汽车防撞雷达的虚警问题分析及信号波形设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车防撞雷达作为主动避撞工具,在应用中遇到的主要问题是频繁的虚警,这是由汽车运行的交通环境复杂造成的。从国际研究来看,采用具有良好性能的雷达信号是解决这个问题的主流方法。论文正是围绕虚警问题的解决来开展研究工作的,主要内容如下:
     ⑴分析虚警问题的产生原因及其对雷达性能破坏的特点。
     ⑵分析了传统雷达信号的不足,将具有良好自相关特性的Costas编码应用于汽车防撞雷达信号中。给出了这种信号的结构及模糊函数,并给出确定信号参数的准则,通过仿真实验证明这种形式的信号具有良好的模糊函数。
     ⑶研究传统信号的目标分辨情况并指出其中存在的问题,在介绍一维距离成像基础上,分析了论文所采用信号的目标成像过程,并通过仿真实验证明了该信号在静止、运动目标分辨中的优越性。
     ⑷分析了汽车防撞雷达工作中存在的交叉干扰问题,提出在雷达信号中采用Costas码组,利用码间良好的非循环互相关函数特性来达到抑制交叉干扰的目的,并通过仿真实验验证了此想法的可行性。
As a safety technology, collision avoidance system for road vehicle collects the information of the edge of roadway and measures range, velocity by detecting vehicles, passerby and roadblocks in the front of the car, then it can give an alarm, apply the brake or change the way to ensure road safety. Comparing with classical safety technology equipments (bumper, life belt, safety ballonet), wireless electronics are more initiative. Such a system in practical transportation applications can not only ensure traffic safety, but also reduce the loss. Therefore, study of collision avoidance system in vehicle is very significant.
     Radar at millimeter-wave band is the preferred sensor in collision avoidance system for vehicle; because it has good performance in bad weather condition and such complicated transportation circumstance. However, comparing with the other civilian radars, such as weather probe, ground penetrating radar etc, and false alarm has to be a critical issue. From international researches, there has long been an interest in signal waveform selection to enhance radar performance. This thesis does some research in transmit signal waveform design in radar to deal with the problem about false alarm.
     Ⅰ. Analysis of Traditional Signal Waveform
     Frequency modulation continuous wave (FMCW) has been well developed and are widely applied, which is the main type of radar signal now. However, the mono-oriented FMCW has range-velocity decoupling. If it is changed to be bi-oriented, there will be not exact result while the single target is detected, because only one part of frequency modulated segments is effective. Moreover this signal is inability to distinguish multiple targets. It is showed that FMCW is not fit to collision avoidance radar in vehicle.
     There has also been significant amount of attention focused on stepped frequency pulses (SFP) for lessening requests for signal processing equipment. Currently this signal is preferred in synthetic aperture radar (SAR). However, data utilized is low due to one result be given after a clutter of impulses processed. Another problem is that in the situation where the target and radar moves at a certain speed, the impact of this relative motion on system design should be considered. SFP is sensitive to moving target relative to radar, which results in target imaging not exactly. Although it can be solved by complex velocity compensating, in fact, it is not fit to collision avoidance radar in vehicle which needs lower cost and simpler structure.
     Ⅱ. Costas Coded Signal
     Ambiguity feature of frequency coded signal is related to the code, so costas sequence is selected, which has excellent ambiguity characteristic. Narrow mainlobe and lower sidelobes make signal have good range and velocity measurement resolution. Furthermore, ability of anti-jamming is improved. These features are favorable to collision avoidance radar in vehicle. Combining costas code and SFP not only deal with the problems of SFP, but also keep on the merits of this type of signal.
     Linear frequency modulated pulse deals with the problem of lower utilized data owning to rectangle subpulse. Costas code adopted among the pulses can decrease range-velocity decoupling. The rules about how to choose parameters ofsignal given in the thesis are summarized. Based on these rules, parameters of signal chosen in reason reduce the sidelobes of range, which make ambiguity function approximate to optimal signal.
