基于时频分析的跳频信号参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳频是最常用的扩频方式之一,跳频通信具有良好的抗干扰性,低截获概率和易于组网的特点,因此跳频技术一出现,便在军事领域得到了极大的发展。随着跳频技术及各种硬件技术的发展,跳频通信向着高跳速、宽跳频带和多跳频点数的趋势发展,并且逐渐与其它扩频技术相结合,采用自适应跳频的工作方式,极大地提高了军事装备的抗截获和抗干扰能力,特别是在现代电子战密集的信号环境下,向通信对抗提出了严重的挑战。
     时频分析作为一种新兴的信号处理方法,可以克服传统傅立叶变换在处理非平稳信号时的局限,用时间和频率的二维函数描述出信号频率随时间的变化规律。近年来,它在理论研究方面取得了重大进展,并在实践中得到了广泛的应用。通过时频分析方法得到混杂着噪声的非合作跳频信号的时频分布,估计其跳频速率、跳变时刻和跳频频率等参数,是截获敌方通信、产生最佳干扰信号、瓦解敌方正常通信的前提,因此成为现代军事通信对抗中的研究重点之一。本文主要讨论了提高跳频信号时频分布的聚集性和交叉项抑制性能的核函数设计方法和熵测度评价准则,以及基于粒子群算法的跳频信号自适应分解等问题,对跳频信号的参数估计算法进行了广泛深入的研究。
     本文首先推导了跳频信号的模糊函数公式,利用跳频信号魏格纳分布和模糊函数的关系,以及其模糊函数自项集中在模糊平面原点,而交叉项远离原点位置的属性,设计了一种具有抽样函数形状的核函数。由于设计核函数实现了与跳频信号模糊函数自项更高程度的匹配,因此相应时频分布能够有效抑制交叉项的干扰,保留尽可能多的自项能量,获得更好的参数估计性能。
     Cohen类时频分布不仅类型众多,而且都包含一个或多个参数,因此核函数的形状和参数的选择对时频分布的性能影响较大。如何评价时频分布的优劣,选取合适的时频分布类型及其参数,成为跳频信号时频分析一个主要问题。本文从交叉项抑制和聚集性提高两个角度,分析了熵测度在时频分布性能评价中的反映,提出了一种最小熵测度准则和SQP算法相结合的核参数优化方法,相应的时频分析方法有效降低了跳频信号参数估计的方差,提高了参数估计的精度。
     从实现的方法来划分,时频分析主要分为原子分解和能量分布两大类。原子分解把信号分解为在时间和频率上都有明确意义的时频原子的线性组合,获取的时频分布从根本上消除了交叉项的干扰。为了克服匹配追踪算法在信号原子分解时运算量大的瓶颈,本文引入了粒子群优化算法。在获取与跳频信号分量匹配的原子参数的基础上,设计了一种跳频信号参数估计的新算法。该算法摆脱了基于时频平面参数估计的信噪比阈值效应,能够在低信噪比的条件下获得良好的估计效果。
     在基于匹配追踪的粒子群算法中,每次迭代只能选取跳频信号的单个分量,降低了算法的运行效率。利用信号与过完备库原子内积的多峰性,提出了基于物种形成粒子群优化的参数估计算法,充分利用了粒子群在搜索过程中的收敛性。计算机仿真结果表明,该算法在一次运行过程中能够给出所有与跳频信号分量相匹配的时频原子,适合多种跳频信号的参数估计。
Frequency Hopping (FH) is one of the most commonly used way about spread spectrum communication technique which develops fast in military field due to its good immunity against interferences, low probability of intercept and facility in communication networking. Along with the development of FH and each kind of hardware technology, the FH communications turn toward high hop rate, wide hop frequency band and more FH points. Farther, FH technology is unified with other spread spectrum ones gradually and uses the auto-adapted FH working which enhanced the ability of military equipments against jamming and interception enormously and brought up a new austere challenge for communication countermeasures, especially under crowed signal environment in the modern electronic warfare.
