地震模拟振动台控制方法及动态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震模拟振动台作为重要的试验设备,在抗震试验研究中发挥着重要作用。通过模拟地震环境或针对某种特定的振动进行模拟试验,以获取某装备、设施和结构在地震或特定振动条件下的破坏机理及其各种动力响应参数,为提高抗震性能的研究提供试验依据和原始数据。因此,开发研究高精度的地震模拟振动台,改善其动态特性,提高响应精度,真实地再现地震或某种特定振动的状态,是一个基础性的、重要的研究课题,具有重要的应用价值和理论意义。
     本课题以2m×1.5m双向切换单向激振的地震模拟振动台为研究对象,以控制理论为基础,较深入地研究了动态性能测试、系统建模、基于速度正反馈的三参量控制方法、迭代学习控制等关键技术问题,取得了以下创造性成果:
     1.基于系统建模和动态性能测试,分析了电液位置伺服控制振动台的系统特性,给出了改善振动台系统特性,实现地震波再现的条件,即拓宽使用频带,消除负载变化对振动台特性的影响,提高系统阻尼比,实现加速度控制。
     2.基于振动台油柱共振频率较高,与系统伺服阀90°相移频率间隔较小,提出了基于速度正反馈的三参量控制技术,适当降低了油柱共振频率,提高了开环增益和系统阻尼比,从而有效地衰减了系统谐振峰值,提高了系统动态响应精度。
     3.设计完成了三参量发生器,实现了加速度信号直接控制。通过合理配置闭环系统的状态变量反馈增益,消除了负载变化对系统动特性的影响;并通过调节三参量发生器的控制参数,实现了对系统动特性的补偿。实测结果表明,大大拓宽了振动台的工作频带,且有效地抑制了谐波分量,减小了波形失真度。
     4.根据迭代学习控制原理,针对电液伺服系统这样一个非线性系统的跟踪控制问题,提出了采用离线迭代学习控制的思想,建立了数控加模控的控制方式,搭建了数字控制的硬件平台,完成了控制软件的开发。试验表明,离线迭代学习控制算法具有良好的收敛性,能够有效地优化系统的动态响应特性,减少因系统非线性等原因所造成的波形失真。
Simulated earthquake vibration table serves as an important test equipment and plays animportant role in anti-earthquake study. Through simulation of earthquake environment andspecific vibration experimental scenario, it obtains failure mechanism and various dynamicresponse parameters of some equipment, facilities, and structions in conditions of earthquake orspecific vibration, providing experimental evidence and raw data to studies of anti-earthquakeperformance improvement. Therefore, researching and developing high-precision simulatedearthquake vibration table, improving its dynamic characteristics and response precision, andrevealing earthquake or specific vibration status, are fundamentally important research projectand own enormous applicsation value and theoratic significance.
     This thesis, with2m×1.5m polarity reversal and monodirectional vibration earthquakevibration table as research object and with control theory as research methodology, conductsprofound research on key issues of dynamic performance testing, system modeling,three-parameter controlling technology on the basis of velocity positive regeneration feedback,iterative learning control theory, and other vital technologies. As a consequence it obtains thefollowing creative achievements.
     1. On the basis of system modeling and dynamic performance testing, the thesis analyzesthe system features of servo-control vibration table at electro-hydraulic place, and reveals theconditions of improving vibration table features and reappearance of earthquake waves, namelybroadening service band, eliminating loading change’s influence on vibration table features,increasing system’s subsidence ratio, and realizing acceleration control.
     2. According to the feature that the resonance frequency of vibration table’s oil column ishigh and close to90°phase shift frequency of servo control which has a small interval, the thesisconcludes three-parameter contrl thchnology on the basis of velocity positive regenerationfeedback, leading to reduction of oil column resonant frequency, increase in open-loop gain andsystem damping ratio. As a result it attenuates system resonance peak effectively as well asimproves the system dynamic response precision.
     3. The thesis completes the design of three-parameter marker oscillator, realizing direct controlling of acceleration signal. Through reasonablly deploying status variable’s feedback gainof closed-loop system, loading change’s influence on vibration table features is eliminated.Through adjusting controlling variables of three-parameter marker oscillator, compensation tothe three-parameter marker oscillator is realized. Real test result reveals that workingfrequentcy band is considerably broadened, harmonic component is effectively constrained anddistortion factor of the waveform is reduced.
     4. Based on iterative learning control theory, the thesis, in accordance with electro-hydraulicservo system bearing nonlinear system’s track control problem, proposes a methodology adopingiterative learning control, builds both digital and analogic control means, constructs digitalcontrol hardware platform, and completes control software development. Experiment reveals thatoffline iterative learning control arithmetic has good astringency, is able to effectively optimizesystems’s dynamic response features, and reduces waveform distortion caused by reasons likesystem non-linear and so on.
