多种分子识别生物传感活性界面的构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过半个世纪的快速发展,生物传感器已成为一种先进的检测方法和分析手段,在药物研发、食品安全、工业控制、临床诊断以及环境保护等领域中具有广阔的应用前景。在生物传感器构建过程中,最关键的环节是如何构建分子识别生物传感活性界面,它直接影响着生物传感器的检测灵敏度、最低检测限、线性范围以及稳定性等方面。因此,本文致力于采用不同的新型功能化材料和固定化技术,构建出基于压电石英晶体微天平的亲和型生物传感界面,以及能够检测过氧化氢、葡萄糖等重要小分子物质的电化学生物传感界面,并进一步对所制备的生物传感器在生物分析中的应用进行探讨。本文的主要研究内容如下:
     (一)利用羧基化的多壁碳纳米管(MWCNTs)修饰石英晶体微天平铂基片(QCMPt基片),构建出能够实时监测白细胞介素-6(IL-6)及其可溶性受体(sIL-6R)之间相互作用的亲和型生物传感活性界面。通过实验分析可以获知IL-6与sIL-6R之间相互作用的动力学过程,进一步计算出两者的结合平衡常数(KA)和解离平衡常数(KD)分别为3.37×106M-1和2.97x10-7M。此结果与传统检测方法报道的一致,证实了该方法的可靠性和科学性。此外,已有报道证实IL-6及其受体是活血化瘀中药的潜在作用靶点之一,因此研究二者之间结合动力学过程可为我国传统中药作用机理探究提供一种新的研究方法,扩展了生物传感器的应用范围。
     (二)将铂纳米颗粒(PtNPs)有效固定于经聚乙烯醇(PVA)分散的MWCNTs表面,制备出PVA-MWCNTs-PtNPs复合纳米材料,用于构建无酶过氧化氢(H2O2)生物传感活性界面。该传感器对H202的检测表现出宽的线性范围(0.002~3.8mM),显著的灵敏度(122.63μAmM-1cm-2),较低的检测限(0.7μM,S/N=3)以及快速的响应时间(5s内)。此外,传感器也表现出良好的重复性、长时间稳定性和较强的抗干扰性能。实验证明该构建方法可为其他类型的无酶电化学传感技术的创新开发提供可行的技术手段。
     (三)以硫酸铜作为铜源,利用电化学沉积法在不同外界条件下制备一系列具有不同形貌结构的铜纳米材料,包括铜纳米颗粒、铜纳米块状、铜纳米树枝以及铜纳米花等,整个制备过程无需添加任何模板分子或催化剂,操作简单易行。分别用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对多种纳米铜结构进行形态表征,并详细阐明了其形成机制。将铜纳米树枝修饰于玻碳(GC)电极表面,在碱性条件下研究了铜纳米树枝自身的氧化还原特征及其对葡萄糖的无酶催化行为。检测结果表明:铜纳米树枝对葡萄糖具有良好的电催化活性,在工作电压为0.55V vs. Ag/AgCl的条件下,所制备的传感器对葡萄糖检测有快速的电流响应、较低检测限和较宽的线性范围,并具有良好的稳定性、抗干扰性和重复性。
     (四)以氯化铜作为铜前体,通过简单易行的两步电化学沉积法将氧化铜(CuO)纳米叶修饰于GC电极表面,构建基于CuO/GC电极的无酶传感器,并通过循环伏安法和计时电流法来研究其自身在0.1MNaOH溶液中的电化学响应特征,以及对葡萄糖和过氧化氢的电催化性能。结果表明,CuO/GC电极催化葡萄糖的氧化峰电位为0.55V,在此工作电压下对葡萄糖进行i-t曲线检测,得到较高的灵敏度(53.19NμAmM-1)、较宽的线性范围(12.5μM-4.29mM)以及较低的检测限(4.171xM)。该传感器对于过氧化氢的还原同样表现出优异的催化性能。
     (五)采用高温还原法将金纳米颗粒(AuNPs)固定于经壳聚糖(CS)还原的还原型氧化石墨烯(RGO)表面,制备出CS-RGO-AuNPs纳米复合材料,将其作为葡萄糖氧化酶(GOD)的固定载体,构建检测葡萄糖的分子识别生物传感活性界面。结果表明,所制备的基于GOD/CS-RGO-AuNPs/Pt电极的传感器,在工作电压为0.5V vs. Ag/AgCl条件下,对葡萄糖的检测灵敏度为102.4μA.mM-1cm-2,最低检测限为1.7μM(S/N=3),线性范围为0.015~2.13mM,线性相关系数R2为0.988。此外,该传感器还具有良好的稳定性和抗干扰能力。
As an advanced monitoring method to develop biotechnology, biosensor is a multidisciplinary approach which is composed of molecular recognition component and transduction element. It has wide application prospects in pharmaceutical analysis, foodsafety, industry control, clinical diagnosis,biochip technology and environmental protection. The biosensor interface fabrication is a crucial step in biosensor design, which directly influences the electrochemical performance of biosensor, such as sensitivity, limit of detection, linearly range and stability etc. This thesis focus on developing new functional materials and immobilization technology for constructing quartz crystal microbalance (QCM) affinity biosensor and hydrogen peroxide, glucose biosensor, and investigate their applications in bioanalysis field. The main Research contents and results are as follows:
     (a)A novel QCM affinity biosensor based carboxylated multi-walledcarbon nanotubes(MWCNTs) immobilized onto the platinum electrode for real time monitoring the interaction between interleukin-6(IL-6) and solubleinterleukin-6receptor (sIL-6R). The results showed that the apparent equilibrium association constant (Ka) and Dissociation Constant (KD) are respectively. This results are consist with traditional way's, revealing the reliability and scientificity of this method. Moreover, as a simple technology, this method not only provides a possibility for monitoring the interaction of biomacromolecules more efficiently, but also has broad application prospects in studies on the action mechanism of traditional Chinese medicine, which will greatly extend the biosensor's application range.
     (b) The amperometric non-enzymatic hydrogen peroxide biosensor based on poly(vinylalcohol)(PVA)/MWCNTs/Platinum nanoparticles (PtNPs) nano-composite film was constructed. In this hybrid film, the PtNPs were electrochemical deposited onto the surface of MWCNTs which were non-covalentlyfunctionalizedby freezing-thawingPVA. Since the synergic effect of MWCNTs and PtNPs, the PVA-MWCNTs-PtNPs film modified electrode exhibited excellent electrocatalytic performance for H2O2, such as awide linear range(0.002-3.8mM), a remarkable sensitivity(122.63μA mM-1cm-2), a low detection limit (0.7μM) at the signal-to-noiseratio of3and a fast response time (within5s). In addition, the as-prepared sensor also showed long-termstability, excellentreproducibility and anti-interference performance. The current construction method canprovidea feasiblemeanand development platform to fabricate other non-enzymatic sensors.
     (c) Aseriesof different morphology of copper nanomaterials, such as copper nano-particles, bulks, dendrites and flowers were prepared by direct electrochemical position process from coppersulfate (CuSO4)precursor through the change of reaction conditions. The morphology was characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), and X ray diffracmeter (XRD). The growth mechanism of copper structures was also illustrated in detail. The electrochemical performance of the copper nanodendrites and its oxidation catalytic activity towards glucose in NaOH solution were detected by electrochemical workstation. The results showed that the copper nanodendrites modified electrode exhibited good catalytic activity towards glucose in the absence of enzyme. At the work potential of0.55Vvs. Ag/AgCl, it displayed fast current response, low detection limit and wide detection range. Meanwhile, it possessed good stability, anti-interference, and repeatability.
