W波段相参频率源技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波频率源是构成毫米波雷达或通信系统的关键部件,而毫米波相参频率源能够显著提升系统的性能,而受到广泛的关注。对相参频率源技术的研究并将其应用到系统中,具有重要的现实意义。本文针对W波段相参频率源的关键技术及其应用进行了研究,主要研究工作如下:
     1、本文综述了目前相参频率源的合成技术,指出构建W波段相参频率源的方式主要属于混合式频率合成。根据毫米波电路部分是否主要依赖于反馈回路,可以分为两种技术方法:毫米波直接相参频率合成技术和间接相参频率合成技术。而毫米波相参频率源的技术指标依赖于微波电路的指标和电路形式的选择。
     2、对于毫米波近程测速雷达而言,发射机信号会泄漏到接收机中频频段,其相位噪声会严重影响到测速雷达的灵敏度。本文通过相关分析,提出通过提升发射机信号相位噪声与本振信号相位噪声的相关程度,有效的降低发射机泄露到中频后的信号的相位噪声,因此能够显著的提升系统的输出信噪比。解决了相位噪声影响雷达灵敏度问题。该思想被成功应用在w波段相参连续波频率源的设计中,所设计的频率源发射频率95 GHz,相位噪声-90dBc/Hz@10kHz,与相参本振混频后,输出泄露中频信号相位噪声-103dBc/Hz@10kHz。依赖于该频率源所设计的W波段多普勒测速雷达能够对10m/s-2000 m/s的近程目标进行速度测量,当目标截面积0.5 mm2,作用距离不大于10 m时,系统输出信噪比大于28 dB。
     3、对于毫米波脉间频率步进雷达而言,很多参数会对雷达的高距离分辨特性造成影响,其中就包括为雷达提供频率信号的频率步进频率源。本文分别对频率源的幅度波动、频率误差、杂波电平、相位噪声、频率切换时间以及收发相位差等参数对雷达系统的影响进行了量化分析。分析结果有助于频率源参数的指标要求设定和频率源的设计。接着对w波段相参频率步进频率源进行了设计,提出了一种在用于产生频率步进信号的DDS激励PLL电路中,可以通过修改DDS输出波形,来缩短频率切换时间的方法。不借助任何辅助电路,能够使频率切换时间达到1μs,并且输出信号的相位噪声和杂波抑制指标不受影响。所设计的w波段相参频率步进频率源输出信号相位噪声-90dBc/Hz@10kHz、杂波抑制-55 dBc、本振频率切换时间1μs,能够为系统提供高质量的信号输出,使得系统的距离分辨率达到0.6 m以上,实现高分辨的成像。
     4、除输出频率以外,输出功率也是频率源的一个重要参数,尤其发射机的输出功率会决定系统的作用距离。本文提出了一种功率合成网络——相参式功率合成,实现了W波段的功率合成。采用4只输出功率为75 mW左右的MPATT放大器,实现输出250 mW功率的连续波信号输出,带宽60 MHz,合成效率达到80%,能够突破单个W波段固态功率器件的极限,并且具有一定实用价值。
Millimeter-wave frequency synthesizer is one of the key components of millimeter-wave radar or communication system. The performance of the system will be greatly enhanced when coherent frequency synthesizer is used. So it is necessary and important for us to study the coherent frequency synthesizer design and its applications. The key techniques and the applications of the coherent frequency synthesizer at W-band are studied in this paper. The main researches are presented as the follows:
     1. The main coherent frequency synthesis techniques are expounded firstly. The W-band frequency synthesis techniques mainly belong to composite frequency synthesis. According to the millimeter-wave circuit is mainly based on feed-back circuit or not, there are two main millimeter-wave frequency synthesis techniques:millimeter-wave direct coherent frequency synthesis and millimeter-wave indirect coherent frequency synthesis. The performance of the millimeter-wave coherent frequency synthesizer is mainly depended on the characteristic of the RF components or the choice of the synthesizer circuits.
     2. For millimeter-wave short-range radar used for speed test, the sensitivity of the radar will be deteriorated by the signal (Tx-IF) which firstly leaks from the transmitter signal then mixes to intermediate frequency with local oscillator. The coherent analysis shows that it is an effective way to reduce the phase noise of the Tx-IF by enhancing the correlationship of the phase noise of the transmitter signal and that of the local oscillator. The output signal to noise radio (SNR) will be improved in the same way. The method is successfully applied in the design of the W-band coherent continuous wave frequency synthesizer. The frequency of coherent continuous wave the synthesizer is 95 GHz and the phase noise is-90 dBc/Hz@10kHz. After mixing with the coherent LO, the phase noise of the Tx-IF is-103 dBc/Hz@10kHz. With such W-band coherent frequency synthesizer, the W-band short-range radar can be used to test the speed of the target whose velocity varies from 10 m/s to 2000 m/s. When the cross section of the target is about 0.5 mm2, and the effective range is no larger than 10 m, the output signal to noise radio of the radar system is proved better than 28 dB.