     As a novel signal processing method, time-frequency (TF) analysis may overcome the drawback of Fourier Transform about nonstationary signal process, which could depict the frequency change law of signal versus time using the two-dimensional function of time and frequency. In recent years, it has made the significant development in the fundamental research aspect, and obtained the widespread application in reality. Obtaining TF representation of the non-cooperation FH signal embedded in noise and its parameter such as hopping during, hop timing and hopping frequency is precondition to achieve the interception enemy side correspondence, produce the best jamming signal and disintegrate the enemy side normal correspondence finally, therefore becomes in modern military correspondence countermeasure research key one. In the present paper, the problems about kernel function design and entropy measure appraisal to enhance the TF concentration and cross-term suppression of TF distribution of FH signal, and atomic decomposition based on particle swarm optimization are discussed. At last, this thesis has engaged in extensive research on parameter estimation algorithm about FH signal.
     In this thesis, the FH signal ambiguity function formula has been deduced firstly, which the auto-components are centered the origin of the ambiguity plane and the cross-components are located away from it, and derived one kernel function in sampling function shape using the relations of Wigner distribution and ambiguity function of FH signal. The corresponding TF distribution could suppress the cross-term interference effectively, preserve as far as possible many from auto-component energy since the designed kernel function realized the possible match with the auto-component of FH signal, thus gained the better parameter estimation performance.
     The Cohen TF distributions are not only numerous, but also contains one or more parameters. The choice of kernel function type and parameter are important for the performance of TF distribution. It is major problem in TF analysis of FH signal to evaluate the performances of different distributions, select better type and parameters of TF distribution. In this thesis, we analysis the results of entropy measure in TF distribution performance evaluation and propose a novel optimization method about kernel parameters based on Renyi entropy with normalization volume. The parameter estimation variance is reduced effectively and estimation precision is increased based on Renyi entropy TF distribution, combining parameter optimization by sequential quadratic programming method.
     The TF analysis method is mainly divided into atom decomposition and the energy distribution according as the realization way. The former is to represent the signal as the weighted sun of TF elementary functions named atoms in order to eliminate the interference of cross-terms at all. In this thesis, we introduce the particle swarm optimization (PSO) algorithm to overcome the bottleneck of huge computation burden and design a novel parameter estimation algorithm of FH signal after obtaining atom parameters which match the FH signal components. This algorithm get rid of the Signal to Noise Ratio (SNR) threshold value effect of parameter estimation based on time-frequency plane and could obtain good estimate results under the low SNR condition.
     The PSO algorithm based on matching pursuit can only select one atom which matches the single component of FH signal in each iterate, thus the efficiency is reduced. In this thesis, we design a new PSO algorithm based on modified multi-species procedure which uses the algorithm convergence in the search procedure of the particles using multimodal characteractic of the inner product of FH signal and the atoms of the dictionary. Computer simulation results show that this algorithm could give all the TF atoms that match the components about FH signal and could enhance the parameter estimation performance under low SNR which is suitable for many kinds of FH signal.
引文
[1] 查光明,熊贤祚.扩频通信.西安:西安电子科技大学出版社,1990
    [2] 梅文化,王淑波,邱永红等.跳频通信.北京:国防工业出版社,2005
    [3] C.D. Chung, A. Polydoros. Epoch synchronization of random FH signals in broadband noise, in the IEEE MilCom'90 Conference Record, Monterey, California, USA, 1990, 38:1-5
