微光束整形元器件设计及光传输特性的量子结构调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维周期和准周期超晶格中光传输特性量子结构调控在设计光电子器件方面有着重要的应用前景,优化光学元件是改善光束质量有效的手段。本文着重研究了如下几个问题:含缺陷周期和准周期超晶格对光输运性质调控,优化设计衍射光学元件提高在光束整形,长焦深以及光束分离和聚焦等多种功能中的光学性能。获得了如下有意义的结果:
     研究了由左右手材料组成的准周期超晶格光传输性质,展现了共振传输和光子带隙。发现当介质的介电常数和磁导率与频率无关时,传输谱呈现理想透射峰和宽的光子带隙;随着准周期结构序列增加,带隙加宽,出现更多的全透峰值和透射峰;左手材料的引入,使带隙覆盖整个频率区域,除了满足相位π/2的整数倍的点;带隙宽度及透射率均对入射角很敏感,随着入射角增大,传输谱均向低频端移动,高频区域透射率降低;随着材料光学厚度增加,模式劈裂,出现更多的新的传输通道。当引入介电常数和磁导率与频率有关的负折射率材料时,传输谱呈现更多的光学带隙和传输通道。
     研究了准周期结构缺陷对有限超晶格中光波传输特性的调控。当介电常数和磁导率与频率无关时,缺陷的引入使得带隙中出现缺陷模式,随着缺陷阶数增加,带隙加宽,新的传输通道出现;缺陷为左手材料时,透射率降低,出现更完美和更宽的带隙;带隙宽度和缺陷态的性质都依赖于入射角的变化,随着入射角增大,带隙变宽,中间缺陷模式向高频端移动;当折射率是频率色散并且为负时,出现不对称的丰富的传输带隙。为设计多通道滤波和宽带滤波器件等方面提供了重要的参考价值。
     一种改进的加权杨顾算法被用于实现在分数傅里叶变换区域和自由空间光束整形,模拟设计衍射相位元件实现不同分数阶和不同参数的高斯光束和空心高斯光束最优的达到均匀平顶矩形光束。对于不同的分数阶和不同的腰斑半径,加权杨顾算法都最优的实现光束整形,提高光束整形质量,降低误差函数和光强不均匀性;对于不同的初始相位,误差函数都趋向于0值点,有效的避免循环过程中陷入局部极值点,降低对初始值的敏感性。
     我们利用优化算法设计衍射Axicon实现不同光束长焦深,发现优化设计的衍射Axicon实现焦深区域更宽范围的轴向高强度分布,获得更高的横向分辨率。设计三种不同波长入射光束,都能在预设焦深范围实现长焦深,多次加权后实现焦深区域均匀强度分布;对于均匀光束和高斯光束都能实现预设范围长焦深;两个预设焦深设计,两种光束都在预设焦深范围内都达到了较好的焦深效果。我们优化设计的Axicon可提高不同波长,不同人射光束在不同预设位置长焦深性能。
     利用优化算法设计光学元件实现不同波长光束分离和聚焦,扩展相位分布,发现多种波长都能实现分离并能在预设位置聚焦且能量损耗小。对于三个到五个不同的入射波长,实现分离,并能在预设位置聚焦;对于不同波长,在任意的预设位置都能较好的分离和聚焦。
The quantum structure manipulation of optical transmission properties inlow-dimensional periodic and quasiperiodic superlattices has important applicationforeground in the design of optoelectronic devices. Optimization design of opticalelements can effectively improve the beam quality. In this thesis, we focus on thefollow issues: light propagation properties in periodic and quasiperiodic superlatticeswith structural defect, optimization design of diffractive optical elements for beamshaping, long focal depth and wavelength demultiplexing and focusing. Some mainresults achieved in this thesis are summarized as follows:
     A three-component quasiperiodic superlattice structures composing of both positiveand negative refractive index materials are shown to display resonant transportbehavior and optical band gaps. When the structure is composed of non-dispersiverefractive index material, the number of the resonant transmission peaks increases andthe optical band gap becomes broader with the increasing of the medium generation.The band gap covers all the wavelength except for some singular wavelength pointswhen the structure is composed of negative refractive index materials. Moreover, it isfound that the spectrum shifts to low frequency for oblique incidence. And with theincreasing of the optical thickness, the band gap splits and new perfect transportchannels emerge. For a more realistic dispersive negative refractive index material,the transmission coefficients are characterized by a rich transmission profile withoutsymmetry, more wide band gaps and abundance transmissive channels appear.