     3. For millimeter-wave stepped-frequency radar, many parameters will affect the high range resolution of the radar, including the stepped-frequency synthesizer which provides the signals to the radar. In this paper, the parameters of the stepped-frequency synthesizer which will affect the radar performance are analyzed, including the amplitude fluctuation, frequency error, spurious signal level, phase noise, frequency switching time and the phase difference of the transmit-receive signal. The analysis is advantageous to the demand of the frequency synthesizer and it is helpful to the design of the frequency synthesizer. Then the W-band stepped frequency synthesizer is designed out. In the synthesizer, a method is advanced to speed up the frequency switching time, which is based on the circuit of DDS driving PLL. Without any peripheral circuits, the frequency switching time is about 1μs, and performance of the phase noise or spurious signal suppression are not influenced. The phase noise of the W-band stepped-frequency synthesizer is-90 dBc/Hz@10kHz, the spurious signal suppression is-55 dBc and the frequency switching time of the LO is 1μs. It provides high quality signals to the system. With such frequency synthesizer, the range resolution of the radar system is proved better than 0.6 m, and high range resolution imaging is achieved.
     4. Besides the output frequency, the output power is also important to the frequency synthesizer, because effect range of the radar system depends on the output power level. In this paper, a power combining network is introduced, the W-band coherent power combiner. With 4 IMPATT diodes whose normal rated power is 75 mW, the W-band coherent power combiner can have an output power of 250 mW. The bandwidth of the combiner is 60 MHz, and the efficiency is about 80%. The research shows that the W-band coherent power combiner can make a breakthrough at the single W-band solid diode power limit, which is valuable in the practical radar systems.
引文
[1]阮成礼.毫米波理论与技术.成都:电子科技大学出版社,2001,1-4
    [2]薛良金.毫米波工程基础.北京:国防工业出版社,1998,5-14
    [3]同武勤,凌永顺,蒋金水,等.毫米波雷达的应用及发展.光电技术应用,2004,19(4):51-54
    [4]同武勤,凌永顺,蒋金水.军用毫米波雷达的应用及其发展趋势.飞航导弹,2004,5:48-51
    [5]耿春萍,张丽霞.毫米波制导技术的应用和发展.飞行器测控学报,2004,23(2):16-18
    [6]龚金楦.电子战的新领域——毫米波电子对抗.电波科学学报,1991,6(1):1-6
    [7]贺超,吕智勇,韩福春.卫星通信系列讲座之十一美国军事战略战术中继卫星MILSTAR(上).数字通信世界,2008,3:84-86
    [8]贺超,吕智勇,韩福春.卫星通信系列讲座之十一美国军事战略战术中继卫星MILSTAR(下).数字通信世界,2008,4:84-87
    [9]钱嵩松,李兴国.被动毫米波成像综述.制导与引信,2003,24(4):29-33
    [10]徐晨,杨永杰,包志华.被动毫米波成像系统的关键技术.南通大学学报自然科学版,2005,4(1):49-51
    [11]李良超,杨建宇,姜正茂,等.3mm辐射成像研究.红外与毫米波学报,2009,28(1):11-15
    [12]刘志民.毫米波应用和工艺发展趋势.电波与天线,1994,Vo1.6:31-39
    [13]甘体国.毫米波工程.成都:电子科技大学出版社,2006,5-32
    [14]赵芳灿.形形色色的毫米波和亚毫米波集成传输线.上海微电子技术和应用,1997,3:16-20
    [15]Ducommun Technologies. Microwave & Millimeterwave Products, Edition 2007. http://www.ducommun.com/
    [16]张永鸿.W波段频率源技术研究与应用:[博士学位论文].成都:电子科技大学,2001
    [17]马海虹.W波段低相噪锁相频综技术研究:[博士学位论文].成都:电子科技大学,2007
    [18]Agilent Technologies. Millimeter-wave Source Modules for the Agilent PSG Signal Generators. http://www.home.agilent.com/
    [19]J. C. Butterworth. A High Power Coherent 95 GHz Radar (HIPCOR-95). IEEE MTT-S Digest, 1987,87(1):499-502
    [20]H. Meal, H. Insult, S. Boehmsdorff, et al. MEMPHIS-a Fully Polarimetric Experimental Radar. IGARSS,2002:1714-1716