    [4] L. Aydin, A. Polydoros. Joint epoch estimation for multiple FH signals, in the 4~(th) IEEE International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996, 2:746-750
    [5] C.D. Chung, A. Polydoros. Parameter Estimation of Random FH Signals using autocorrelation techniques. IEEE Trans. Comm., 1995, 43(2-4): 1097-1106
    [6] L.A. Osadciw, E. L. Titlebaum. Synchronization improvements using traceability in spread spectrum signal design. IEEE Trans. Aerospace Electronic Syst., 2001, 37: 1142-1154
    [7] C.D. Chung, A. Polydoros. Detection and hop-rate estimation of random FH signals via autocorrelation technique, in IEEE Milcom'91 Conference Record, Mclean, Virginia, USA, 1991, 16(1): 1-5
    [8] A. Polydoros, K. T. Woo. LPI detection of Frequency-Hopping signals using autocorrelation techniques. IEEE J. Select. Areas Commun., 1985, SAC-3: 714-726
    [9] C.D. Chung. Performance analysis of a slow FH/MFSK acqusion scheme in random partial-band noise jamming. IEE Proc. Commun., 1994, 141(6): 396-406
    [10] J. Mohammad, T. V. Vahid, J. Hamidreza. The modified autocorrelation techniques for parameter estimation of random FH signals. IXSP'98[C], 1998, 1: 188-190
    [11] C. C. Ko, Zhi Wanjun, C. Francois. ML-Based frequency estimation and synchronization of frequency hopping signals. IEEE Trans. on Signal Processing, 2005, 53(2): 403-410
    [12] Z Wanjun, C. C. ko, C. Francois. ML-Based frequency and frequency transition time estimation of frequency hopping signals, in 2003 IEEE Workshop on Statistical Signal Processing, 2003:78-81
    [13] N. Khalil, R. Hippenstiel. Wavelet Transforms of Correlation Functions of frequency hopped signals, in 30~(th) Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, 1996, 2:964-9767
    [14] M. P. Fargues, H. F. Overdyk, R. Hippenstiel. Wavelet-based detection of Frequency-Hopping signals, in: Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, 1: 515-519
    [15] R. Hippenstiel, N. Khalil, M. P. Fargues. The Use of Wavelets to Identify Frequency Hopped Signals. in the Thirty-First Asilmar Conference on Signals, Systems and Computers, 1997, 1:946-949
    [16] 姚勇.跳频信号的特征提取与网台分选.西安电子科技大学,2003
    [17] S. Barbarossa, A. Zanalda. A combined wigner-ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation, in Proc IEEE ICASSP, 1992, 5(1): 173-176
    [18] S. Barbarossa. Analyses of multicomponent LFM signals by a combined Wigner Hough transform. IEEE Trans. Signal Processing, 1995, 43(6): 1511-1515
    [19] S. Barbarossa, O. Lemoine. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation. IEEE Signal Processing Letters, 1996, 3(4): 112-115
    [20] S. Barbarossa, A. Scaglione. Parameter estimation of spread spectrum frequency-hopping signals using time-frequency distributions, in: Proc. IEEE SPAWC, Apr. 1997:213-216
    [21] 赵俊,张朝阳,赖利峰等.一种基于时频分析的跳频信号参数盲估计方法.电路与系统学报,2003,8(3):46-50
    [22] 赵俊.GMSK跳频信号参数盲估计和盲检测算法的研究.浙江大学,2003
    [23] L. Aydin, A. Polydoros. Joint hop-timing estimation for FH signals using a coarsely channelized receiver. MILCOM'95, 1995, 2: 769-773
    [24] M. Simon, U. Cheng, L. Aydin, A. Polydoros, B. Levitt. Hop timing estimation for Noncoherent frequency-hopped M-FSK intercept receivers. IEEE Trans. Comm., 1995, 43(2/3/4): 1144-1154
    [25] Xu Xiaojian, Sui Dan, Hu Hanying. A Frequency Estimation Method of DFH Signal Based on Periodogram and TLS. in 2005 International Conference on Communications, Circuits and Systems, 2005:758-760
    [26] R.K. Potter, G. Kopp, H. C. Green. Visible speech. New York: Van Nostrand, 1947
    [27] L. R. Rabiner, R. W. Schafer. Digital Processing of Speech Signal. Englewood Cliffs, NJ: Prentice-Hall Signal Processing Series, 1978: 250
    [28] K. C. H. Kwork, D. L. Jones. Instantaneous frequency estimation using an adaptive short-time Fourier Transform. in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995,1: 543-547
    [29] H. K. Kwok, D. L. Jones. Improved Instantaneous frequency estimation using an adaptive short-time Fourier transforms. IEEE Trans. Signal Processing, 2000, 48(10): 2964-2972
    [30] T. A. C. N. Classen, W. F. G. Mecklenbrauker. The Wigner distribution-a tool for time-frequency signal analysis, partⅠ: Continous-time signals. Philips J. Res., 1980, 35: 217-250