     We investigate the optical transmission properties in finite periodic superlatticemodulated with three-component quasiperiodic defect structure. The results show thatwhen the multilayered defect is composed of frequency-independent refractive indexmaterial, more band gaps appear with the growing of the number of the defect order,and new guided channels emerge. Perfect and more wide band gap can be observedwhen the structural defect is composed of negative refractive index materials.Moreover, the band gap can be adjusted by the incident angle and the spectrum shiftsto high frequency for oblique incidence. For a more realistic frequency-dependentrefractive index, the transmission spectra are characterized by a rich transmissionprofile without symmetry.
     An improved approach named as weighted YangGu(YG) algorithm for the design of diffractive phase element (DPE) that implement beam shaping in the fractionalFourier transform domain and free space is presented. Modeling designs of the DPEare carried out for several fractional orders and different parameters of the beam foroptimization converting a Gaussian profile and hollow Gaussian profile into a uniformbeam. We found that our algorithm can improve the beam shaping effect, reduce theerror function, and increase light intensity imhomogeneous. For different initial phase,the error function tends to nearly zero points. It can be effective for avoiding thesearch process to local extreme point and decreasing the sensitivity to initial phase.
     We use an optimization weighted YG algorithm for the design of diffractive Axiconwith long focal depth and high lateral resolution. Modeling designs of the diffractiveAxicons are carried out uniform and Gaussian beam for optimization implementing onlong focal depth. For three different wavelengths incident beam, can realize long focaldepth in the predesignated focal range. After more than once weighted, we found thatour algorithm can increase focal depth, achieve an uniform plateau profile in thedomain of focal depth.
     We use the optimization algorithm design optical elements for wavelengthseparation and focus. A variety of wavelength can be separated and are able to focus atthe predesignated positions and energy consumption is small. For four differentincident wavelengths, they can also be separated and focus at arbitrary predesignatedpositions after expansion the phase distribution.
引文
[1] Jiang H T, Chen H, Li H Q, et al. Omnidirectional gap and defect modes ofone-dimenssional photonic crystals containing negative-index matetials. Appl.Phys. Lett.,2003,83(26):5386-5388
    [2]石宗华,耿继国等.含负折射率材料的一维光子晶体缺陷模式的研究.量子光学学报,2007,13(2):129-133
    [3] Xu K Y, Zheng X G, Li C L, et al. Design of omnidirectional and multiplechanneled filters using one-dimensional photonic crystals containing a defectlayer with a negative refractive index. Phys. Rev. E,2005,71(6):066604-1-11
    [4] Giuseppe D A, Mattiucci N, Scalora M, et al. Second-harmonic generation atangular incidence in a negative-positive index photonic band-gap structure.Phys. Rev. E,2006,74(2):026608-1-5
    [5]王辉,李永平.用特征矩阵法计算光子晶体的带隙结构.物理学报,2001,50(11):2172-2178
    [6] Xu X M, Tang X X, Liu N H. Solitonlike in nonlinear photonic crystal. Chin. J.Lumin,2004,25(5):629-632
    [7] Veselago V G. The electrodynamics of substances with simultaneously negativevalues of ε and μ. Sov. Phys. Usp,1968,10(4):509-514