引文
[1]田石柱,赵桐.抗震拟动力试验技术研究.世界地震工程,2001,17(4):60~66
    [2]周金荣,黄维学.加强通信设备的抗震性能检测确保公用电信网运行安全.电信工程技术与标准化,2002,(4):58~59
    [3]胡小弟.实施振动试验的若干技术准备探讨.强度与环境,1993,(5):13~18
    [4]中国通信建设第一工程局抗震研究所.YD5083-2005,电信设备抗地震性能检测规范.北京:北京邮电大学出版社,2006
    [5]黄浩华.电液伺服系统在地震工程研究中的应用.测控技术,1996,15(4):32~34
    [6]北京市计量科学研究所.JJG638-90,1990,液压式振动试验台.北京:中国计量出版社,1990
    [7] Plummer A R.A detailed dynamic model of a six—axis shaking table.Journal of EarthquakeEngineering,2008,12(4):631~662
    [8] Chase J G,Hudson N H,Lin J,et al.Nonlinear shake table identification and control for near—fieldearthquake testing.Journal of Earthquake Engineering,2005,9(4):461~482
    [9] Ozcelik O,Luco J E,Conte J P,et a1.Experimental characterization,modeling and identification of theNEES—UCSD shake table mechanical system.Earthquake Engineering&Structural Dynamics,2008,37(2):243~264
    [10] Ahn H, Coh C, Kim K.Iterative Learning Control for a class of nonlinear system.Automatic,1993,29(6):1575~1578
    [11]谢胜利,田森平,谢振东.迭代学习控制的理论与应用.北京:科学出版社,2005
    [12]方重.模拟地震振动台的近况及其发展.世界地震工程,1999,15(2):89~93
    [13]王进廷,金峰,张楚汉.结构抗震试验方法的发展.地震工程与工程振动,2005,25(4):37~43
    [14]黄浩华.地震模拟振动台的设计与应用技术.北京:地震出版社,2008
    [15]黄浩华,徐文德.位移控制液压电液伺服系统特性的改善方法.液压与气动,1981,(1):1~3
    [16]韩俊伟,于丽明,赵慧等.地震模拟振动台三状态控制的研究.哈尔滨工业大学学报,1999,31(3):21~28
    [17]田永波.电液伺服地震模拟振动台的数字控制:[硕士学位论文].武汉:武汉理工大学,2004
    [18]贾丽花.电液伺服地震模拟振动台控制算法的研究与实现:[硕士学位论文].北京:北京交通大学,2007
    [19]崔伟清.BD-YZT液压振动台数字仿真:[硕士学位论文].保定:华北电力大学,1993
    [20] Abedi-Hayati S,Auslander D M. Control of multi-actuator electro-hydraulic shaking tables.FluidicsQuarterly,1979,11(1):1~16
    [21] Clarke D W.PID algorithms and their computer implementation.Transactions of the Institute ofMeasurement and Control,1984,6(6):305~316
    [22] Clarke D W, Hinton C J.Adaptive control of materials testing machines.Automatica,1997,33(6):1119~1131
    [23] Plummer A R.A detailed dynamic model of a six-axis shaking table.Journal of Earthquake Engineering,2008,12(4):631~662
    [24] Fan Shuncheng,Cui Weiqing,Li Shijie.Study on Control Method to Improve the performance of Dynamicresponse of Shaking Table for Earthquake Simulation.Proceedings-3rd International Conference onMeasuring Technology and Mechatronics Automation (ICMTMA2011), Shanghai,China,January:431~436
    [25]宋琼,朱长春,牛宝良.液压振动台建模与加速度波形失真度分析.机床与液压,2008,36(12):81~83
    [26]韩俊伟,胡宝生,于丽明.地震模拟振动台参数灵敏度分析.地震工程与工程振动,1997,17(3):110~116
    [27]韩俊伟,胡宝生,周明东等.地震模拟振动台初始状态调节和控制参数的匹配.地震工程与工程振动,1997,17(1):115~120
    [28]丁红,李学军,王昕等.自动控制原理.北京:北京大学出版社,2010
    [29]熊旭军,宁雅丽,张颜萍.正反馈在放大电路中的应用.甘肃广播电视大学学报,2005,15(3):5~7
    [30]林东栋,余晓东,杨益金.基于电压正反馈的逆变器并网孤岛检测技术.杨德仁.第十届中国太阳能光伏会议论文集.杭州:浙江大学出版社,2008:863~868
    [31]张宏昌,潘海波,相聪等.铝板轧制压力正反馈厚度控制的动态模型.轻金属,2009,(8):68~70
    [32]胡喜玲,国海涛.基于正反馈自适应遗传算法的机器人路径滚动规划.计算机应用研究,2010,27(6):2037~2039
    [33]顾伟,褚建新.大功率G一M系统的电流正反馈调速方法及应用.电工技术杂志,1997,(5):31~33
    [34]王平轩.轧机电控系统电流正反馈型电势闭环存在问题探讨.有色金属加工,2003,32(6):47~50
    [35] Na Jing, Ren Xuemei, Huang Hong.Time-delay Positive Feedback Control for Nonlinear Time-delaySystems with Neural Network Compensation.Acta Automatica Sinica,2008,34(9):1196~1202
    [36]贾少东,贾瑞武,范新华等.正反馈数字PID在气体压力控制中的应用.机床与液压,2003,(5):145~146
    [37]王宣银,丁凡,陶国良等.自校正状态观测及自校正反馈控制的研究.仪器仪表学报,2005,19(3):316~319
    [38]唐贞云,李振宝,纪金豹等.地震模拟振动台控制系统的发展.地震工程与工程振动,2009,29(6):162~169