    [31] J. Ville. Theorie et applications de la notion de signal analytique. Cables et Transmissions, 1948, 2A: 61-74. Translated from French by Ⅰ. Selin Theory and application of the notion of complex signal. RAND Corporation Technic al Report T-92, Santa Monica, CA, 1958
    [32] L. Cohen. Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1995
    [33] J. Jeong, W. Williams. Kernel design for reduced interference distributions. IEEE Trans. Signal Processing, 1992,40: 402-412
    [34] M. G. Amin, J. F. Carroll. Time-frequency kernel design via point and derivative constraints. in Proc. Int. Conf. Acoust., Speech, Signal Process., Adelaide,Australia, 1994,4:309-312
    [35] W. Wokurek, F. Hlawatsch. Wigner distribution analysis of speech signals. in: International Conference of Digital Signal Processing, Florence, Italy, 1987
    [36] H. Garudadri, M. P. Beddoes, A. P. Benguerel, et al. On computing smoothed Wigner distribution. In Proc. ICASSP 87,1987, 35(12): 1-5
    [37] J. C. Andrieux, M. R. Fiex, P. Bertrand, et al. Optimum smoothing of the Wigner distribution. IEEE Trans. Acoust., Speech, Signal Processing, 1987, 35(6): 764-768
    [38] K. Kodera, R. Gendrin, C. D. Villedary. Analysis of time-varying signals with small BT values. IEEE Transactions on Acoustic, Speech, and, Signal Processing,1978,26(1): 64-76
    [39] F. Auger, P. Flandrin. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Processing, 1995,43(5): 1068-1089 [40] C. Richard, R. Lenglle. Fast implentation of Time-Frequency representations Modified by the Reassignment Method. in Proceedings of ICSP'96, 343-346
    [41] A. Loza, N. Canagarajah, D. Bull. A simple scheme for enhanced reassignment of the smoothed pseudo Wigner-Ville representation of noise signals. in Proceedings of the 3~(rd) International Symposium on ISPA, 2003, 2(18-20): 630-633
    [42] Wang Danzhi, Li Shujian, Shao Dingrong. The Analysis of Frequency-Hopping Signal Acquisition Based on Cohen-Reassignment joint time-frequency distribution. Proceedings of Asia-Pacific Conference on Environmental Electromagnetics. Hangzhou, China, 2003: 21-24
    [43] D. L. Jones, T. W. Parks. A Resolution Comparison of Several Time-Frequency Representions. IEEE Trans. Signal Processing, 1992, 40(2): 413-420
    [44] R. G Baraniuk, D. L. Jones. A radially Gaussian, signal-dependent time-frequency representation. in Proc. ICASSP, 1991: 3181-3184
    [45] H. K. C. Kwork, D. L. Jones. Instantaneous frequency estimation using an adaptive short-time Fourier transforms. in Proc. ASILOMAR-29, 1996: 543-547
    [46] K. Kwok, D. L. Jones. Improved Instantaneous frequency estimation using an adaptive short-time Fourier transforms. IEEE Trans. Signal Processing, 2000,48(10): 2964-2972
    [47] D. L. Jones, T. W. Parks. A High Resolution Data-Adaptive Time-Frequency Representation. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38(12):2127-2135
    [48] D. L. Jonesm, T. W. Parks. A high resolution data-adaptive time-frequency representation. in Proc. IEEE Internat. Conf. Acoust. Speech Signal Process, 1987:681-684
    [49] D. L. Jones, R. G. Baraniuk. A simple scheme for adapting time frequency representations. IEEE Trans. on Signal Processing, 1994, 42(12): 3530-3535
    [50] L. Stankovic, V. Katkovnik. Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width. IEEE Signal Process. Lett., 1998, 5(9): 207-223
    [51] S. C. Sekhar, T. V. Sreenivas. Adaptive spectrogram vs. adaptive psedo-Wigner-Ville distribution for instantaneous frequency estimation. Signal Processing, 2003, 83: 1529-1543
    [52] B. Barkat, B. Boashash, L. J. Stankovic. Adaptive window in the PWVD for the IF estimation of FM signals in additive Gaussian noise. IEEE Signal Processing Letters, 1999, 5(7): 1317-1320
    [53] D.C. Reid, J. C. Ralston. An optimal window length for the PWVD with application to passive acoustic parameter estimation, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 94. Adelaide, Australia, 1994, Ⅳ: 313-316
    [54] Qian Shie, Chen Dapang. Signal Presentation Using Adaptive Normalized Gaussian Functions. Signal Processing, 1994, 36: 1-11