    [8] Pendry J B, Holden A J, Stewart W J. Extremely low frequency plasmous inmetallic mesostructures. Phy. Rev. Lett.,1996,76(25):4773-4776
    [9] Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons inthin-wire structures. J. Phys.: Condens. Matter,1998,10(22):4785-4809
    [10] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors andenhanced nonlinear phenomena. IEEE. Trans. Microw. Theory. Tech.,1999,47(11):2075-2084
    [11] Shelby R A, Smith D R, Schultz S. Experimental verification of a negativeindex of refraction. Science,2001,292(5514):77-79
    [12] Weiland T, Cchuhmann R, Greegor R B. Ab initio numerical simulation ofleft-handed metamaterials: Comparison of calculations and experiments. J. Appl.Phys.,2001,90(10):5419-5424
    [13] Markos P, Souloulis C M. Numerical studies of left-handed materials and arraysof split ring resonators. Phys. Rev. E,2002,65(3):036622-1-8
    [14] Smith D R, Schultz S, Markos P. Determination of effective permittivity andpermeability of metamaterials from reflection and transmission coefficients.Phys. Rev. B,2002,65(19):195104-1-5
    [15] Caloz C, Chang C C, Itoh T. Full-wave verification of the fundamentalproperties of left-handed materials in waveguide configurations. J. Appl. Phys.,2002,90(11):5483-5486
    [16] Ziokowski R W. Superluminal transmission of information through anelectromagnetic metamatefial. Phys. Rev. E,2001,63(4):046604-1-13
    [17] EsakiL T R. Superlattice and negative differential conductivity insemiconductors. IBM. J. Res. Dev,1970,14(1):61-65
    [18] Cho A. Growth of Periodic Structures by the Molecular-Beam Method. Appl.Phys. Lett.,1971,19(11):467-468
    [19]冯端,金国钧.凝聚态物理学.北京:高等教育出版社,2003,151-156,419-463
    [20]郑厚植.人工物性裁剪.长沙:湖南科学技术出版社,1997,1-25
    [21]夏建白.现代半导体物理.北京:北京大学出版社,2000,65-82,260-287
    [22]康昌鹳,杨树人.半导体超晶格材料及应用.北京:国防工业出版社,1995,6-7
    [23]严守胜,甘子钊.介观物理.北京:北京大学出版社,1995,214-275
    [24] Weisbuch C. Intrinsic radiative recombination from quantum states inGaAs-AlxGa1-xAs multi-quantum well structures. Solid State Communication,1981,37(11):219-222
    [25] Wood T H, Burrus C A, Miller D A B, et al. High-speed optical modulation withGaAs/GaAlAs quantum wells in a p-i-n diode structure. Appl. Phys. Lett.,1983,44(1):16-18
    [26] Kondo K, Saito J, Igarashi T, et al. MBE as a production technology for HEMTLSIs. J. Cryst. Growth,1989,95(4):309-316
    [27] Levine B F, K K, Bethea C G, et al. New10μm infrared detector usingintersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys.Lett.,1987,50(16):1092-1094
    [28] Dingle R, Wiegmann W, Henry C H, et al. Quantum states of confined carriersin very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys. Rev. Lett.,1974,33(14):827-830
    [29] Dingle R, Gossard A C, Wiegmann W. Direct observation of superlatticeformation in a semiconductor heterostructure. Phys. Rev. Lett.,1975,34(21):1327-1330
    [30]江剑平.半导体激光器.北京:电子工业出版社,2002,80-120
    [31]陈桂林.低维纳米体系中光输运性质的研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,1-5
    [32] Capasso F, Sirtori C, Faist J, et al. Natrue,1992,358:565-567
    [33] Wang X H, Gu B Y, Yang G Z, et al. Parity anomaly of bound states and opticalproperties in semiconductor superlattices with structural defects. Phys. Rev. B,1998,58(8):4629-4635
    [34] Sprung D W L, Jagiello P, Sigetich J D, et al. Continuum bound states as surfacestates of a finite periodic system. Phys. Rev. B,2003,67(8):085318-1-11
    [35] Swaminathan V, Macrander A. Material aspects of GaAs and InP basedstructures. Englewood Cliffs: Prentice-Hall,1991,1-42