     (d) A novel enzyme-free biosensor based on copper oxide nanoleaves which were prepared through a film plating/potential cycling method (consecutive two-step electrodeposition). The resulting sensor showed excellent electrocatalytic activity to glucose and H2O2in0.1M NaOH solution. For the glucose detection, the sensor showed a high sensitivity of53.19μA mM-1, a wide linear range of12.5μM-4.29mM, and a low detection limit of4.17μM. Furthermore, the as-prepared sensor exhibited long-time stability, good anti-interference, and reproducibility.
     (e) The reduction graphene oxide (RGO) was obtained through the reaction of chitosan (CS) and graphene oxide (GO) in the high temperature of90℃for10hours. Then the gold nanoparticles (AuNPs) were modified onto the surface of RGO through high temperature reduction. The resulted CS-RGO-AuNPs hybrids were employed to immobilize glucose oxidase (GOD). The glucose biosensor based on GOD/CS-RGO-AuNPs modified Pt electrode was developed and its electrochemical properties were detected by cyclicvoltammetry and chronoamperometry methods. At the work potential of0.5V vs. Ag/AgCl, it showed a high sensitivity of102.4μA mM"1cm-2, a low detection limit of1.7μM (S/N=3), and a wide linear range of0.015-2.13mM. This good performance is attributed to synergic effect of RGO and AuNPs, such as large specific surface area, rapid electron transferring etc. Moreover, the CS provided a suitable microenvironment to keep GOD bioactivity.
引文
[1]Rodriguez-Mozaz S, Marco M P, Lopez De Alda M J, et al. Biosensors for environmental monitoring of endocrine disruptors:a review article[J]. Anal Bioanal Chem,2004,378 (3): 588-598.
    [2]Tschmelak J, Proll G, Riedt J, et al. Biosensors for unattendee, cost-effective and continous monitoring of environmental pollution[J]. Int J Environ Anal Chem,2005,85 (12-13): 837-852.
    [3]Mello L D, Kubota L T. Review of the use of biosensors as analytical tools in the food and drink industries [J]. Food Chem,2002,77 (2):237-256.
    [4]Rogers K R. Recent advances in biosensor techniques for environmental monitoring [J]. Anal Chim Acta,2006,568 (1-2):222-231.
    [5]Andreescu S, Marty J L. Twenty years research in cholinesterase biosensors:from basic research to practical applications [J]. Biomol Eng,2006,23 (1):1-15.
    [6]Thevenot D R, Toth K, Durst R A, et al. Electrochemical biosensors:recommended definitions and classification [J]. Biosens Bioelectron,2001,16(1-2):121-131.
    [7]Turner A P F, Karube I, Wilson G S. Biosensors, fundamentals and applications[M]. Oxford: Oxford University Press,1987:10-15.
    [8]Scheller F W, Wollenberger U, Warsinke A, et al. Research and development in biosensors [J]. Curr Opin Biotech,2001,12 (1):35-40.
    [9]冯德荣.生物传感器的开发和应用进展[J].生物工程进展,1996,16(3):13-15.
    [10]Clark L C. Monitor and control of blood tissue O2 tensions [J]. Trans Am Soc Artif Intern, 1956,2(1):41-48.
    [11]Clark L C, Lyons C. Electrode system for continuous monitoring in cardiovascular surgery [J]. Ann NY Acad Sci,1962,102:29-45.
    [12]Updike S J, Hicks J P. The enzyme electrode [J]. Nature,1967,214:986-988.
    [13]Divies C. Remarques sur l'oxydation de l'ethanol par une electrode microbienne d'acetobacter zylinum [J]. Ann Microbiol,1975,126:175-186.
    [14]Cooney C L, Weaver J C, Tannebaum S R, et al. The thermal enzymes probe:a novel approach to chemical analysis [J]. Enzyme Engineering,1974,2:411-417.
    [15]Mosbach K, Danielsson B. An enzyme thermistor [J]. Biochim Biophys Acta,1974,364 (1): 140-145.
    [16]Lubbers D W, Opitz N. The pCO2/pO2 optrode:a new pCO2, pO2 device for the measurement of pCO2 or pO2 in gases or fluids [J]. Z Naturforsch C:Biosci,1975,30:532-533.
    [17]Caras S, Janata J. Field effect transistor sensitive to penicillin [J]. Anal Chem,1980,52 (12): 1935-1937.
    [18]Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensing [J]. Sensors and Actuators B:Chemical,1983,4:299-304.
    [19]Mauriz E, Calle A, Manclus J J, et al. On-line determination of 3,5,6-trichloro-2-pyridinol in human urine samples by surface plasmon resonance immunosensing [J]. Anal Bioanal Chem, 2007,387 (8):2757-2765.
    [20]Farre M, Martinez E, Ramon J, et al. Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor [J]. Anal Bioanal Chem,2007, 388(1):207-214.
    [21]Wang J. Analytical electrochemistry [M]. USA:John Wiley & Sons VCH,2006:12-18.
    [22]Eggins B R. Chemical sensors and biosensors [M]. England:John Wiley & Sons,2002:2-5.
    [23]Wilson R, Turner A P. Glucose oxidase:An ideal enzyme [J]. Biosens Bioelectron,1992,7 (3):165-185.
    [24]Weibel M, Bright H. The glucose oxidase mechanism [J]. J Boil Chem,1971,246: 2734-2744.
    [25]Muguruma H, Kase Y, Uehara H. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase:high-throughput fabrication of bioelectronic devices without ehemical modifications [J]. Anal Chem,2005,77 (20):6557-6562.
    [26]Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications [M]. USA:John Wiley & Sons VCH,2001:10-13.
    [27]Senel M, Nergiz C, Cevik E. Novelreagentlessglucosebiosensorbasedonferrocene coredasymmetric PAMAM dendrimers [J]. Sens Actuators B:Chem,2013,176:299-306.
    [28]Tripathi V S, Kandimalla V B, Ju H X. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite [J]. Biosens Bioelectron,2006,21 (8):1529-1535.
    [29]Gregg B A, Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications [J]. Anal Chem,1990,62 (3):258-263.
    [30]Ohara T J, Rajagopalan R, Heller A. Glucose electrodes based on cross-linked [Os(bpy)2Cl]+/2+ complexed poly(1-vinylimidazole) films [J]. Anal Chem,1993,65 (23): 3512-3517.
    [31]Wang Y, Yuan R, Chaia Y Q, et al. Direct electron transfer:Electrochemical glucose biosensor based on hollow Pt nanosphere functionalized multiwall carbon nanotubes [J]. J Mol Catal B-Enzym,2011,71 (3-4):146-151.
    [32]Fatemi H, Khodadadi A A, Firooz A A, et al. Apple ebiomorp hic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor [J]. Curr Appl Phys,2012,12 (4): 1033-1038.
    [33]Ernst S, Heitbaum J, Hamann C H. The electrooxidation of glucose in phosphate buffer solutions:Kinetics and reaction mechanism [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1980,84 (1):50-55.
    [34]Wang X Y, Zhang Y, Banks C E, et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes [J]. Colloid Surface B,2010, 78 (2):363-366.
    [35]Cao X, Wang N, Wang L, et al. A novel non-enzymatic hydrogen peroxide biosensor based on ultralong manganite MnOOH nanowires [J]. Sens Actuators B:Chem,2010,147 (2): 730-734.
    [36]Chauhan N, Narang J, Rawal R, et al. A highlysensitive non-enzymatic ascorbate sensorbasedoncoppernanoparticlesboundtomultiwalled carbon nanotubes andpolyanilinecomposite [J]. Synthetic Met,2011,161 (21-22):2427-2433.
    [37]Sim H, Kim J H, Lee S K, et al. High-sensitivity non-enzymatic glucose biosensor based on Cu(OH)2 nanoflower electrode covered with boron-doped nanocrystalline diamond layer [J]. Thin Solid Films,2012,520 (24):7219-7223.
    [38]Ozcan L, Sahin Y, Turk H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate [J]. Biosens Bioelectron,2008,24 (4):512-517.