     Ⅲ. Target Discrimination
     Anti-collision radar in vehicle which can avoid vehicle collision relies heavily on target discrimination. Traditional radar signals have disadvantage in discrimina- ting targets, and signals improved on are not enough to achieve good impact. The signal used in this thesis belongs to high resolution radar, so its target imaging is based on one dimension range imaging. Rearranging the order of Costas sequence makes the signal have excellent feature in target discrimination. The thesis analyzes statistical and moving target resolution toward (or away) radar on theory, then the validity of the method is shown using simulation results.
     Ⅳ. Anti-Cross Interference
     Radar used in vehicle is prone to be affected by cross interference owning to transportation circumstance. This thesis analyzes cross interference, and we know that classical radar signals can not restrain cross interference. Costas codes group adopted in signal makes costas waveform patterns with small cross- ambiguities, so cross interference is restrained depending on non-circle cross correlation among the codes. The simulation results show that the signal is superior to the traditional signals in radar in restraining cross interference capability, because target imaging is well and target can be discriminated.
     Ⅴ. Conclusion
     Based on the analysis of theory and simulation test about ambiguity, distinguishing target and cross interference of signal, the conclusion is given:
     ⅰCostas waveform adopted in collision avoidance radar in vehicle gives a good approximation to the ideal thumbtack-like ambiguity function desired for high resolution delay-doppler imaging and measurement, although the ambiguity function of signal is not the optimal thumbtack pattern.
     ⅱThe effects of velocity on signal which adopted costas code are less thanSFP. The signal used in the thesis meets the need of collision avoidance radar in vehicle, while velocity compensating is not adopted. It is because that there is no fixed phase between pulses.
     ⅲUtilizing costas code can satisfy the need to restrain cross interference. If costas code are selected at will, cross interference can be restrained at a certain extent. However, costas code group is nicer than costas code chosen at will on targets resolution when all frequencies of signal are destroyed.
     Signal waveform design is just one part of collision avoidance radar in vehicle. In the future, the whole system will be finished and run way will be given, and then there will be a test in practice. The great efforts will be made with this orientation.
引文
[1] 朱珂. 汽车防撞系统与毫米波雷达, 轻型汽车技术, 2003(10)总 170: 80-83.
    [2] 贺乐厅. 智能运输系统-基于毫米波雷达的车辆防撞技术与实验研究(博士学位论文), 东南大学, 2003 年 4 月: 7-12, 26-29.
    [3] 徐涛. 毫米波汽车防撞雷达实用化研究(博士学位论文), 中国科学院上海微系统与信息研究所, 2003 年 6 月: 13-20.
    [4] 黎滨洪, 周希朗. 毫米波技术及应用, 上海交通大学出版社, 1990年9月第一版: 1-5.
    [5] Merrill Skolnik, Role of Radar in Microwave. IEEE Transaction on Microwave Theory and Techniques, March. 2002: 625-632.
    [6] Richard Bishop. Intelligent vehicle application worldwide. Intelligent Systems, January/ February 2000: 78-81.
    [7] Paul Griffiths, Dirk langer. Sensor-Friendly Vehicle and Roadway Systems, IEEE Instrumentation and Measurement Technology Conference, May. 2001: 1036-1040.
    [8] Roliling, Meinecke, Klotz, Lubbert. Research activities in automotive radar, MSMW’ 2001 Symposium Proceedings, Kharkov, Ukraine, Jun.2001: 4-9.
    [9] R. Abou-Jaoude, ACC Radar Sensor Technology, Test Requirements, and Test Solutions. IEEE Trans. On Intelligent Transportation Systems, Sept. 2003, Vol. 4, No.3.
    [10] www.XINHUANET.com, 我国首个汽车防撞雷达芯片研制成功, 2005 年 6 月 2 日.
    [11] James P.Bliss, Sarah A. Acton, Alarm mistrust in automobiles: how collision alarm reliability affects driving, Applied Ergonomics , 2003, No.34: 499-509.
    [12] 林茂庸, 柯有安. 雷达信号理论, 国防工业出版社, 1981 年 1 月第一版.
    [13] 张直中. 雷达信号的选择与处理, 国防工业出版社, 1979 年第一版.