    [36] Seiji Mizuno. Eigenfrequency and decay factor of the localized phonon in asuperlattice with a defect layer. Phys. Rev. B,2002,65(19):193302-1-4
    [37] Stanton N M, Kini R N, Kent A J, et al. Monochromatic transverse-polarizedphonons from femtosecond pulsed optical excitation of a GaAs/AlAssuperlattice. Phys. Rev. B,2004,69(12):125341-1-5
    [38] Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-rangeorientational order and no translational symmetry. Phys. Rev. Lett.,1984,53(20):1951-1953
    [39]冯端.当代凝聚态物理学的发展.物理,1989,18(1):1-9
    [40]闵乃本,朱永元,祝世宁等.介电体超晶格的研究.物理,2008,37(1):1-10
    [41] Kohmoto M, Sutherland B, Iguchi K. Localization in Optics: QuasiperiodicMedia. Phys. Rev. Lett.,1987,58(23):2436-2438
    [42] Gellennann W, Kohmoto M, Sutherland B, et al. Localization of Light Waves inFibonacci Dielectric Multilayers. Phys. Rev. Lett.,1994,72(5):633-636
    [43] Zhu Y, Ming N, Jiang W, et al. Acoustic superlattice of LiNbO3crystals and itsapplications to bulk-wave transducers for ultrasonic generation and detection upto800MHz. Appl. Phys. Lett.,1988,53(15):1381-1383
    [44] Zhu Y, Ming N, Jiang W. Ultrasonic spectrum in Fibonacci acousticsuperlattices. Phys. Rev. B,1989,40(12):8536-8540
    [45] Zhu Y, Ming N. Second-harmonic generation in a Fibonacci opticalsuperlattices and the dispersive effect ofthe refractive index. Phys. Rev. B,1990,42(6):3676-3679
    [46] Zhu S, Zhu Y, Zhang Z, et al. LiTaO3crystal periodically poled by applying allexternal pulsed field. J. Appl. Phys.,1995,77(10):5481-5483
    [47] Zhu S, Zhu Y, Qin Y, et al. Experimental Realization of Second HarmonicGeneration in a Fibonacci Optical Superlattice of LiTaO3. Phys. Rev. Lett.,1997,78(14):2752-2755
    [48] Liu X, Wang Z, Wu J, et al. Second-harmonic Generation in Thue-MorseOptical Superlattices. Chin. Phys. Lett.,1998,15(6):426-428
    [49] Thue A.über unendliche zeichenreihen. Selsk. Skr. I.,1906,7(1):1-3
    [50] Morse M. Tram. Symbolic dynamics. Am. Math. Soc.,1921,22(1):84-86
    [51] Rikkmd R, Severin M, Liu Y. The Thue-Morse aperiodic arystal: a link betweenthe fibonacci quasicrystal and the periodic crystal. Int. J. Phys. B,1987,1(1):121-132
    [52] Tong P. Structure of electronic energy spectra of one-dimensional nonperiodiclattices. Phys. Rev. B,1996,53(4):1795-1805
    [53] Tong P. Trace maps and electronic properties of a class of three-componentnonperiodic lattices. Phys. Lett. A,1996,217(2):141-150
    [54] Hu X B, Yang X B, Hu W, et al. Optical transmission through three-componentThue-Morse multilayers. Phys. Stat. Sol. B,2007,244(2):717-725
    [55] Shelby R A, Smith D R, Schultz S. Experimental verification of a negativeindex of refraction. Science,2001,292(5514):77-79
    [56] Lu W T, Sokoloff J B, Sridhar S. Refraction of electromagnetic energy for wavepackets incident on a negative-index medium is always negative. Phys. Rev. E,2004,69(2):026604-1-5
    [57] Starr A F, Rye P M, Mock J J, et al. Angle resolved microwave spectrometer formetamaterial studies. Rev. Sci. Instrum.,2004,75(4):820-825
    [58] Starr A F, Rye P M, Smith D R, et al. Fabrication and characterization of anegative refractive index composite metamaterial. Phys. Rev. B,2004,70(11):113102-1-4
    [59] Cummer S A, Popa B I. Wave fields measured inside a negative refractiveindex metamaterial. Appl. Phys. Lett.,2004,85(20):4564-4566
