SAR高分辨成像及抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达是主动式微波成像雷达,能全天候、全天时、实时获取大地域的地面图像,具有良好的植被和地面穿透能力,对资源探测和军事侦察等有重大意义。随着技术的发展,现代合成孔径雷达正朝着高分辨和提高自身抗干扰能力方向发展,因此,对高分辨合成孔径雷达宽带信号产生技术和对合成孔径雷达的抗干扰技术的研究已经成为该领域中的重要课题。在这个课题背景下,本文全面分析了一种新的高分辨合成孔径雷达宽带信号产生技术,即利用Chirp子脉冲频率步进信号合成宽带LFM信号的方法,并进行了详细的误差分析和性能评估。在抗干扰方面,本文研究了一种采用相位扰动LFM信号的针对数字储频干扰方式的抗干扰方法,并进行了抗干扰性能分析,取得了较好的抑制干扰效果。
     针对高分辨合成孔径雷达宽带信号产生技术的研究包括以下几个方面:
     1.研究了利用Chirp子脉冲频率步进技术产生宽带信号方法,并分析了距离向高分辨原理;
     2.定量分析了信号发射过程中载频跳变误差和子脉冲发射时间误差对宽带信号产生的影响,给出了载频跳变误差和子脉冲发射时间误差的理论允许范围;定量分析了目标径向运动对宽带信号产生的影响,推导了运动补偿因子;
     3.针对Chirp子脉冲频率步进产生的宽带LFM信号,研究了该信号RD(range-doppler)SAR成像算法,通过仿真试验0得到了高分辨成像结果。
     针对SAR数字储频干扰模式进行抗干扰技术的研究主要包括以下几个方面:
     1.研究了SAR数字储频干扰原理,并对压制式储频干扰和欺骗式储频干扰进行了分析推导;
     2.研究了两种相位扰动信号SV(slope-varying)LFM和MT-PM(Multi-tone Phase-modulated)LFM的自相关性、互相关性、功率谱等特性,理论分析和仿真试验验证了采用相位扰动信号抑制数字储频干扰的可行性;
     3.详细分析了SV LFM信号的抗干扰性能,研究了直接匹配压缩和先干扰消减后匹配压缩两种抗干扰方法及实现结构,并比较两种方法的抑制干扰效果。
Synthetic Aperture Radar (SAR) is a kind of active microwave imaging radar. It can all-weather, all-day and timely get ground images of wide region and has fine penetrability to vegetation and ground. SAR is pretty important to resources exploitation and military reconnaissance. Today with the development of technology, SAR is paid more attention to due to its great capabilities in high range resolution and robust anti-jamming, so the technology of high resolution SAR waveform design and the technology of anti-jamming have become the hot field in the radar world. The dissertation is focused on ultra wide band (UWB) waveforms, which achieve UWB return without increasing the instantaneous bandwidth, and new anti-jamming method.
     The research on UWB waveform includes the following aspects:
     1. Analyses the chirp stepped-frequency waveform synthesizing the wideband signal and the range resolution of chirp stepped-frequency waveform
     2. Analyses the effect of the carrier frequency error, transmitting time error and the velocity on the synthetic range profile, discusses the radial velocity compensation
     3. Discusses the method to design waveform and the steps of SAR imaging
     The research about anti-jamming method against digital radio frequency memory (DRFM) jamming are as follow:
     1. Analyses the principle of DRFM repeat jamming, finds the weakness of the jamming system
     2. Analyses the performance of multi-tone phase-modulated (MT-PM) LFM signal and slope-varying (SV) LFM signal including the autocorrelation, cross-correlation and power spectrum