    [14] A.W.里海捷克 著, 董士嘉 译. 雷达分辨理论, 北京科学出版社, 1973 年第一版.
    [15] Mahafza, Bassem R. Matlab Simulations for Radar Systems Design, Chapman and Hall/CRC CRC Press LLC, 2004.
    [16] 中华人民共和国道路交通安全法, 2004 年 5 月 1 日.
    [17] 高速公路交通管理办法, 1994 年 12 月 22 日.
    [18] 刘国岁, 顾红, 等. 随机信号雷达, 国防工业出版社, 2005 年 4 月第一版: 158-200.
    [19] 刘艳, FMCW 汽车防撞雷达的多目标信号处理方法研究(硕士论文), 南京理工大学, 20040909: 14-19.
    [20] Hermann Rohling, Smart FM/CW Radar Systems for Automotive Applications, A Global Perspective of Affordable Systems for the New Millennium, IEEE 2005 International Radar Conference, May 9-12, 2005.
    [21] 张容权, 杨建宇, 等. 对称三角线性调频连续波信号模糊函数分析, 电子学报, 2004年 3 月, 3(32): 353-356.
    [22] Du Yuming, Yang Jianyu, Xiong Jintao. Novel method for ambiguity elimination in the LFMCW radar, Journal of Systems Engineering and ELectronics, 2006, 17(1): 91-95.
    [23] 王一丁, 李兴国, 等. 步进频率雷达信号的模糊函数, 现代雷达, 1997 年 12 月, 19(6): 6-11.
    [24] N. Levanon. Stepped-frequency pulse-train radar signal, Radar, Sonar, and Navigation, 2002, 149(6): 297-309.
    [25] Irina Gladkova. A General Class of Stepped Freguency Trains, IEEE, 2006: 100-105.
    [26] 李强, 张焕颖, 等. 高分辨雷达信号分析与比较, 火控雷达技术, 2005 年 6 月, 34(2): 67-72.
    [27] 于 飞, 马红星, 等. 线性调频子脉冲频率步进雷达信号分析, 雷达科学与技术, 2004年 4 月, 2(2): 77-81.
    [28] 贺志毅, 汤斌, 等. 脉内调频、脉间步进跳频雷达信号的模糊函数, 电子学报, 2003 年 7 月, 31(7): 1118-1120.
    [29] I. Gladkova , D. Chebanov. Suppression of grating lobes in stepped-frequency train, Proc. of the IEEE International Radar Conf, USA, 2005: 371-376.
    [30] Nadav Levanon, Eli Mozeson. Modified Costas Signal, IEEE Transcations on Aerospace and Electronic Systems, JULY 2004, 40(3): 946-953.
    [31] 杨义先. 最佳信号理论与设计, 人民邮电出版社, 1996 年 12 月第一版: 193-217.
    [32] 王 涛, 王飞雪, 郭桂蓉. 理想编码评述, 现代雷达, 2002 年 7 月, 第 2 期: 46-49.
    [33] Dr. Nadav Levanon, Radar Waveforms: Analysis and Design, A Global Perspective of Affordable Systems for the New Millennium, IEEE 2005 International Radar Conference, May 9-12, 2005.
    [34] Konstantions Drakakis. A Review of Costas Arrays, an open access article distributed under the Creative Commons Attribution License, March .2006: 1-32.
    [35] 牟善祥, 纪小利, 等. Costas阵列编码与线性调频SFR信号分析, 现代雷达, 2003年10月, 25(10): 31-35.
    [36] 李海滨, 张云华. 降低调频信号副瓣的方法研究, 现代雷达, 2006年4月, 28(4): 45-49.
    [37] Nadav L, Mozeson E. Nullifying ACF grating lobes in stepped-frequency train of LFM pulses, IEEE Trans. On Aerospace and Electronic Systems, 2003, 39(2): 694-703.
    [38] 李海峰. 毫米波步进频率雷达关键技术研究(硕士学位论文), 南京理工大学, 2005年6月: 5-11.
    [39] 张建辉. 毫米波汽车防撞雷达的研究(博士学位论文), 南京理工大学, 2001 年 7 月: 8, 15-20, 60-64.