    [21]ProSensing Inc. Millimeter-Wave Cloud & Precipitation Radars. http://www.prosensing.com/
    [22]高树廷,刘洪升.频率源综述.2003全国微波毫米波会议论文集,2003:957-961
    [23]V. A. Khitrovskiy. Circuitry and Technological Aspects of Frequency Synthesizers Design for Modem Radars. MSMW'04,2004:21-26
    [24]中航雷达与电子设备研究院.雷达系统.北京:国防工业出版社,2005,83-85
    [25]朱燕.相参雷达的信号处理与相干性干扰的研究:[硕士学位论文].西安:西安电子科技大学,2005
    [26]弋稳.雷达接收机技术.北京:电子工业出版社,2005,139-140
    [27]丁鹭飞,耿富录,陈建春.雷达原理,第四版.北京:电子工业出版社,2009,132-133
    [28]A. M. Madni, H. M. Endler, L. A. Wan, et al. A Miniaturized, High Performance Coherent Direct Synthesizer for Airborne Applications. IEEE Aerospace Conference,1997, Vol.3: 469-479
    [29]M. Andrzejewski, W. Topiuro, M. Mastalerz. A Reference Source Unit for Coherent Direct Synthesizer.12th International Conference on Microwaves and Radar,1998:44-48
    [30]W. Topilko, D. Startek. C-band Coherent Direct Synthesizer.12th International Conference on Microwaves and Radar,1998:39-43
    [31]Z. Sawicki. Coherent Multiple-frequency Chirp Exciter for L Band Radars.15th International Conference on Microwaves, Radar and Wireless Communications,2004:928-931
    [32]J Tierney, C Rader, B Gold. A Digital Frequency Synthesizer. IEEE Transactions on Audio and Electroacoustics,1971,19(1):48-57
    [33]A. Grama, G. Muntean. Direct Digital Frequency Synthesis Implemented on a FPGA Chip.29th International Spring Seminar on Electronics Technology,2006:92-97
    [34]Analog Devices Inc. A Technical Tutorial on Digital Signal Synthesis. http://www.analog.com/
    [35]黄智伟.锁相环与频率合成器电路设计.西安:西安电子科技大学出版社,2008,4-5
    [36]B. Razavi. A Study of Injection Locking and Pulling in Oscillators. IEEE Journal of Solid-State Circuits,2004,39 (9):1415-1424
    [37]J. Geddes, V. Sokolov, A. Contolatis. W-band GaAs MESFET Frequency Doubler. Microwave and Millimeter-Wave Monolithic Circuits,1987,87(1):7-10
    [38]H. Wang, K. W. Chang, Streit, et al. Monolithic 23.5 to 94 GHz Frequency Quadrupler Uing 0.1um Pseudomorphic AlGaAs/InGaAs/GaAs HEMT Technology. IEEE Microwave and Guided Wave Letters.1994,4(3):77-79
    [39]吴正德,唐小宏.谐波提取技术的理论与应用研究.电子科技大学学报,1991,20(1):46-55
    [40]杨涛,向志军,吴伟,等.W频段宽带倍频器.红外与毫米波学报,2007,26(3):161-163
    [41]杨军.3mm变容二极管倍频器.中国电子学会微波学会第四届毫米波学术会议论文集,2000,107-110
    [42]M. Zhao, J. Zhan, Y. Fan, et al. A Novel W-band Microstrip Integrated Avalanche Diode High Order Frequency Multiplier. International Journal of Infrared and Millimeter Waves,2008, 29(8):741-747
    [43]M. Zhao, Y. Fan, J. Zhan, et al. Planar Integrated W-band Microstrip High Order Frequency Multiplier Based on Avalanche Diode. Electronics Letters,2008,44(12):745-746
    [44]Y. Kwon, D. Pavlidis, M. Tutt, et al. W-band Monolithic Mixer Using InAlAs/InGaAs HEMT. 12th Annual GaAs IC Symposium,1990,181-184
    [45]K. W. Chang, H. Wang, S. B. Bui, et al. A W-band Monolithic Downconverter. IEEE Transactions on Microwave Theory and Techniques,1991,39(12):1972-1979
    [46]H. Wang, K. W. Chang, T. H. Chen, et al. Monolithic W-band VCOs Using Pseudomorphic AlGaAs/InGaAs/GaAs HEMTs. Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1992:47-50
    [47]K. W. Kobayashi, A. K. Oki, L. T. Tran, et al. A 108-GHz InP-HBT Monolithic Push-Push VCO with Low Phase Noise and Wide Tuning Bandwidth. IEEE Journal of Solid-state Circuits, 1999,34(9):1225-1232