    [55] S. Mallat, Z. Zhang. Matching Pursuit Time-Frequency Distributions. IEEE Trans Signal Processing, 1993, 41(12): 3397-3415
    [56] S. Kadambe, F. Boudreaux-Bartels. A comparison of the existence of"cross terms" in the Wigner distribution and the squared magnitude of the wavelet transform and the short time Fourier transform. IEEE Trans. On signal processing, 1992, 40(10): 2498-2517
    [57] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal-part1: fundamentals, in Proceedings of the IEEE, 1992, 80(4): 520-538
    [58] L. Cohen. Distributions concentrated along the instantaneous frequency, in Advanced signal processing algorithms, Architectures, and Implementations, 1990, 1348: 149-157
    [59] I. Djurovic, L. J. Stankovic. Influence of high noise on the instantaneous frequency estiamtion using quadratic time-frequency distributions. IEEE Signal Processing Letters, 2000, 7(11): 317-319
    [60] V. N. Ivanovic, M. Dakovic, L. J. Stankovic. Performance pf quadratic time-frequency distributions as intantaneous frequency estimations. IEEE Trans. on Signal Processing, 2003, 51(1): 77-89
    [61] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal-part1: fundamentals, in Proceedings of the IEEE, 1992, 80(4): 540-568
    [62] P. Rao, F. J. Taylor. Estimation of the intantaneous frequency using the distrete Wigner distribution. Electron. Lett. 1990, 26:246-248
    [63] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [64] P. Flandrin, W. Matin. Pseudo-Wigner estimators for the analysis of nonstationary processes, in Proc. IEEE Spectr. Est. Workshop, 1983:181-185
    [65] P. Flandrin, G. F. Boudreaux-Bartels. Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag., 1992, 9(2): 21-67
    [66] A.Z. Sha'ameri, S. H. Salleh. Window width estimation and the application of the windowed Wigner-Ville distribution in the analysis of heart sounds and murmurs. TENCON 2000, 2000, 2(24-27): 114-119
    [67] A. Z. Shaameri. Analysis of HF communication signals using the lag windowed Wigner-Ville distribution. in International Symposium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 2001: 250-254
    [68] A. Z. Shaameri. Parameter definition for the windowed and smooth windowed Wigner-Ville distribution of time-varying signals. in 6~(th) international Symposium on Signal Processing and its Application, 2001, 2: 13-16
    [69] L. M. Khadra. The smoothed pseudo Wigner distribution in speech processing. Int. J. Electron., 1988, 65: 743-755
    [70] H. I. Choi, W. J. Williams. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust., Speech, and Signal Proa, 1989, 37(6): 862-871
    [71] J. Jeong, W. J. Williams. Kernel design for reduced interference distributions, IEEE Trans. Signal Process., 1992, 40(2): 402-412
    [72] A. Papandreou, G. F. Boudreaux-Bartels. Generalization of the Choi-Willams distribution and the Butterworth distribution for time-frequency analysis. IEEE Trans. Signal Process, 1993, 41(1): 463-473
    [73] Y. Zhao, L. E. Atals, R. J. Marks. The use of cone-shape kernels for generalized time-frequency representions of non-stationary signals. IEEE Transaction on Acoustics Speech and Signal processing, 1990, 38(7): 1084-1091
    [74] S. Oh, R. J. Marks. Some properties of the generalized time-frequency representation with cone-shaped kernel, IEEE Trans. Signal Process., 1992, 40(7): 1735-1745
    [75] B. Barkat, B. Boashash. A high-resolution quadratic time-frequency distribution for multicomponent signal analysis. IEEE Trans. Signal Processing, 2001, 49(10):2232-2239
    [76] Z. M. Hussain, B. Boashash. Adaptive instantaneous frequency estimation of multi-component FM signals. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Istanbul, Turkey, 2000: 657-660
    [77] Z. M. Hussain, B. Boashash. Multicomponent IF estimation. in Proceeding of the 10~(th) IEEE Workshop on Statistical Signal and Array Processing. SSAP, 2000:559-563
    [78] Z. M. Hussain, B. Boashash. Multicomponent IF estimation: a statistical comparison in the quadratic class of time-frequency distributions. in Proc. IEEE Int. Symp. Circuits Syst., 2001,2: 109-112
    [79] Z. M. Hussain, B. Boashash. Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions. IEEE transactions on signal processing, 2002, 50(8): 1866-1877
