10 GHz RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech., vol.53, no.3, pp.1103-1110, Mar.2005.
    [22]B. Kapilevich, "A varactor-tunable filter with constant bandwidth and loss compensation," Microw. J., vol.50, no.4, pp.106-114, Apr.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700