    [48]H. Li, H. M. Rein, T. Suttorp. Design of W-band VCOs With High Output Power for Potential Application in 77 GHz Automotive Radar Systems. Gallium Arsenide Integrated Circuit (GaAs IC) Symposium,2003:263-266
    [49]C. Cao, K. O. Kenneth. Millimeter-wave Voltage-controlled Oscillators in 0.13-μm CMOS Technology. IEEE Journal of Solid-State Circuits,2006,41(6):1297-1304
    [50]吴涛,唐小宏,何宗锐,等.三毫米波紧凑型双路输出VCO研究.第五届全国毫米波亚毫米波学术会议论文集,2004:182-184
    [51]唐小宏,吴涛,马海虹,等.95GHz测速雷达前端研究.第六届全国毫米波亚毫米波学术会议论文集,2006:277-280
    [52]马海虹,唐小宏,吴涛.95GHz低相噪锁相源技术研究.微波学报,2007,23(6):58-60
    [53]F. Yang, X. Tang, T. Wu. The Scheme and Key Components Design of W-band Coherent Doppler Velocity Radar Front-end. IEEE 2007 International Symposium on ASIC,2007: 356-359
    [54]M. I. Skolnik著.王军,林强,米慈中,等译.雷达手册,第二版.北京:电子工业出版社,2003,20-21
    [55]吴涛,唐小宏.毫米波多普勒测速雷达的噪声模型分析.2007年全国微波毫米波会议论文集,2007:1380-1383
    [56]T. Wu, X. H. Tang, and F. Xiao. Research on the Coherent Phase Noise of Millimeter-Wave Doppler Radar. Progress In Electromagnetics Research Letters,2008, Vol.5:23-34
    [57]D. S. Korn. The Effect of Phase Noise and Spurs on Coherent Communications Performance. Military Communications Conference,1995:383-387
    [58]D. M. Pozar著.张肇仪,周乐柱,吴德明,等译.微波工程,第三版.北京:电子工业出版社,2005,509-514
    [59]D. B. Leeson. A Simple Model of Feedback Oscillator Noise Spectrum. Proc. IEEE,1966, Vol. 54:329-330
    [60]A. Hajimiri, T. H. Lee. A General Theory of Phase Noise in Electrical Oscillators. IEEE Journal of Solid-State Circuits,1998, Vol.33:179-194
    [61]T. H. Lee, A. Hajimiri. Oscillator Phase Noise:A tutorial. IEEE Journal of Solid-State Circuits, 2000, Vol.35:326-336
    [62]A. Demir, A. Mehrotra, J. Roychowdhury. Phase Noise in Oscillators:A Unifying Theory and Numerical Methods for Characterization. IEEE Trans. Circuits Syst,2000, Vol.147:655-674
    [63]P. Vanassche, G. Gielen, E. Sansen. Efficient Analysis of Slow-Varying Oscillator Dynamics. IEEE Trans. Circuits Syst,2004, Vol.151:1457-1467
    [64]F Yang, X Tang; T Wu. The Scheme and Key Components Design of W-band Coherent Doppler Velocity Radar Front-end.2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2007:467-470
    [65]何林晋,唐小宏,张永鸿.U波段四倍频器研制.2003全国微波毫米波会议论文集,2003:520-523
    [66]李羲之.W波段宽带机械调谐体效应振荡器.电子科学学刊,1992,14(1):96-100
    [67]P. Joongsuk, N. Cam. A New Millimeter-Wave Step-Frequency Radar Sensor for Distance Measurement. IEEE Transactions on Microwave Theory and Techniques,2002,12(6):221-222
    [68]A. Langman, M. R. Inggs. Pulse Versus Stepped Frequency Continuous Wave Modulation for Ground Penetrating Radar. IGARSS,2001:1533-1535
    [69]D. R. Wehner, High Resolution Radar, Second Edition. London:Artech House,1993,214-220
    [70]G.S. Gill. Step Frequency Waveform Design and Processing for Detection of Moving Target in Clutter. IEEE International Radar Conference,1996:573-578
    [71]徐泳,马林.目标径向运动对步进频率雷达影响的分析与仿真.现代雷达,2005,27(12):49-52
    [72]龙腾.频率步进雷达信号的多普勒性能分析.现代雷达,1996,2(4):31-37
    [73]N. Levanon. Stepped-frequency Pulse-train radar signal. IEEE Proc. Radar Sonar Navig,2002, 149(6):297-309
    [74]A. J. Wilkinson, R. T. Lord. Stepped-frequency Processing by Reconstruction of Target Reflectivity Spectrum. South African Symposium,1998:101-104