    [80] Z. M. Hussain, B. Boashash. The T-class of time-frequency distributions: time-only kernels with amplitude estimation. Journal of the Franklin Institute, 2006, 343:661-675
    [81] G. F. Boudreaux-Bartels, A. Papandreou. Generalization of the Choi-Williams distribution and the Butterworth distribution for time-frequency analysis. IEEE Trans. on Signal Process, 1993,41(1): 463-472
    [82] G. F. Boudreaux-Bartels, A. Papandreou. On a generalization of the Choi-Williams time-frequency distribution. IEEE Trans. on Signal Processing, 1991, 39(7): 35-45
    [83] E. J. Diethorn. The generalized exponential time-frequency distribution. IEEE Trans. on Signal Processing, 1994,42(5): 1028-1037
    [84] S. Oh, R. J. Marks. Some properties of the generalized time frequency representation with cone-shaped kernel. IEEE Trans. on Signal Processing, 1992, 40(7): 1735-1745
    [85] A. Papandreou, G. F. Boudreaux-Bartels. Distributions for time-frequency analysis: a generalization of Choi-Williams and Butterworth distribution. in ICASSP92.1992, 181-184
    [86] D. Boutana, B. Barkat, F. Marir. A proposed high-resolution time-frequency distribution for multicomponent signal and speech signal. International Journal of Signal Process, 2004,1(2): 167-170
    [87] R. G. Baraniuk, D. L. Jones. Signal-dependent time-frequency analysis using a radially Gaussian kernel. Signal Processing, 1993, 32: 263-284
    [88] R. G. Baraniuk, D. L. Jones. A signal-dependent time-frequency representation: optimal kernel design. IEEE Trans. SP, 1993,41(4): 1589-1602
    [89] D. L. Jones, R. G. Baraniuk. An adaptive optimal-kernel time- frequency representation. IEEE Trans. on Signal Process, 1995,43(10): 2361-2372
    [90] A. Goldenshluger, A. Nemirovski. On spatial adaptive estimation of nonparametric regression. Research Report, 5/94, Technion, Haifa, Israel, November 1994
    [91] V. Katovnik, L. Stankovic. Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Trans. Signal Process, 1998,46: 2315-2325
    [92] V. Katkovnik, L. J. Stankovic. Instantaneous frequency estimation using the periogram with time-varying window length. Signal Process, 1998, 67(3): 345-358
    [93] S. C. Sekhar, T. V. Sreenivas. Adaptive spectrum vs. adaptive pseudo- Wigner-Ville distribution for instantaneous frequency estimation. Signal Processing, 2003, 83:1529-1543
    [94] B. Barkat, B. Boashash. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive Gaussian noise. IEEE Trans. Signal Process., 1999, 47(9): 2480-2490
    [95] V. N. Ivanovic, L. J. Stankovic. Performance of Quadratic Time-Frequency Distributions as Instaneous Frequency Estimations. IEEE Trans. on Signal Processing, 2003, 51(1): 77-89
    [96] L. J. Stankovic, V. N. Ivanovic. The Wigner Distribution of Noisy Signals with Adaptive Time-Frequency Varying Window. IEEE Trans. on Signal Processing, 1999,47(4): 1099-1105
    [97] V. Ivanovic, M. Dakovic, I. Djurovic, et al. Instantaneous frequency estimation by using time-frequency distributions. in International Conference on Acoustics, Speech and Signal Processing, 2001, 6(7-11): 3521-3524
    [98] W. J. Williams, M. L. Brown, A. O. Hero. Uncertainty, information and time-frequency distributions, in SPIE Adv. Signal Process. Algebra Arch. Imp. 1991,1566: 144-156
    [99] T. Hsien, W. J. Williams. Renyi information and signal dependent optimal kernel design. in ICASSP 95. 2: 997-1000
    [100] S. Aviyente, W. J. Williams. Minimum entropy time-frequency distributions. IEEE Signal Processing Letters, 2005, 12(1): 37-40
    [101] P. Flandrin, R. G. Baraniuk, O. Michel. Time-frequency complexity and information. in Proceeding of the ICASSP, 1994, 2: 329-332
    [102] R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen, et al. Measuring Time-Frequency Information Content Using the Renyi Entropies. IEEE Trans. on Information Theory, 2001, 47(4): 1391-1409
    [103] J. Bernard, S. Monterson, C. Depolier. Charaterization of a Dispersive System Using Quadratic Time-Frequency Representations. in EUSIPCO, 2004: 1163-1166
    [104] S. Aviyente, W. J. Williams. Minimum Entropy Time-Frequency Distributions. IEEE Signal Processing Letters, 2005, 12(1): 37-36
    [105] S. Aviyente, W. J. Williams. Information Bounds for Random Signals in Time Frequency Plane. in International Conference on Acoustics, Speech and Signal Processing, 2001, 6:3549-353