    [40] Konstantions Drakakis. Data mining and Costas arrays, Feb. 2006.
    [41] Solomon W. Golomb. Constructions and Properties of Costas Arrays, Proceedings of the IEEE, Sept .1984, 72(9): 1143-1163.
    [42] Svetislavv. Maric, Ivan Seskar, Edward l.Titlebaum. On Cross-Ambiguity Properties of Welch-Costas Arrays, IEEE transaction on aerospace and electronic systems, Oct.1994, 30 (4): 1063-1071.
    [43] Oscar Moreno, Dorothy Bollman. Exhaustive Search for Costas-type for Multi-Target Recognition, IEEE Computer Society, May. 2003: 354-358.
    [44] Daniel J. Rabidean. Nonlinear Synthetic Wideband Waveforms, Radar Conference. Proc- eedings of the IEEE, 2002.
    [45] Mark R. Bell, Chieh-Fu Chang. Frequency Coded Waveforms for Adaptive Waveform Radar, Department of Defense under the Air Office of Scientific Research MURI Grant FA9550-05-1-0443.
    [46] Chieh-Fu Chang, Mark R. Bell. Frequency Coded Waveforms for Enhanced Delay - Doppler Resolution, IEEE Transactions on, Nov. 2002, 49(11): 2960-2971.
    [47] 杨建宇, 凌太兵, 等. LFMCW 雷达运动目标检测与距离速度去耦合, 电子与信息学报, 2004 年 2 月, 26(2): 169-173.
    [48] 张建辉, 刘国岁, 等. 编码步进调频连续波信号在汽车防撞雷达中的应用, 电子学报, 2001 年 7 月, 29(7): 943-946.
    [49] 徐涛, 孙晓玮, 等. 一种采用变周期调频连续波雷达的多目标识别方法, 电子学报, 2002 年 6 月, 30(6): 861-863.
    [50] 保铮. 雷达成像技术, 电子工业出版社, 2005 年 4 月第一版.
    [51] 付耀文, 黎湘, 等. 高分辨阶梯变频毫米波雷达目标信号仿真研究, 系统工程与电子技术, 2000, 22(5): 5-7.
    [52] 姚萍, 王贞松. 线性式步进合成孔径雷达系统的信号处理,系统工程与电子技术, 2006 年 2 月, 28(2): 159-162.
    [53] 徐永, 马林. 目标径向运动对频率步进雷达信号的影响的分析与仿真, 现代雷达. 20 05年12月, 27(12): 49-52.
    [54] 李海英, 杨汝良. 径向速度对频率步进目标像影响分析, 电子信息学报, 2003年5月, 25(5): 592-597.
    [55] 刘静, 李兴国. 毫米波高分辨率雷达运动补偿研究, 现代雷达. 2004 年 7 月, No.267: 21- 24.
    [56] Moon-Sik Lee, Yong-Hoon Kim. Automotive radar tracking of multi- target for vehicle C- W/CA systems, Mechatronics, 2004, No.14: 143-151.
    [57] George W. Stimison, 吴汉平 等译. 机载雷达导论, 电子工业出版社, 2005 年 3 月第二版: 581-640.
    [58] H. Rohling, Waveform design, Range CFAR and Target recognition, Technical University Hamburg-harburg, 2004.
    [59] Willian M.Daley. Electromagnetic Compatibility Testing of A Dedicated Short-range Communication System, U.S.Department of Commerce, NTIA Report : 98-352.
    [60] Weita Chang, Kent Scarbrough. Costas Arrays with Small Number of Cross- coincidences. IEEE Transcation on Aerospace and Electronic Systems, Jan.1989, 25(1): 109-112.
    [61] C. C. Arcasoy, B. KOC. On Cross-Ambiguity Properties of Welch-Costas Arrays, IEEE Transctions on Aerospace and Electronic Systems, Oct. 1994, 30(4): 1063-1071.
    [62] Scott Rickard, Edward Connell, etc. The enumeration of costas arrays of size 26. In Proc- eedings of the 40th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, March 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700