    [75]T. Wu, X. Tang, F. Xiao. Research on the effect of Frequency Synthesizer on the Performance of MMW Stepped Frequency Radar. Global Symposium on Millimeter Waves 2008,2008: 253-256
    [76]吴涛,唐小宏,肖飞.相位噪声对频率步进雷达的影响仿真.2009年全国微波毫米波会议论文集,2009:1243-1247
    [77]C. J. Grebenkemper. Local Oscillator Phase Noise and its effect on Receiver Performance. Watkins-Johnson Company Tech-notes,1981,8(6):1-13
    [78]R. F. Holloway, W. H. Weedon, B. Houshmand, et al. Next-generation W-Band Radar Testbed. 2007 IEEE Radar Conference,2007:65-71
    [79]吴涛,唐小宏,王玲,等.色散特性对毫米波频率步进雷达影响的研究.电子科技大学学报,2008,37(5):685-688
    [80]Y. Zhang, X. Tang, Y. Fan, et al. A W-band Frequency Source With Low Spurs and Low Phase Noise. Int. J. Infrared Millim. Waves.2006,27(8):1087-1093
    [81]H. Ma, X. Tang, Design of 3 mm Band Hopping Frequency Synthesizer. Int. J. Infrared Millim. Waves.2008,29(7):704-711
    [82]Y. Zhang, X. Tang, Y. Fan, Z. Wu. Frequency Sources in W-band Radar Front-end With Low Phase Noise. Int. J. Infrared Millim. Waves.2007,29(2):142-147
    [83]T. Cegielski, Z. Sawicki. Spectral and Noise Purity of Coherent Multiple-Frequency Chirp Exciter for L Band Radars. International Conference on Microwaves, Radar & Wireless Communications,2006:129-132
    [84]V. F. Kroupa, V. Cizek, J. Stursa, et al. Spurious Signals in Direct Digital Frequency Synthesizers Due to the Phase Truncation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2000,47(5):1166-1172
    [85]Y. Sumi, S. Obote, K. Narai, et al. Fast Settling PLL Frequency Synthesizer Utilizing the Frequency Detector Method Speedup Circuit. IEEE Transactions on Consumer Electronics. 1997,43(3):550-558
    [86]Analog Devices Inc. AD9858 datasheet. http://www.analog.com/
    [87]Analog Devices Inc. ADF4002 datasheet. http://www.analog.com/
    [88]F. M. Gardner. Phaselock Techniques, Third Edition. John Wiley & Sons, Inc,2007,97-100
    [89]唐小宏.多谐波相互作用机理与技术研究:[博士学位论文].成都:电子科技大学,1989
    [90]唐小宏,吴正德,樊勇.基波注入锁定谐波耿氏振荡器研究.电子学报,1996,24(3):97-99
    [91]E.J Wilkinson. An N-Way Hybrid Power Divider. IEEE Transactions on Microwave Theory and Techniques,1960,8(1):116-118
    [92]刘云刚,徐军,罗慎独,等.Ka频段2W功率合成器的研究.微波学报,2006,22(5):61-66
    [93]K. Chang, C. Sun. Millimeter-Wave Power-Combining Techniques. IEEE Transactions on Microwave Theory and Techniques,1983, Vol.31:91-107
    [94]吴正德,唐小宏,樊勇,等.3mm波相参脉冲发射组件的研究.电子学报,2000,28(6):102-104
    [95]谢小强,林为干,徐锐敏.一种新颖的毫米波功率合成电路.红外与毫米波学报,2006,25(1):25-28
    [96]吴涛,唐小宏.W波段双路相参功率合成技术的研究.微波学报,2008,24(4):60-63
    [97]T. Wu, X. Tang. An Optimization Approach of W-band IMPATT Oscillator Design.2006 China-Japan Joint Microwave Symposium,2006:205-208
    [98]J. Gannett, L. Chua. A Nonlinear Circuit Model for IMAPATT Diode. IEEE Transactions on Circuits and Systems,1978, Vol.25:299-308
    [99]M. M. Radmanesh著.顾继慧,李鸣译.射频与微波电子学.北京:科学出版社,2006,494-500
    [100]K. Chang, R. L.Ebert. W-Band Power Combiner Design. IEEE Transactions on Microwave Theory and Techniques.1980, Vol.28:295-305
    [101]S. Kar. A computer-aided impedance characterization for microwave resonant-cap circuits. URSI International Symposium on Signals, Systems, and Electronics,1995:231-234
    [102]U. C. Ray, A. K. Gupta, P. Swarup. A Practical Approach to the Design of a W-Band Impatt Oscillator. Microwave Journal,1989:157-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700