    [106] 袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1999
    [107] S. Mallat, Z. Zhang. Matching pursuit with a time-frequency dictionary. IEEE Trans. Signal Proc., 1993, 41: 3397-3415
    [108] S Chen, D Donoho, M Saunders. Atomic decomposition by basis pursuit. Journal on Scientific Computing, 1999, 20:33-61
    [109] A. J. E. M. Janssen. On the locus and spread of pseudodensity functions in the time-frequency plane. Philips J. Res., 1982, 37(3): 79-110
    [110] D. Ye. Vakman. Optimum signals which maximize partial volum under an ambiguity surface. Radio Eng., Electron. Phys., 1967, 12(1): 81-82
    [111] P. L. Arthur, C. L. Philipos. Voice/unvoice speech distrimination in noise using gabor atomic decomposition, in Proc of IEEE ICASSP. Hongkong: IEEE Press: 2003, 4: 820-828
    [112] 王建英,尹忠科,张春梅等.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社,2006
    [113] J. H. Holland. Adaptive in Natural and Artificial Systems. The University of Michigan Press, 1975
    [114] Darwin著.物种起源.周建人译.北京:科学出版社,1996
    [115] G.J.Mendel著.遗传学经典论文选集.梁宏,王斌译.北京:科学出版社,1984
    [116] Z. Michalewicz. Genetic algorithms+data structures=evolution programs (3~(rd) rev. and extended ed.). Berlin, New York: Springer-Verlag, 1996
    [117] L. D. Whiteley. The GENITOR algorithm and selection pressure: why ranked-based allocation of reproductive trials is best. in Proceedings of the 3~(rd) International Conference on Genetic Algorithms, Fairfax, VA, USA, 1989:239-255
    [118] J. Yang., C. K. Soch. Structural optimization by genetic algorithms with tournament selection. Journal of Computing in Civil Engineering, 1997, 11(3): 195-200
    [119] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. in Proceedings of IEEE International Conference on Neural Networks, Picataway, NJ: IEEE Service Center, 1995: 1942-1948
    [120] F. Heppner., U. Grenander. A stochastic nonlinear model for coordinated bird flocks. in S. Krasner, Ed., the Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990 [121] Y. Shi, R. C. Eberhart. A Modified Particle Swarm Optimizer with Dynamic Adaptation. in Proceedings of the 1998 Conference of Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998: 69-73
    [122] Y. Shi, R. C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. in Proceedings of the 2001 Conference of Evolutionary Computation. Piscataway, NJ:IEEE Press, 2001: 101-106
    [123] Y. Shi, R. C. Eberhart. Empirical Study of Particle Swarm Optimization. in Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, 2000: 1945-1950
    [124] M. Clerc. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. in Proceedings of the IEEE Congress on Evolutionary Compution, 1999: 1951-1957
    [125] M. Clerc, J. Kennedy. The particle swarm-explosion, stability, and convergence in a multimensional complex space. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58-73
    [126] P. J. Angeline. Using selection to improve particle swarm optimization. in international conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89
    [127] P. J. Angeline. Evolutionary Optimization versus particle swarm optimization: Philosophy and Performance Differences. in: the Seventh Annual Conf. on Evolutionary Programming, 1998
    [128] H. Natsuki, I. Hitoshi. Particle swarm optimization with Gaussian Mutation. Institute of Electrical and Electronics Engineers, 2003, 4: 72-79
    [129] M. Lovbjerg, T. K. Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulation. in: Proceedings of the 3rd Genetic and Evolutionary Compution Conference, 2001: 14-16
    [130] J. Kennedy. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. in Proc. Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center., 1999: 1931-1938
    [131] P. N. Suganthan. Particle swarm optimiser with neighbourhood operator. in: Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, IEEE Service Center, 1999: 1958-1962
    [132] J. Riget, S. A. Jakob. diversity-guided particle swarm optimizer-the ARPSO. Technical report, EVAlife, Dept. of Computer Science, University of Aarhus, Denmark, 2002
    [133] J. Seo, C. Hwan, C. G. Heo, et al. Multimodal function optimization based on particle swarm optimization. IEEE Trans. on Magnetics. 2006,42(4): 1095-1098