    [39] Stoten D P, Benchoubane H.Robustness of a minimal controller synthesis algorithm.International Journalof Control,1990,51(4):851~861
    [40] Stoten D P, Gomez E G.Adaptive control of shaking tables using the minimal control synthesisalgorithm.Philosophical Transactions of the Royal Society A:Mathematical,Physical and EngineeringSciences.London,2005,34(9):l171~1192
    [41] Seki K., Iwasaki M.Kawafuku M.et al. Adaptive feedforward compensation for reaction force withnonlinear specimen in shaking tables.Mechatronics,2009:1~6
    [42] Stoten D P,Shimizu N.The feed forward minimal control synthesis algorithm and its application to thecontrol of shaking tables.Journal of Systems and Control Engineering,2007,221(13):423~444
    [43] Seki K,Iwasaki M,Kawafuku M,et al.Adaptive compensation for reaction force with frequency variationin shaking table systems.Industrial Electronics,2009,56(10):3864~3871
    [44] Dozono Y,Horiuchi T,Katsumata H.Improvement of shaking—table control by real—time compensationof the reaction force caused by a non—linear specimen.ASME Pressure Vessels Piping Div PublPVP,2001,428(1):247~255
    [45] Shen Yili, YangYun, Li Tiansh.The design of dynamic simulation system on earthquake surroundings.ACADJXJTU,2003,15(1):102~106
    [46]姚建均,胡胜海,韩俊伟.电液伺服振动台加速度谐波抑制.机械工程学报,2010,46(3):22~28
    [47] Xu Yang,Hua Hongxing, Han Junwei.Three state controller design of shaking table in active structuralcontrol system.Control andAutomation,2007,1:88~93
    [48]黄茹楠,管晴晴,高英杰等.电液振动台的模糊PID控制的研究.液压与气动,2009,(4):36~38
    [49] Dong-Jae Lee,Chae-Wook Lim,Youngjin Park,et a1.The tracking control of uni—axial servo—hydraulicshaking table system using time delay control.SICE—ICASE,2006. International Joint Conference,2006:29~32
    [50] Yao Jianjun, Fu Wei, Hu Shenghai,et al.XPC-based real time control system for an electro-hydraulic servoshaking table.Intelligent Control and Automation (WCICA),20108th World Congress on,2010:2026~2030
    [51] Kuehn J, Epp D, Patten W N.Hish—fidelity control of a seismic shake table.Earthquake Engineering&Structural Dynamics,1999,28(11):1235~1254
    [52]徐兆红.电液位置伺服系统的模糊控制研究:[硕士学位论文].昆明:昆明理工大学,2004
    [53] Uchiyama M.Formulation of high—speed motion pattern of a mechanical arm by trial.Transactions of theSociety of Instrumentation and Controlngineers,1978,14(6):706~712
    [54] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of RoboticSystems,1984,1(2):123~140
    [55] Arimoto S, Kawamura S, Miyazaki F, et a1. Learning control theory for dynamical systems.Proceedingsof the24thIEEE Conference on Decision and Control, Ft. Lauderdale, FL,1985,3:1375~1380
    [56] Moore K L. Interative learning control—an expository overview. Applied and Computational controls,Signal Processing and Circuits,1998,1:151~214
    [57]谢胜利,田森平,谢振东.迭代学习控制的理论与应用.北京:科学出版社,2005
    [58]YeYongqiang, Wang Danwei. Multi-channel design for iterative learning control. American ControlConference,2004,6(2):5138~5143
    [59] Precup R E, Preitl S, Kilyeni S, et al. Iterative learning control approach to fuzzy control systemsdevelopment. The International Conference on "Computer as a Tool”,2007,2:692~697
    [60] Li Pingfan, LiuYi.Iterative learning control for linear motor motion system.International Conference onAutomation and Logistics,2007,18(21):2379~2383.