    [39]Cavic B A, Thompson M. Interfacial nucleic acid chemistry studied by acoustic the shear wave propagation [J]. Anal Chim Acta,2002,469 (1):101-113.
    [40]Bernd K, Michael G. A novel immunosensor for herpes viruses [J]. Anal Chem,1994,66 (3): 341-344.
    [41]Park Z S, Kim N. Queue length and waiting time analysis of a batch arrival queue with bilevel control [J]. Biosens Bioelectron,1998,25 (3):191-205.
    [42]Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection of pathogens in food and water [J]. Enzyme MicrobTech,2003,32 (1):3-13.
    [43]Sakti S P, Lucklum R, Hauptmann P, et al. Disposable TSM-biosensor based on viscosity changes of the contacting medium [J]. Biosens Bioelectron,2001,16 (9-12):1101-1108.
    [44]Huang J D, Li J, Yang Y, et al. Development of an amperometric 1-lactate biosensor based on 1-lactate oxidase immobilized through silica sol-gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode [J]. Mater Sci Eng C,2008, 28(7):1070-1075.
    [45]Vermeir S, Nicolai B M, Verboven P, et al. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmceuticals [J]. Anal Chem,2007,79 (16):6119-6127.
    [46]Sacchi S, Pollegioni L, Pilone M S, et al. Determination of D-amino acids using a D-amino acid oxidase biosensor with spectrophotometric and potentiometric detection [J]. Biotechnol Tech,1998,12(2):149-153.
    [47]Pena N, Tarrega R, Reviejo A J, et al. Reticulated vitreous carbon-based composite bienzyme electrodes for the determination of alcohols in beer samples [J]. Anal Lett,2002,35 (12): 1931-1944.
    [48]Li J P, Gu H N. A selective cholesterol biosensor blased on composite film modified electrode for amperometric detection [J]. J Chin Chem Soc,2006,53 (3):575-582.
    [49]Niculescu M, Sigina S, Csoregi E. Glycerol dehydrogenase based amperometric biosensor for monitoring of glycerol in alcoholic beverages [J]. Anal Lett,2003,36 (9):1721-1737.
    [50]Helianti I, Morita Y, Yamamura A. Characterization of native glutamate dehydrogenase from an aerobic hyperthermophilic archaeon Aeropyrum pernix Kl [J]. Appl Microbiol Biotechnol, 2001,56 (3-4):388-394.
    [51]Watanabe A, Yano K, IKebukuro K, et al. Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61 [J]. Appl Microbiol Biotechnol,1998,50 (1): 93-97.
    [52]吴礼光,刘茉娥,朱长乐.生物传感器研究进展[J].化学进展,1995,7(4):287-301.
    [53]Karube I, Matsunaga T, Mitsuda S. Microbial electrode BOD sensors [J]. Biotechnol Bioeng, 1977,19 (10):1535-1547.
    [54]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature,1975,256:495-497.
    [55]Villamizar R, Maroto A, Xavier R F, et al. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors [J]. Biosens Bioelectron,2008,24 (2):279-283.
    [56]Aizawa H, Tozuka M, Kurosawa S, et al. Surface plasmon resonance-based trace detection of small molecules by competitive and signal enhancement immunoreaction [J]. Anal Chim Acta, 2007,591 (2):191-194.
    [57]Lepez-Ortal P, Souza V, Bucio L, et al. DNA damage produced by cadmium in a human fetal hepatic cell line [J]. Mutat Res,1999,439 (2):301-306.
    [58]Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection [J]. Biosens Bioelectron,1999,14 (1):43-51.
    [59]Doong R A, Shih H M, Lee S H. Sol-gel-derived array DNA biosensor for the detection of polycyclic aromatic hydrocarbons in water and biological samples [J]. Sens Actuators B: Chem,2005,111-112:323-330.
    [60]Wang J, Rivas G, Cai X H. Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen [J]. Electroanalysis,1997,9 (5):395-398.
    [61]Evtugyn G, Mingaleva A, Budnikov H, et al. Affinity biosensors based on disposable screen-printed electrodes modified with DNA [J]. Anal Chim Acta,2003,479 (2):125-134.
    [62]Ellington A D, Szostak J W. In vitro selection of RNAmolecules that bind specific ligands [J]. Nature,1990,346 (6287):818-822.
    [63]尹衡.纳米材料制备方法研究[J].现代商贸工业,2009,15(2):274-275.
    [64]张姝,赖欣.纳米材料制备技术及其研究进展[J].四川师范大学学报(自然科学版),2001,24(5):516-519.
    [65]颜妍,王正武,赵波.纳米材料构建的电化学生物传感器及其应用研究进展[J1.南京晓庄学院学报,2011,27(3):41-45.
    [66]Yun Y H, Eteshola E, Bhattacharya A, et al. Tiny medicine:Nanomaterial-based biosensors [J]. Sensors-Basel,2011,9 (11):9275-9299.
    [67]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [68]董莲枝,曹柳男.浅谈单壁碳纳米管与多壁碳纳米管的差异[J].科学之友,2012,3(6):14-15.
    [69]Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes [J]. J Am Chem Soc,2002,124 (43):12664-12665.
    [70]Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors [J]. Angew Chem Int Ed,2004,43 (16):2113-2117.
    [71]尹峰,赵紫霞,吴宝艳.基于多壁碳纳米管和聚丙烯胺层层自组装的葡萄糖生物传感器[J].分析化学,2007,35(7):1021-1024.
    [72]Sun W, Qin P, Gao H, et al. Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence [J]. Biosens Bioelectron,2010,25 (6):1264-1270.
    [73]Noboselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbbon films [J]. Science,2004,306 (5696):666-669.
    [74]Liu F, Choi J Y, Seo T S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer [J]. Biosens Bioelectron,2010,25 (10):2361-2365.
    [75]Lu L M, Li H B, Qu F, et al. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors [J]. Biosens Bioelectron,2011,26 (8):3500-3504.
    [76]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless diracferminos in graphene [J]. Nature,2005,438:197-200.
    [77]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Anal Chem,2009,81 (6):2378-2382.
    [78]Alwarappan S, Liu C, Kumar A, et al. Enzyme-doped graphene nanosheets for enhanced glucose biosensing [J]. J Phys Chem C,2010,114 (30):12920-12924.
    [79]Wang K, Liu Q, Guan Q M, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals [J]. Biosens Bioelectron,2011,26 (5):2252-2257.
    [80]Zeng Q, Cheng J S, Liu X F, et al. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor [J]. Biosens Bioelectron,2011,26 (8): 3456-3463.
    [81]Kong F Y, Li X R, Zhao W W, et al. Graphene oxide-thionine-Au nanostructure composites: Preparation and applications in non-enzymatic glucose sensing [J]. Electrochem Commun, 2012,14(1):59-62.
    [82]Luo J, Jiang S, Zhang H, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode [J]. Anal Chim Acta,2012,709:47-53.
    [83]Gao H, Xiao F, Ching C B, et al. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection [J]. ACS Appl Mater Inter,2011,3 (8):3049-3057.
    [84]Song B, Li D, Qi W, et al. Graphene on Au(111):A Highly Conductive Material with Excellent Adsorption Properties for High-Resolution Bio/Nanodetection and Identification [J]. Chem Phys Chem,2010,11 (3):585-589.
    [85]Fan F-RF, Park S, Zhu Y, et al. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles [J]. J Am Chem Soc,2009,131 (3):937-939.
    [86]Chen X, Ye H, Wang W, et al. Electrochemiluminescence biosensor for glucose based on graphene/nafion/GOD film modified glassy carbon electrode [J]. Electroanalysis,2010,22 (20):2347-2352.
    [87]Wang Z L, Kong X Y, Wen X, et al. In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires [J]. J Phys Chem B,2003,107 (33):8275-8280.