     3. Analyses a signal processing method for penalizing a DRFM repeat jamming, gives the target simulation.
引文
[1] 张澄波.综合孔径雷达原理.北京:科学出版社,1989
    [2] A.Freeman, D.Evans, J.J.van, et al. SAR Apllications in the 21st Century. EUSAR, 96, KKnigswinter Germany,25-30
    [3] Donald R.Wehner. High Resolution Radar. Boston: Artech House,1995
    [4] John J, Kovaly. Synthetic Aperture Radar. Artech House,1978
    [5] Walt Seiberling, Laura Traxler-Lee, Sean Collins. A Small Satellite Constellation for Many Uses. SPIE,1991,1495:32-41
    [6] 李明,胡其正.基于小卫星星座的灾难和环境监测系统.微波遥感技术研讨会论文集, 2000,42-48
    [7] 费元春,苏广川,米红,等.宽带雷达信号产生技术. 北京:国防工业出版,2002
    [8] 马永华. 合成孔径雷达对抗技术研究:[硕士学位论文],成都:电子科技大学,2004
    [9] 杜贤俊. 合成孔径雷达抗干扰技术研究:[硕士学位论文],成都:电子科技大学,2003
    [10] 徐美林. 对合成孔径雷达干扰与抗干扰及效能评估的研究:[硕士学位论文],成都:电子科技大学,2004
    [11] 刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999
    [12] Nadav Levanon. Stepped-Frequency Pulse-Train Radar Signal. IEE Proc-Radar Sonar Navigation,2002,149(6):198-309
    [13] Maron.D.E. Non-periodic Frequency-Jumped Burst Waveforms. Proceedings of the IEE International Radar Conference, London, Oct.1987:484-488
    [14] 龙腾,吴琼之.频率步进雷达参数设计与目标抽取算法.系统工程与电子技术,2001,23:26-31
    [15] 李海英.超宽带信号波形及其合成孔径雷达成像研究:[博士学位论文],北京:中国科学院电子学研究所,2002
    [16] 李海英,杨汝良.频率步进信号的合成孔径雷达处理.电子学报,2003,31(3):349-352
    [17] 李海英,杨汝良.径向速度对频率步进雷达目标距离像影响分析.电子与信息学报,2003,25(5):592-596
    [18] 甘荣兵.合成孔径雷达对抗及目标检测技术研究:[博士学位论文],成都:电子科技大学,2005
    [19] Mehrdad Soumekh. SAR-ECCM using phase-perturbed LFM chirp signal and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):191-205
    [20] Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. New York:Wiely,1999
    [22] R. Schroer. Electronic warfare. IEEE Aerospace and Electronic Systems Magazine,2003, 18(7): 49-54
    [23] N. Li and Y. Zhang. A survey of radar ECM and ECCM. IEEE Trans. Aerospace and Electronic Systems,1995,31( 3):1110-1120
    [24] G. Liu. A contrast experiment of ECCM of random to pseudo-random binary phase coded CW radar3rd Inter Conf Signal Proc,1996:1621-1624
    [25] D. Garmatyuk, R. Narayanan. ECCM capabilities of an ultra-wideband band limited random noise imaging radar.IEEE Trans. AES,2002:1243-1255
    [26] S.Axelsson. radar using random phase and frequency modulation. Proceedings of IGARSS,2003: 4226-4231
    [27] S. Roome. Digital radio frequency memory. IEEE electronics and Communications Engineering Journal,1990,147-153
    [28] D.DiFilippo,G.Geling,G.Currie. Simulator for advanced fighter radar EPM development. IEE Proceedings Radar, Sonar and Navigation,2001, 148(3):139-146
    [29] P.Pace,D.Fouts,S.Ekestorm.Digital false-target image synthesis for countering ISAR. IEE Proceedings Radar, Sonar and Navigation,2002, 149(5):248-257
    [30] P.Zulch,M.Wicks,B.Moran. A new complementary waveform technique for radar signals. Proceedings of the IEEE Radar Conference,2002:35-40
    [31] D. Rowitch, L. Milstein. Convolutional coding for direct sequence multi-carrier CDMA.IEEE Military Communications Conference,1995,1: 55-59
    [32] M.Soumekh. Reconnaissance with ultra wideband UHF synthetic aperture radar. IEEE Signal Processing Magazine, 1995,12(4) :21-40
    [33] M.Soumekh,D.Nobels,M.Wicks. Signal Processing of Wide-Bandwidth and Wide-Beam width P-3 SAR Data. IEEE Transactions on Aerospace and Electronic Systems,2001, 37(4):1122-1141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700