    [61]王占林.近代电气液压伺服控制.北京:北京航空航天大学出版社,2005
    [62] Ben-brahim L, Benammar M, Alhamadi M A.A new iterative learning control method for PWM invertercurrent regulation.The Fifth International Conference on PEDS,2003,2:1460~1465
    [63]王明彦,郭奔.基于迭代学习控制的电动伺服负载模拟器.中国电机工程学报,2003,12(12):123~126
    [64]杨明,高扬,于泳,徐殿国.基于迭代学习控制的交流伺服系统PI参数自整定.电机与控制学报,2005,9(6):588~591
    [65] Ibrahim Z, Levi E. Acomparative analysis of fuzzy logic and PI speed control in high-performanceACdrives using experimental approach.IEEE, Trans. IAS,2002,38(5):1210~1217
    [66]王志文,郭戈.一种新的移动机器人路径跟踪控制策略.兰州理工大学学报,2006,32(4):90~92
    [67] Choi J Y, Lee J S. Adaptive iterative learning control of uncertain robotic systems. IEEProceedings-Control Theory Application.2000,147(2):217~223
    [68] SArimoto, S Kawamura, F Miyazaki. Bettering operation of dynamic systems by learning:Anew controltheory for servomechanism or mechatronics systems.Decision and Control,1984,1(23):123~140
    [69]阮小娥,万百五.递阶稳态优化下非线性大工业过程的迭代学习控制.系统工程理论与实践,2002,(6):16~20
    [70]阮小娥,万百五,高红霞.非线性工业过程控制系统的迭代学习控制与收敛性分析.控制理论与应用,2002,(1):73~79
    [71] ChenY, Dou H, Tan K K.Local symmetrical integral type iterative learning control.Control Theory andApplication,2000,17(3):347~352
    [72]骆传刚,赵弘,周明勇.迭代学习法在机械压力机滑块位置控制中的应用.机床与液压,2003,(5):92~93
    [73] Schaefer J F, Cannon R H.On the control of unstable mechanical systems. Proceedings of the FAC3rdCongress, London, UK,1966
    [74]李战明,艾文欢,陈若珠.倒立摆的迭代学习控制方法研究.传感器与微系统,2008,27(4):40~42
    [75]王仲鸿,王强,张东霞等.电力系统暂态稳定问题和迭代学习控制的研究.电力系统自动化,1999,23(8):6~10
    [76] French M, Munde G, Rogers’s E et al. Recent developments in adaptive iterative learning control.Decision and Control,1999,1:264~269
    [77]李洪人.液压控制系统.北京:国防工业出版社,1990
    [78]李德葆.振动模态分析及其应用.北京:宇航出版社,1989
    [79]周传荣,赵淳生.机械振动参数识别及其应用.北京:科学出版社,1989
    [80]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用.天津:天津大学出版社,2001
    [81]崔伟清,黄维学.锤击法在通信设备抗震测试中的应用.河北机械,1996,(2):74~76
    [82]沈松,应怀樵,雷速华等.用锤击法和变时基技术进行黄河铁路桥的模态试验分析.振动工程学报,2000,13(3):492~495
    [83]周勇军,贺拴海,宋一凡等.基于锤击法的弯连续刚构模型桥动力试验.振动、测试与诊断,2007,27(3):213~215
    [84]黄怀德,郎德民,黄卫瑜等.多点激振系统的模态试验技术.导弹与航天运载技术,1999,(6):23~31
    [85]刘兵. LMS模态分析软件在齿轮组件模态试验中的应用.燃气涡轮试验与研究,2003,16(2):43~51
    [86] Braun S, Seth B. Analysis of repetitive mechanism signatures.Journal of Sound and Vibration,1980,70(4):513~526
    [87]何正嘉,刘雄,屈梁生.信号时域平均处理原理和应用.信号处理,1986,2(4):236~243
    [88]陆绮荣.电子测量技术.北京:电子工业出版社,2003
    [89]孙毅,姜继海,程孟专等.虚拟样机技术在轴向柱塞泵运动仿真与分析中的应用研究.液压与气动,2010,(2):25~27
    [90]王燕华,程文,陈忠范等.组装式单自由度地震模拟振动台的创新技术研究.防灾减灾工程学报,2010,30(4):419~422
    [91] Blondet M, Esparza C. Analysis of shaking table-structure interaction effects during seismic simulationtests.Earthquake Engineering&Structural Dynamics,1988,16(4):473~490