    [88]Daniel M C, Astrue D. Gold nanoparticles:assembly, supramolecular chemistry quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem Rev,2004,104 (1):293-346.
    [89]周伟,张维,王程.贵金属纳米颗粒LSPR[J].现象研究,2010,23(5):630-634.
    [90]谈勇.几种金纳米复合材料的制备和表征[M].江苏:东南大学生物医学工程,2006:15-20.
    [91]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer [J]. Anal Chim Acta,1999,391 (1):73-82.
    [92]Raj C R, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine [J]. J Electroanal Chem,2003,543 (2):127-133.
    [93]Liu T, Zhong J, Gan X, et al. Wiring electrons of cytochrome c with silver nanoparticles in layered films [J]. Chemphyschem,2003,4 (12):1364-1366.
    [94]Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label [J]. Anal Chem,2000,72 (22):5521-5528.
    [95]Authier L, Grossiord C, Brassier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes [J]. Anal Chem,2001,73 (18):4450-4456.
    [96]Bailey R E, Smith A M, Nie S M. Quantum dots in biology and medicine [J]. Physica E, 2004,25 (1):1-12.
    [97]Vinayaka A C, Basheer S, Thakur M S. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor [J]. Biosens Bioelectron,2009,24'(6):1615-1620.
    [98]Chen Y, Ren H L, Sai N, et al. A fluoroimmunoassay based on quantum dot-streptavidin conjugate for the detection of chlorpyrifos [J]. J Agric Food Chem,2010,58 (16):8895-8903.
    [99]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor [J]. Nat Mater,2005,4:826-831.
    [100]Bailey V J, Easwaran H, Zhang Y, et al. A quantum dot-based method for analysis of DNA methylation [J]. Genome Res,2009,19 (8):1455-1461.
    [101]Laib S, MacCraith B D. Immobilization of biomolecules on cycloolefin polymer supports [J]. Anal Chem,2007,79 (16):6264-6270.
    [102]Ohashi E, Koriyama T. Simple and mild preparation of an enzyme-immobilized membrane for a biosensor using P-type crystalline chitin [J]. Anal Chim Acta,1992,262 (1):19-25.
    [103]Bartlett P N, Whitaker R. Electrochemical immobilization of enzymes. Part Ⅰ:theory [J]. J Electroanal Chem,1987,224 (1-2):27-35.
    [104]Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers immobilization of glucose-oxidase in polypyrrole and its application in amperometric glucose sensors [J]. J Chem Soc 1986,82:1259-1264.
    [105]Xue H, Shen Z. A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline-polyacrylonitrile composite matrix [J]. Talanta,2002,57 (2): 289-295.
    [106]Zhu L, Yang R, Zhai J, et al. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode [J]. Biosens Bioelectron, 2007,23 (4):528-535.
    [107]Salinas-Castillo A, Pastor I, Mallavia R, et al. Immobilization of a trienzymatic system in a sol-gel matrix:a new fluorescent biosensor for xanthine [J]. Biosens Bioelectron,2008,24 (4): 1053-1056.
    [108]Shi Q, Peng T, Zhu Y, et al. An electrochemical biosensor with cholesterol oxidase/sol-gel filmon a nanoplatinum/carbon nanotube electrode [J]. Electroanalysis,2005,17 (10):857-861.
    [109]Jena B, Raj C. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles [J]. Anal Chem,2006,78 (18):6332-6339.
    [110]Sassolas A, Blum L J, Leca-Bouvier B D. Immobilization strategies to develop enzymatic biosensors [J]. Biotechnol Adv,2012,30 (3):489-511.
    [111]Puig-Lleixa C, Jimenez C, Bartroli J. Acrylated polyurethane-D photopolymeric membrane for amperometric glucose biosensor construction [J]. Sens Actuators B:Chem,2001,72: 56-62.
    [112]Bean L, Heng L, Yamin B, et al. Photocurable ferrocene-containing poly(2-hydroxylethyl methacrylate) films for mediated amperometric glucose biosensor [J]. Thin Solid Films,2005, 477:104-110.
    [113]Svancara I, Vytras K, Kalcher K, et al. Carbon paste electrodes in facts numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis [J]. Electroanalysis,2009,21 (1):7-28.
    [114]Rubianes M D, Rivas G A. Carbon nanotubes paste electrodes [J]. Electrochem Commun, 2003,5 (8):689-694.
    [115]Chaubey A, Pande K K, Singh V S, et al. Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films [J]. Anal Chim Acta,2000,407 (1-2):97-103.
    [116]Ekanayake E, Preethichandra D M G, Kaneto K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors [J]. Biosens Bioelectron,2007, 23 (1):107-113.
    [117]Wang J, Wang L, Di J, et al. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor [J]. Talanta,2009,77 (4): 1454.1459.
    [118]Decher G, Hong J D. Builup of ultrayhin multilayer films by a self-assembly process, I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromol Chem Macromol Symp,1991,95 (11):1430-1434.
    [119]Zhao W, Xu J J, Chen H Y. Electrochemical biosensors based on layer-by-layer assemblies [J]. Electroanalysis,2006,18 (18):1737-1748.
    [120]Wang H Y, Mu S L. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film [J]. Sens Actuators B:Chem,1999,56 (1):22-30.
    [121]Langer J J, Filipiak M, Kecinska J, et al. Polyaniline biosensor for choline determination [J]. Surf Sci,2004,573 (1):140-145.
    [122]Mu S L, Xue H G Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film [J]. Sens Actuators B:Chem,1996,31 (3):155-160.
    [123]Mathebe N G R, Morrin A, Iwuoha E I. Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor [J]. Talanta,2004,64 (1):115-120.
    [124]Mu S L. Bioelectrochemical response of the polyaniline galactose-oxidase electrode [J]. J Electroanal Chem,1994,370:135-139.
    [125]Berezhetskyy A L, Sosovska O F, Durrieu C, et al. Alkaline phosphatase conductometric biosensor for heavy-metal ions determination [J]. IRBM,2008,29 (2-3):136-140.
    [126]Zhang Z, Xia S, Leonard D, et al. A novel nitrite biosensor based on conductometric electrode modified with cytochrome c reductase composite membrane [J]. Biosens Bioelectron, 2009,24 (6):1574-1579.
    [127]Gogol E V, Evtugyn G A, Marty J L, et al. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors [J]. Talanta,2000, 53 (2):379-389.
    [128]Kong T, Chen Y, Ye Y, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes [J]. Sens Actuators B:Chem,2009, 138 (1):344-350.
    [129]Santos A, Pereira A, Duran N, et al. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's blue on multi-wall carbon nanotube [J]. Electrochim Acta,2006,52 (1):215-220.
    [130]Pereira A, Aguiar M, Kisner A, et al. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola blue coimmobilized on multi-wall carbon-nanotube [J]. Sens Actuators B:Chem,2007,124 (1):269-276.
    [131]孔德领,俞耀庭,贾永会.纤维素固定化血红蛋白研究[J].高分子学报,1999,17(2):221-226.
    [132]Yu X, Chattopadhyay D, Galeska I, et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes [J]. Electrochem Commun,2003,5 (5): 408-411.
    [133]Xue H, Sun W, He B, et al. Single-wall carbon nanotubes as immobilization material for glucose biosensor [J]. Synth Metals,2003,135:831-832.
    [134]Yao D, Vlessidis A G, Evmiridis N P. Development of an interference-free chemiluminescence method for monitoring aceylcholine and choline based on immobilized enzymes [J]. Anal Chim Acta,2002,462 (2):199-208.
    [135]Esseghaier C, Bergaoui Y, Tlili A, et al. Impedance spectroscopy on immobilized streptavidin horseradish peroxidase layer for biosensing [J]. Sens Actuators B:Chem,2008, 134(1):112-116.