    [134] V. D. Bergh, A. Engelbrecht. Particle swarm weight initialization in multi-layer perception artificial neural networks. Development and Practice of Artificial Intelligence Techniques, Durban, South Africa, 1999: 41-45
    [135] H. Yoshida, K. Kawata, Y. Fukuyama, et al. A particle swarm optimization for reactive power and voltage control considering voltage stability. in: Torres G L, Alves da Silva A P. Eds. Proc. Intl. Conf. on Intelligent System Application to Power Systems, Rio de Janeiro, Brazil, 1999: 117-121
    [136] Li Liu, Liu Wenxin, A. David, et al. Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Engineering Applications of Artificial Intelligence, 2008,21(7): 1092-1100
    [137] M. Jiang, Y. P. Luo, S. Y. Yang. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 2007,102: 8-16
    [138] P. N. Suganthan. Particle Swarm Optimiser with neighbourhood operator. in Proceedings of the Congress on Evolutionary Computation, Washington D C, USA, IEEE Press, 1999, 3: 1958-1962
    [139] J. Kennedy, R. Mendes. Neighborhood Topologies in fully informed and best-of-neighborhood particle swarms. in Proceedings of the International Workshop on Soft Computing in Industrial Applications, 2003,23-25: 45-50
    [140] S. C. Esquivel, C. A. C Coello. On the use of particle swarm optimization with multimodal functions. in the Congress on Evolutionary Computation, 2003, 2(8-12): 1130-1136
    [141] K. Yi-Tung, Z. Erwie. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 2008, 8(2): 849-857
    [142] J. H. Seo, C. G. Heo, H. K. Jung, et al. Multimodal function optimization based on particle swarm optimization. IEEE Trans. Magn. 2006,42(4): 1095-1098
    [143] J. H. Seo, C. G. Heo, H. K. Jung A novel algorithm for multimodal function optimization based on evolution strategy. IEEE Trans. Magn. 2004, 40(2):1224-1227
    [144] L. Castro, L. Zuben. Learning and optimization using the local selection principle evolutionary computation. IEEE Tran, 2002, 6(3): 34-50
    [145] W. Zhijian, K. Lishan, Z. Xiufen. A parallel global-local mixed evolutionary algorithm for multimodal function optimization. in Proceedings of 5~(th) international conference on algorithms and architectures for parallel proessing. Beijing:Association for Parallel Processing, 2002: 247-250
    [146] E. Ozcan, M. Yilmaz. Particle Swarms for Multimodal Optimization. Springer Berlin, 2007, 4431: 366-375
    [147] Chen Debao, Zhao Chunxia. Particle swarm optimization with adaptive population size and its application. Applied Soft Computing, 2008, 9(1): 39-48
    [148] D. Beasley, D. R. Bull. A Sequential Niche Technique for Multimodal Function Optimization. Evolutionaey Computation, 1993, 1(2): 101-125
    [149] R. Brits, A. P. Engelbrecht, F. van den Bergh. A niching particle swarm optimizer. in Proceedings of the 4~(th) Asia-Pacific Conference on Simulated Evolution and Learning, 2002, 2: 692-696
    [150] R. Brits, A. P. Engelbrecht, F. V. Bergh. Scaliability of nich PSO. in Proceedings of the IEEE International Conference on Swarm Intelligence Symposium, 2003:228-234
    [151] L. Jianping, M. E. Balazs, G. T. Parks, et al. A species conserving genetic algorithm for multimodal function optimization. Journal of Evolutionary Compution, 2003,10(3): 207-234
    [152] E. Blalzs, L. Jianping. The effect of distance measure in a GA with species conservation. in Proceedings of 2001 IEEE Congres on Evolutionary Computation. New York: Association for Evolutionary Computation, 2001: 67-74
    [153] L. Jianping, M. E. Balazs, G. T. Parks, et al. Complexity analysis of evaluating distances in the Genetic algorithm using species conservation. in Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, 2001: 52-59
    [154] M. Iwamatsu. Multi-species particle swarm optimizer for multimodal function optimization. IEICE Transactions on Information and System (English edition),2006,E89-D (3): 1181-1187
    [155] M. Iwamatsu. Locating All the Global Minima Using Multi-species Particle Swarm optimizer the inertia weight and the constriction factor variants. in Proc. Of the 2006 IEEE Congress on Evolutionary Computation, 2006: 816-822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700