    [92]卢小波.基于UG建模的数控加工夹具设计及有限元分析.制造业自动化,2010,32(11):138~140
    [93]李军,邢俊文,覃文洁.ADAMS实例教程.北京:北京理工大学出版社,2002
    [94]李伟,于连国,王妍玮.ADAMS在虚拟样机仿真分析中的应用.机电产品开发与创新,2010,23(3):96~97
    [95]李韶华,杨绍普,李皓玉.ADAMS-MATLAB联合仿真的汽车悬架半主动控制.系统仿真学报,2007,19(10):2304~2307
    [96]袁文武,蔡慧林,任刚.基于UG和ADAMS的齿轮啮合动力学仿真.煤矿机械,2010,31(2):40~42
    [97]支龙,昌放辉,陈立平等.汽车半主动悬架的ADAMS和MALAB联合仿真.自动化与仪表,2004,19(6):43~45
    [98]郑建荣.虚拟样机技术入门与提高.北京:机械工业出版社,2002
    [99]朱贞平,谭蓉.基于ADAMS建模与基于UG建模的比较研究.设计与研究,2008,183(2):19~20
    [100]宋双柱,孙大松.基于UG和ADAMS的新型夹钳虚拟样机建模及动力学仿真.哈尔滨理工大学学报,2010,15(1):40~43
    [101]万朝燕,李培行,庄绪红.基于ADAMS的凸轮机构弹性动力学分析.大连交通大学学报,2010,31(1):45~48
    [102]王中鲜.MATLAB建模与仿真应用.北京:机械工业出版社,2010
    [103]李斌茂,钱志博,程洪杰等.AUV发动机的ADAMS/MATLAB联合仿真研究.系统仿真学报,2010,22(7):1668~1673
    [104]郑建荣.虚拟样机技术入门与提高.北京:机械工业出版社,2002
    [105] A Filiatrault,R Tremblay,B K Thoen,et al.A Second Generation Earthquake SimulationSystem.Description and Performance Eleventh World Conference On Earthquake Engineering,1996(1):1204~1027
    [106] T Knohl, H Unbehauen.Adaptive position control of electro-hydraulic servo systems using ANN.Mechatronics,2000,(10):127~143
    [107]孙文质.液压控制系统.北京:国防工业出版社,1985
    [108]王春行.液压伺服控制系统.北京:机械工业出版社,1999
    [109]武宠程,张兰兰,朱建国.颤振信号对电液伺服阀性能的影响分析.制导与引信,2010,31(3):37~39
    [110]谢玉东,刘延俊,王勇.基于颤振效应的气动比例阀摩擦力补偿研究.振动与冲击,2008,(2):107~109
    [111] Weiqing Cui,Yanyan Li, Shengkai Wang.The Simulation Research of Hydraulic Shaking Table Based onUG and ADAMS. Proceedings of the20112nd International Conference on Information Technology andScientific Management, Tianjin, China, June20-21.2011, Vols1-5:3435~3438
    [112]Fan Shuncheng, Cui Weiqing, Li Shijie. Study on State Control Parameter Configuration of SeismicSimulating Shaking Table. Proceedings of the2010International Conference on Information Technology andScientific Management, Tianjin, China, December, Vols1-2:989~992
    [113] S Arimoto, S Kawamura, F Miyazaki. Bettering operation of dynamic system by Learning: A newcontrol theory for servomechanism and Mechatronics systems.Decision and Control.1984,(23):1064~1069
    [114] Amann, N,Owens, D H, Rogers, E. Iterative learning control for discrete time systems using optimalfeedback and feedforward actions.Decision and Control,1995,(2):1696~1701
    [115] Tayebi A,Zaremba M B. Internal model-based robust iterative learning control for uncertain LTIsystems. Decision and Control,2000,(4):3439~3444
    [116]于少娟,齐向东,吴聚华.迭代学习控制理论及应用.北京:机械工业出版社,2005,1~6
    [117]林辉,王林.迭代学习控制理论.西安:西北工业大学出版社,1998:2~27
    [118]邱法维,钱稼茹,陈志鹏.结构抗震实验方法.北京:科学出版社,2000,1~68
    [119]李大海.电液伺服振动台的随机振动控制:[硕士学位论文].西安:西安交通大学,2004
    [120]刘永昌.地震模拟振动台微机迭代控制.地震工程与工程震动,1984,5(3):55~62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700