    [136]Haddour N, Cosnier S, Gondran C. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins [J]. J Am Chem Soc, 2005,127 (16):5752-5753.
    [137]Lin Z, Sun J, Chen J, et al. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase [J]. Anal Chem, 2008,80 (8):2826-2831.
    [138]Anzai J I, Kobayashi Y, Nakamura N, et al. Use of Con A and mannose-labeled enzymes for the preparation of enzyme films for biosensors [J]. Sens Actuators B:Chem,2000,65 (1): 94-96.
    [139]Yao D, Cao H, Wen S, et al. A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin-detoxifizyme (ADTZ) [J]. Bioelectrochemistry,2006,68 (2):126-133.
    [140]Crew A, Lonsdale D, Byrd N, et al. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides [J]. Biosens Bioelectron,2011,26 (6):2847-2851.
    [141]Gong J Y, Jin L H, Wen J M, et al. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers [J]. Anal Chim Acta,2009,647 (2):159-166.
    [142]Lin Y H, Chen S H, Chuang Y C, et al. Disposable amperometric immuno-sensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7 [J]. Biosens Bioelectron,2008,23 (12): 1832-1837.
    [143]Viswanathan S, Radecka H, Radecki J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nano-tubes wrapped with ssDNA [J]. Biosens Bioelectron,2009,24 (9):2772-2777.
    [144]Sandros M G, Shete V, Benson D E. Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles [J]. Analyst,2006,131 (2):229-235.
    [145]Delmulle B S, De Saeger S M, Sibanda L, et al. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed [J]. J Arg Food Chem, 2005,53 (9):3364-3368.
    [146]Hart J P, Serban S, Jones L J, et al. Selective and rapid biosensor integrated into a commercial hand-held instrument for the measurement of ammonium ion in sewage effluent [J]. Anal Lett,2006,39 (8):1657-1667.
    [147]Wang J, Chen Q. Microfabricated phenol biosensors based on screen printing of tyrosinase containing carbon ink [J]. Anal Lett,1995,28 (7):1131-1142.
    [148]Hiratsuka A, Karube I. Plasma polymerized films for sensor devices [J]. Electroanalysis, 2000,12 (9):695-702.
    [149]Aravamudhan S, Ramgir N S, Bhansali S. Electrochemical biosensor for targeted detection in blood using aligned Au nanowires [J]. Sens Actuators B:Chem,2007,127:29-35.
    [150]Ganjali M R, Faridbod F, Larijani B, et al. Terazosin Potentiometric Sensor for Quantitative Analysis of Terazosin Hydrochloride in Pharmaceutical Formulation Based on Computational Study [J]. Int J Electrochem Sci,2010,5 (2):200-214.
    [151]Ramgir N S, Zajac A, Sekhar P K, et al. Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires [J]. J Phys Chem C,2007, 111(37):13981-13987.
    [152]Jazayeri J A, Carroll G J, Vernallis A B. Interleukin-6 subfamily cytokines and rheumatoid arthritis:Role of antagonists [J]. Int Immunopharmacol,2010,10 (1):1-8.
    [153]Mitsuyama K, Toyonaga A, Sasaki E, et al. Soluble interleukin-6 receptors in inflammatory bowel disease:relation to circulating interleukin-6 [J]. Gut,1995,36 (1):45-49.
    [154]Mackiewicz A, Wiznerowicz M, Roeb E, et al. Soluble interleukin 6 receptor is biologically active in vivo [J]. Cytokine,1995,7 (2):142-149.
    [155]陈煌基,刘陶文.恶性肿瘤患者血清白细胞介素-6水平的变化[J1.广西医科大学学报,2002,19(5):675-676.
    [156]林海,刘煜.局灶性脑缺血再灌注后白细胞介素-6,肿瘤坏死因子p的表达及川芎嗪对其表达的影响[J].中国临床康复,2002,6(7):968-969.
    [157]Dmitriev D A, Massino Y S, Sega O L. Kinetic analysis of interactions between bispecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor [J]. J Immunol Methods,2003,280 (1-2):183-202.
    [158]Sauerbrey G Z. Verwendung von Schwingquarzenzur Wagung dunner Schichten und zur Mikrowagung [J]. Zeitschrift fur Physik,1959,155 (2):206-222.
    [159]Peduru Hewa T M, Tannock G A, Mainwaring D E, et al. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance [J]. J Virol Methods,2009, 162(1-2):14-21.
    [160]Park J W, Kurosawa S, Aizawa H, et al. Conventional detection of 2,4-dinitrophenol using quartz crystal microbalance [J]. IEEE Trans UFFC,2003,50 (2):193-195.
    [161]Crommelin D J, Storm G, Verrijk R, et al. Shifting paradigms:biopharmaceuticals versus low molecular weight drugs [J]. Inter J Pharm,2003,266 (1-2):3-16.
    [162]Su X, Zong Y, Richter R, et al. Enzyme immobilization on poly(ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring [J]. J Colloid Interface Sci,2005,287 (1):35-42.
    [163]Kurosawa S, Nakamura M, Park J W, et al. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer [J]. Biosens Bioelectron,2004,20 (6):1134-1139.
    [164]Su W C, Zhang W G, Zhang S, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor [J]. Biosens Bioelectron,2009,25 (2):488-492.
    [165]Li D J, Wang J P, Wang R H, et al. A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1 [J]. Biosens Bioelectron,2011,26 (10):4146-4154.
    [166]Iwamori S, Yoshino K, Matsumoto H, et al. Active oxygen sensors used a quartz crystalmicrobalance (QCM)with sputter-coatedand spin-coatedpoly(tetrafluoroethylene)thin films [J]. Sens Actuators B:Chem,2012,171-172:769-766.
    [167]Krachler M, Emons H. Urinary antimony speciation by HPLC-ICP-MS [J]. J Anal At Spectrom,2001,16:20-25.
    [168]Cataldi T R L, Rubino A, Laviola M C, et al. Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography [J]. J Chromatogr B,2005,827 (2):224-231.
    [169]Capone S, Siciliano P, Quaranta F, et al. Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol-gel thin film [J]. Sens Actuators B:Chem,2001,77 (1-2):503-511.
    [170]Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15, 20-tetra(4-pyridyl)porphyrinato]titanium(Ⅳ):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide [J]. Analyst,1992,117 (11):1781-1784.
    [171]Hurdis E C, Romeyn J. Accuracy of Determination of Hydrogen Peroxide by Cerate Oxidimetry [J]. Anal Chem,1954,26 (2):320-325.
    [172]Zhang L S, Wong G T F. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method [J]. Talanta,1999,48 (5):1031-1038.
    [173]Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(Ⅱ)-ethanolamine complex immobilized on resin [J].Anal Chim Acta,2001,426 (1):57-64.
    [174]Cui K, Song Y H, Yao Y, et al. A novel hydrogen peroxide sensor based on Ag nanoparticl'es electrodeposited on DNA-networks modified glassy carbon electrode [J]. Electrochem Commun,2008,10 (4):663-667.
    [175]Zhao B, Liu Z R, Liu Z L, et al. Silver microspheres for application as hydrogen peroxide sensor [J]. Electrochem Commun,2009,11 (8):1707-1710.
    [176]Wang B, Du X, Wang M, et al. A facile preparation of H2O2 sensors using layer-by-layer deposited thin films composed of poly(ethyleneimine) and carboxymethyl cellulose as matrices for immobilizing hemin [J]. Electroanalysis,2008,20 (9):1028-1031.
    [177]Kurusu F, Koide S, Karube I, et al. Electrocatalytic activity of bamboo-Structured carbon nanotubes paste electrode toward hydrogen peroxide [J]. Anal Lett,2006,39 (5):903-911.
    [178]Li Y, Zhang J J, Xuan J, et al. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites [J]. Electrochem Commun,2010,12 (6):777-780.
    [179]Li Y, Yuan R, Chai Y Q, et al. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker [J]. ElectrochimActa,2011,56 (19):6715-6721.
    [180]Zhang L, Li H, Ni Y H, et al. Porous cuprous oxide microcubes for non-enzymatic amperometric hydregen peroxide and glucose sensing [J]. Electrochem Commun,2009,11 (4): 812-815.
    [181]Zhang L, Ni Y H, Wang X H, et al. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite [J]. Talanta,2010,82(1):196-201.
    [182]Mukouyama Y, Nakanishi S, Konishi H, et al. Observation of two stationary states of low and high H2O2-reduction currents at a Pt electrode, arising from the occurrence of a positive feedback mechanism including solution-stirring by gas evolution [J]. Phys Chem Chem Phys, 2001,3 (16):3284-3289.
    [183]Shankaran D R, Ueheara N, Kato T. A metal dispersed sol-gel biocomposite amperometric glucose biosensor [J]. Biosens Bioelectron,2003,18 (5-6):721-728.
    [184]Magrez A, Kasas S, Salicio V, et al. Celleular toxicity of carbon-based nanomaterials [J]. Nano Lett,2006,6 (6):1121-1125.
    [185]Tsai Y C, Huang J D, Chiu C C. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite [J]. Biosens Bioelectron,2007,22 (12):3051-3056.
    [186]Lee K Y, Mooney D J. Hydrogels for tissue engineering [J]. Chem Rev,2001,101 (7): 1869-1880.
    [187]Tsai Y C, Huang J D. Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis [J]. Electrochem Commun,2006,8 (6): 956-960.
    [188]Wang H C, Wang X S, Zhang X Q, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires [J]. Biosens Bioelectron,2009,25 (1):142-146.
    [189]Mukouyama Y, Nakanishi S, Konishi H, et al. Observation of two stationary states of low and high H2O2-reduction currents at a Pt electrode, arising from the occurrence of a positive feedback mechanism including solution-stirring by gas evolution [J]. Phys Chem Chem Phys, 2001,3(16):3284-3289.
    [190]Shan C S, Yang H F, Han D X, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing [J]. Biosens Bioelectron,2010,25 (5):1070-1074.
    [191]Li L M, Du Z F, Liu S, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite [J]. Talanta,2010,82 (5):1637-1641.
    [192]Zhao W, Wang H C, Qin X, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode [J]. Talanta,2009,80 (2):1029-1033.
    [193]Chen S H, Fu P, Yin B, et al. Immobilizing Pt nanoparticles and chitosan hybrid film on polyaniline naofibers membrane for an amperometric hydrogen peroxide biosensor [J]. Bioprocess Biosyst Eng,2011,34 (6):711-719.
    [194]Shi Y, Liu Z L, Zhao B, et al. Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction [J]. J Electroanal Chem,2011,656 (1-2):29-33.
    [195]Liu Z L, Zhao B, Shi Y, et al. Novel nonenzymatic hydrogen peroxide sensor based on iron oxide-silver hybrid submicrospheres [J]. Talanta,2010,81 (4-5):1650-1654.
    [196]Lee Y J, Park J Y, Kim Y H, et al. Amperometric sensing of hydrogen peroxide via highly roughened macroporous Gold-/Platinum nanoparticles electrode [J]. Curr Appl Phys,2011,11 (2):211-216.
    [197]Guo S J, Wen D, Dong S J, et al. Gold nanowire assembling architecture for H2O2 electrochemical sensor [J]. Talanta,2009,77 (4):1510-1517.
    [198]Lu X M, Tuan H Y, Chen J Y, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium [J]. J Am Chem Soc,2007,129 (6):1733-1742.
    [199]Choi Y D, Ho N H, Tung C H. Sensing phosphatase activity by using gold nanoparticles [J]. Angew Chem Int Ed,2007,46 (5):707-709.
    [200]Wu H P, Liu J F, Wu X J, et al. High conductivity of isotropic conductive adhesives filled with silver nanowires [J]. Int J Adhesion and Adhesives,2006,26 (8):617-621.
    [201]Yan C L, Xue D F. Formation of Nb2O5 nanotube arrays through phase transformation [J]. Adv Mater,2008,20 (5):1055-1058.
    [202]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002,298(5601):2176-2179.
    [203]Zhang X, Liu W M. Controllable synthesis of nickel dendritic crystals induced by magnetic field [J]. Mater Res Bull,2008,43 (8-9):2100-2104.
    [204]Batte H D, Marangoni A G. Fractal growth of milk fat crystals is unaffected by microstructrual confinement [J]. Gryst Growth Des,2005,5:1703-1705.
    [205]Wen X G, Xie Y T, Cheung Mark M W, et al. Dendritic nanostructures of silver:facile synthesis, structrual characterizations, and sensing applications [J]. Langmuir,2006,22 (10): 4836-4842.
    [206]Matsushita M, Sano M, Hayakawa Y, et al. Fractal structures of zinc metal leaves grown by electrodeposition [J]. Phys Rev Lett,1984,53 (3):286-289.
    [207]Zhang X J, Wang G F, Liu X W, et al. Copper dendrites:synthesis, mechanism discussion, and application in determination of L-Tyrosine [J]. Cryst Growth Des,2008,8 (4):1430-1434.
    [208]Qin X, Miao Z Y, Fang Y X, et al. Preparation of dendritic nanostructrures of silver and their characterization for electroreduction [J]. Langmuir,2012,28 (11):5218-5226.
    [209]Yan C L, Xue D F. A modified electroless deposition route to dendritic Cu metal nanostructures [J]. Cryst Growth Des,2008,8 (6):1849-1854.
    [210]Yang B J, Wu Y C, Hu H M, et al. Growth of dendritic antimony nanocrystals at room temperature [J]. Mater Chem Phys,2005,92:286-289.
    [211]Huan T N, Ganesh T, Kim K S, et al. A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing [J]. Biosens Bioelectron, 2011,27(1):183-186.
    [212]Qin X, Wang H C, Wang X S, et al. Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction [J]. Electrochim Acta,2011,56 (9): 3170-3174.
    [213]Mukhorjee S, Carmo M, Kumar G, et al. Palladium nanostructures from multi-component metallic glass [J]. Electrochim Acta,2012,74:145-150.
    [214]Lindstrom B, Pettersson L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications [J]. Int J Hydrogen Energy,2001,26 (9): 923-933.
    [215]Cejkova J, Prokopec V, Brazdova S, et al. Characterization of copper SERS-active substrates prepared by electrochemical deposition [J]. Appl Surf Sci,2009,255 (18): 7864-7870.
    [216]Zheng Y, Zhang Z J, Guo P S, et al. Special fractal growth of dendrite copper using a hydrothermal method [J]. J Solid State Chem,2011,184 (8):2114-2117.
    [217]Zhang Z Y, Hu C G, Feng B, et al. Growth of dendritic copper nanocrystals in alkaline solution [J]. J Supercond Nov Magn,2010,23 (6):893-895.
    [218]Devos O, Gabrielli C, Beitone L, et al. Growth of electrolytic copper dendrites. I:Current transients and optical observation [J]. J Electroanal Chem,2007,606 (2):75-84.
    [219]Aupretre F, Descorme C, Duprez D. Bioethanol catalytic steam reforming over supported metal catalysts [J]. Catal Commun,2002,3 (6):263-267.
    [220]Breen J P, Burch R, Coleman H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J]. Appl Catal B,2002,39 (1):65-74.
    [221]Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor [J]. Biosens Bioelectron,2007,70 (2):342-347.
    [222]Zhang J, Li J, Yang F, et al. Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2 [J]. Sens Actuators B:Chem, 2009,143 (1):373-380.
    [223]Wang L S, Gao X, Jin L Y, et al. Amperometric glucose biosensor based on silver nanowires and glucose oxidase [J].Sens Actuators B:Chem,2013,176:9-14.
    [224]Wittern T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon [J]. Phys Rev Lett,1981,47 (19):1400-1403.
    [225]Brady R M, Ball R C. Fractal growth of copper electrodeposits [J]. Nature,1984,309: 225-228.
    [226]闵乃本.探索新晶体[M].湖南:湖南科学技术出版社,1998:226-239.
    [227]Prabhu S V, Baldwin R P. Enhanced poly (chlorotrifluoroethylene) composite electrode [J]. Anal Chem,1989,61:852-856.
    [228]Marioli J M, Kuwana T. Electrochemical characterisation of carbohydrate oxidation at copper electodes [J]. Electrochim Acta,1992,37 (7):1187-1197.
    [229]Farrell S T, Breslin C B. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles [J]. Electrochim Acta,2004,49 (25):4497-4503.
    [230]Yang J, Jiang L C, Zhang W D, et al. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays [J]. Talanta,2010,82 (1):25-33.
    [231]Zhuang Z, Su X, Yuan H, et al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode [J]. Analyst,2008,133 (1):126-132.
    [232]Casella I G, Gatta M, Guascito M R, et al. Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose [J]. Anal Chim Acta,1997,357 (1-2):63-71.
    [233]Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode [J]. Anal Biochem,2007,363 (1):143-150.
    [234]Male K B, Hrapovic S, Liu Y, et al. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes [J]. Anal Chim Acta,2004,516 (1-2):35-41.
    [235]Wang J, Chen G, Wang M, et al. Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates [J]. Analyst,2004,129 (6):512-515.
    [236]Zhuang Z J, Su X D, Yuan H Y, et al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode [J]. Analyst,2008,133 (1):126-132.
    [237]Zhao J, Wang F, Yu J J, et al. Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles [J]. Talanta,2006,70 (2):449-454.
    [238]Zhang L, Li H, Ni Y H, et al. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing [J]. Electrochem Commun,2009,11 (4): 812-815.
    [239]Li X, Zhu Q Y, Tong S F, et al. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor [J]. Sens Actuators B:Chem,2009,136 (2):444-450.
    [240]Shamsipur M, Naja M, Hosseini M R M. Highly improved electrooxidation of glucose at a nickel(Ⅱ) oxide/multi-walled carbon nanotube modified glassy carbon electrode [J]. Bioelectrochemistry,2010,77 (2):120-124.
    [241]Zhang X J, Wang G F, Liu X W, et al. Different CuO nanostructures:synthesis, characterization, and applications for glucose sensors [J]. J Phys Chem C,2008,112 (43): 16845-16849.
    [242]Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode [J]. Electrochem Commun,2005,7 (9):879-887.
    [243]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochem Commun,2007,9 (5): 981-988.
    [244]Robert R E, Johnson D C. Fast-pulsed amperometric detection at electrodes:A study of oxide formation and dissolution at platinum in 0.1 M NaOH [J]. Electroanalysis,1994,6 (3): 193-199.
    [245]Mho S I, Johnson D C. Electrocatalytic response of carbohydrates at copper-alloy electrodes [J]. J Electroanal Chem,2001,500 (1-2):523-532.
    [246]Luo P, Zhang F, Baldwin R P. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems [J]. Anal Chim Acta,1991,244:169-178.
    [247]You T, Niwa O, Tomita M, et al. Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method [J]. Electrochem Commun,2002,4 (5):468-471.
    [248]Song M J, Hwang S W, Whang D. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection [J]. Talanta,2010,80 (5):1648-1652.
    [249]Paixao T R L C, Corbo D, Bertotti M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium [J]. Anal Chim Acta,2002,472 (1-2):123-131.
    [250]Pourbaix M.Atlas d'Equilibres Electrochimiques A 25 C [M].Paris:Gauthiers-Villars et Cie, 1963:12-16.
    [251]Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor [J]. Sens Actuators B:Chem,2006,114 (1):379-386.
    [252]Wu H X, Cao W M, Li Y, et al. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials [J]. ElectrochimActa,2010,55 (11):3734-3740.
    [253]Hsu Y W, Hsu T K, Sun C L, et al. Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications [J]. Electrochim Acta,2012,82: 152-157.
    [254]Luo L Q, Zhu L M, Wang Z X. Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode [J]. Bioelectrochemistry,2012, 88:156-163.
    [255]Wang W, Zhang L L, Tong S F, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination [J]. Biosens Bioelectron,2009,25 (4): 708-714.
    [256]Wang J, Zhang W D. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose [J]. Electrochim Acta,2011,56 (22):7510-7516.
    [257]Wei H, Sun J J, Guo L, et al. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copperelectrode [J]. Chem Commun,2009,15 (20):2842-2844.
    [258]Zhi L W, Qin L Y. Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization [J]. Sens Actuators B: Chem,2009,141(1):147-153.
    [259]Luo S L, Su F, Liu C B, et al. A new method for fabricating a CuO/TiO2 nanouube arrays electrode and its application as a sensitive nonenzymatic glucose sensor [J]. Talanta,2011,86: 157-163.
    [260]Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens Bioelectron,2009,25 (4):901-905.
    [261]Ndamanisha J C, Guo L P. Nonenzymatic glucose detection at ordered mesoporous carbon modifed electrode [J]. Bioelectrochemistry,2009,77 (1):60-63.
    [262]Kumar S A, Cheng H W, Chen S M, et al. Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing [J]. Mater Sci Eng C,2010,30 (1):86-91.
    [263]Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode [J]. Anal Biochem,2007,363 (1):143-150.
    [264]Liu Y, Teng H, Hou H Q, et al. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode [J]. Biosens Bioelectron, 2009,24 (11):3329-3334.
    [265]Reitz E, Jia W Z, Gentile M, et al. CuO nanospheres based nonenzymatic glucose sensor [J]. Electroanalysis,2008,20 (22):2482-2486.
    [266]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochem Commun,2007,9 (5): 981-988.
    [267]Pang X Y, He D M, Luo S L, et al. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite [J]. Sens Actuators B:Chem,2009,137 (1):134-138.
    [268]Wu P, Shao Q A, Hu Y J, et al. Direct electochemistry of glucose oxidase assembled on 'graphene and application to glucose detection [J]. Electrochim Acta,2010,55 (28): 8606-8614.
    [269]Fang B, Gu A X, Wang G F, et al. Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor [J]. ACS Appl Mater Interfaces,2009,1(12):2829-2834.
    [270]Wang J X, Sun X W, Cai X P, et al. Nonenzymatic glucose sensor using freestanding single-wall carbon nanotube films [J]. Electrochem Solid-State Lett,2007,10 (5):58-60.
    [271]Kang Q, Yang L Y, Cai Q Y. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array [J]. Bioelectrochemistry,2008,74 (1):62-65.
    [272]Wang X, Hu C G, Liu H, et al. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing [J]. Sens Actuators B:Chem,2009,144 (1):220-225.
    [273]Cui H F, Ye J S, Zhang W D, et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites [J]. Anal Chim Acta,2007,594 (2):175-183.
    [274]Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes [J]. Electrochem Commun,2004,6 (1):66-70.
    [275]Miao X M, Yuan R, Chai Y Q, et al. Direct electrocatalytic reduction of hydrogen peroxide based on nafion and copper oxide nanoparticles modified Pt electrode [J]. J Electroanal Chem, 2008,612 (2):157-163.
    [276]Anu Prathap M U, Kaur B, Srivastava R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H202 [J]. J Colloid Interf Sci,2012,370 (1):144-154.
    [277]Razmi H, Nasiri H. Trace level determination of hydrogen peroxide at a carbon ceramic electrode modified with copper oxide nanostructures [J]. Electroanalysis,2011,23 (7): 1691-1698.
    [278]Guadagnini L, Tonelli D, Giorgetti M. Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection [J]. Electrochim Acta, 2010,55 (17):5036-5039.
    [279]Batchelor-Mcauley C, Du Y, Wildgoose G G, et al. The use of copper(Ⅱ) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide [J]. Sens Actuators B:Chem,2008,135 (1):230-235.
    [280]Yu Q, Shi Z, Liu X, et al. A nonenzymatic hydrogen peroxide sensor based on chitosan-copper complexes modified multi-wall carbon nanotubes ionic liquid electrode [J]. J Electroanal Chem,2011,655 (1):92-95.
    [281]Geim A K, Novoselov K S. The rise of graphene [J]. Nat Mater,2007,6:183-191.
    [282]Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent in graphene [J]. Nature,2009,446:56-59.
    [283]Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics [J]. Nature Nanotechn,2007, 2:605-615.
    [284]Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets [J]. Science,2007,315 (5811):490-493.
    [285]Li D, Kaner R B. Graphene-based materials [J]. Science,2008,320 (5880):1170-1171.
    [286]Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries [J]. Chem Mater,2009,21 (13):2604-2606.
    [287]Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries [J]. Carbon,2009,47 (8):2049-2053.
    [288]Wu X S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010,4 (6):3187-3194.
    [289]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide [J]. Nano Lett,2010,10 (2):577-583.
    [290]Zhang Y Z, Jiang W. Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA [J]. Electrochim Acta,2012,71:239-245.
    [291]Kuila T, Bose S, Khanra P, et al. Recent advances in graphene-based biosensors [J]. Biosens Bioelectron,2011,26 (12):4637-4648.
    [292]Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics [J]. J Phys Chem B,2004,108 (52): 19912-19916.
    [293]Kim K S, Zhao Y, Jang H, et al. Largescale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature,2009,457:706-710.
    [294]Schniepp H C, Li J L, Mcallister M J, et al. Functonalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B,2006,110(17):8535-8539.
    [295]Aizawa T, Souda R, Otani S, et al. Anomalous bond of monolayer graphite on transition-metal carbide surfaces [J]. Phys Rev Lett,1990,64 (7):768-771.
    [296]Eizenberg M, Blakely J M. Carbon monolayer phase condensation on Ni(111) [J]. Surf Sci, 1979,82(1):228-236.
    [297]Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longtiudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458:872-876.
    [298]Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature,2009,458:877-880.
    [299]Li X, Zhang G, Bai X, et al. Highly conductin graphene sheets and Langmuir-Blodgett films [J]. Nat Nanotechnol,2008,3:538-542.
    [300]Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science,2008,319 (5867):1229-1232.
    [301]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature,2006,442:282-286.
    [302]Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol, 2009,4:217-224.
    [303]Yang X Y, Dou X, Rouhanipour A, et al. Two-dimensional graphene nanoribbons [J]. J Am Chem Soc,2008,130 (13):4216-4217.
    [304]Simpson C D, Brand J D, Berresheim A J, et al. Synthesis of a giant 222 carbon graphite sheet [J]. Chem Eur J,2002,8 (6):1424-1429.
    [305]Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunable size [J]. J Am Chem Soc,2010,132 (17):5944-5945.
    [306]Fernandez-Merino M J, Guardia L, Paredes J K, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions [J]. J Phys Chem C,2010,114 (14): 6426-6432.
    [307]Wang Y, Shi Z X, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites [J]. Appl Mater Interfaces,2011,3 (4): 1127-1133.
    [308]Jiang T D. Chitason[M]. Beijing:Chemical Industry Press,2001:160-224.
    [309]Hnarish Prashath K V, Tharanathan R N. Chitin/chitosan:modifications and their unlimited application potential [J]. Trends Food Sci Technol,2007,18 (3):117-131.
    [310]Fang M, Long J, Zhao W F, et al. pH-Responsive chitosan-mediated graphene dispersions [J]. Langmuir,2010,26 (22):16771-16774.
    [311]Qiu J D, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells [J]. J Phys Chem C,2011,115 (31):15639-15645.
    [312]Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites [J]. J phys Chem C, 2008,112 (50):19841-19845.
    [313]Huang X, Zhou X Z, Wu S X, et al. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains [J]. Small,2010,6 (4):513-516.
    [314]Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biological sensing [J]. Chem Rev,2012,112 (5):2739-2779.
    [315]Zhou J, Ralston J, Sedev R, et al. Functionalized gold nanoparticles:synthesis, structrue and colloid stability [J]. J Colloid Interf Sci,2009,331 (2):251-262.
    [316]Kneipp J, Kneipp H, Rice W L, et al. Optical probes for biological applications based on surface-enhanced raman scattering from indocyanine green on gold nanoparticles [J]. Anal Chem,2005,77 (8):2381-2385.
    [317]Njoki P N, Lim I I S, Mott D, et al. Size correlation of optical and spectroscopic properties for gold nanoparticles [J]. J Phys Chem C,2007,111 (40):14664-14669.
    [318]Pingarron J M, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors [J]. Electrochim Acta,2008,53:5848-5866.
    [319]Kumar S S, Kwak K, Lee D. Electrochemical sensing using quantum-sized gold nanoparticles [J]. Anal Chem,2011,83 (9):3244-3247.
    [320]Ding M, Sorescu D C, Kotchey G P, et al. Welding of gold nanoparticles on graphitic templates for chemical sensing [J]. J Am Chem Soc,2012,134 (7):3472-3479.
    [321]赵晓芳,张宏福.葡萄糖氧化酶的功能及其在畜牧业中的应用[J].广东饲料,2007,16(1):34-35.
    [322]Hecht H J, Kalisz H M, Hendle J. Crystal structure of glucose oxidase from aspergillus niger refined at 2.3 A resolution [J]. J Mol Biol,1993,229 (1):153-172.
    [323]Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Lett,2008,8 (6): 1679-1682.
    [324]Zhang N N, Qiu H X, Si Y M, et al. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions [J]. Carbon,2011,49 (3): 827-837.
    [325]Moghaddam M J, Taylor S, Gao M, et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry [J]. Nano Lett,2004,4(1):89-93.
    [326]Zhang Y, Sun X M, Zhu L Z, et al. Electrochemical sensing based on graphene oxide/prussian blue hybrid film modified electrode [J]. Electrochim Acta,2011,56 (3): 1239-1245.
    [327]O'Halloran M P, Pravda M, Guilbault G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors [J]. Talanta,2001,55 (3):605-611.
    [328]Wu B Y, Hou S H, Yin F, et al. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode [J]. Biosens Bioelectron,2007,22 (12):2854-2860.
    [329]Wang Z, Liu S N, Wu P, et al. Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes [J]. Anal Chem, 2009,81 (4):1638-1645.
    [330]Gu Z G, Yang S P, Li Z J, et al. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer replay between graphene-gold nanocomposite and gold nanoparticle [J]. Electrochim Acta,2011,56: 9162-9167.
    [331]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal Chem,1980,52 (8): 1198-1205.
    [332]Rogers M J, Brandt K G. Interaction of D-glucal with Aspergillus niger glucose oxidase [J]. Biochemistry,1971,10 (25):4624-4630.
    [333]Yu J J, Yu D L, Zhao T, et al. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix [J]. Talanta,2008,74 (5):1586-1591.
    [334]Chin X, Chen J, Deng C, et al. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode [J]. Talanta,2008,76 (4):763-767.
    [335]Wu B Y, Hou S H, Yin F, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode [J].'Biosens Bioelectron,2007,22 (6):838-844.
    [336]Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns [J]. Biosens Bioelectron,2008,23 (12):1887-1890.
    [337]Turner A P F. Advances in Biosensors [M].London:JAI Press,1991:20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700