    [60] Aydin K, Guven K, Soukoulis C M, et al. Observation of negative refraction andnegative phase velocity in left-handed metamaterials. Appl. Phys. Lett.,2005,86(12):124102-1-3
    [61] Yen T J, Padilla W J, Fang N, et al. Terahertz Magnetic Response fromArtificial Materials. Science,2004,303(5663):1494-1496
    [62] Smith D R, Willie J P, Vier D C, et al. Composite medium with simultaneouslynegative permebility and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187
    [63]赵伟,李晓.左手材料及其在天线中的应用.航空兵器,2007,60(4):57-60
    [64]刘六彬.新型电磁材料.电子器件,2005,28(4):942-944
    [65] Lcgcr J, Holz M, Swanson W, et al. Coherent laser beam addition:Anapplication of binary optics technology. Lincoln lab:J.,1988,225-246
    [66]金国藩,严瑛白,邬敏贤等.二元光学.北京:国防工业出版社,1998,18-26
    [67]卢振武,刘华,孙强等.衍射光学技术的应用研究.中俄衍射光学技术高端研讨会文集,2007
    [68]刘莉萍,王涌天,李荣刚等.制作在非球面基底上的红外衍射光学元件.红外与毫米波学报,2004,23(4):308-312
    [69]杨国光.微光学与系统.杭州:浙江大学出版,2008,20-30
    [70]邱传凯,杜春雷,邓启凌等.衍射光学元件在红外像传感器中的应用研究.半导体光电,2005, B03(26):84-87
    [71]胡晓军,郑子文,戴一帆等.控制三维光场的纯相位衍射光学元件优化设计.应用光学,2007,28(6):778-782
    [72]彭钦军,郭永康,陈波等.液晶实时掩膜技术制作连续微光学元件.光学学报,2003,23(2):220-224
    [73]李珂,刘强,李永平.衍射光学元件表面反射对高功率激光系统的影响.中国激光,2009,36(6):1371-1377
    [74]谢永军.曲面基底上的新型微细加r技术及应用.中俄衍射光学技术高端研讨会文集,2007
    [75]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用:[浙江大学博士学位论文].杭州:浙江大学,2006,3-4
    [76] Siegman A E. Unstable optical resonators for laser applications. Proc. IEEE,1965,53(3):277-287
    [77] Tonshoff H K, Momma C, Ostendorf A, et a1. Microdrilling of metals withultrashort laser pulses. Journal of Laser Applications,2000,12(1):23-27
    [78] Desfarges B A, Kermene V, Colombeau B, et al. Intracavity beam shaping andreferenceless holography. Optical Materials,2001,18(1):27-35
    [79]谭峭峰,袁静,严瑛白等.实现Nd:YAG光束匀滑的衍射光学器件的研制.强激光与粒子束,2001,13(2):181-184
    [80]张星.光束整形技术展现出应用于激光加工业的潜力.光机电信息,2008,25(1):11-13
    [81] Kurisu K, Hirai T, Fuse K. Development of a Diffractive Optical Element forlaser Processing. SEI Tech. Rev.,2002,53(53):86-91
    [82]韩晓俊,李正佳,朱长虹.半导体激光器在医学上的应用.光学技术,1998,2(6):7-10
    [83] Gruhlke R W, Giammona L, Langhorn C, et a1. Medical and industrial laserbeam shaping by diffractive optical elements. Proc. SPIE,1993,1870(120):120-129
    [84] Mcleod J H. The Axicon: a new type of optical element. J. Opt. Soc. Am.,1954,44(8):592-597
    [85] Dumin J, Miceli J J, Eberly J. H. Diffraction-free beams. Phy. Rev. Lett.,1987,58(15):1499-1501
    [86] Shi L F, Dong X C, Deng Q L, et al. Design and characterization of an Axiconstructured Lens. Opt. Eng.,2011,50(6):063001-1-5
    [87] Bao N K, Chen Z Y, Chen Y S. Adjacent sequence iteration method fordesigning a diffractive element with function of long focal depth. Opt. Eng.,2004,43(10):2348–2352
    [88] Thaning A, Friberg A T. Synthesis of diffractive Axicons for partially coherentlight based on asymptotic wave theory. Opt. Lett.,2001,26(21):1648-1650
    [89] Sochacki J, Kolodziejczyk A, Jaroszewicz Z, et a1. Nonparaxial design ofgeneralized Axicons. Appl. Opt.,1992,31(25):5326-5330
    [90] Jaroszewicz Z. Apodized annular-aperture logarithmic Axicon: smoothness anduniformity of intensity distributions. Opt. Lett.,1993,18(22):1893-1895
    [91] Dong B Z, Yang G Z, Gu B Y. Iterative optimization approach for designing anAxicon with long focal depth and high transverse resolution. J. Opt. Soc. Am. A,1996,13(1):97-103
    [92] Popov S. Diffractive Axicons with fully and partially coherent light. Appl. Opt.,1992,31(25):5550-5558
    [93] Jaroszewicz Z. Uniformization of the axial intensity of diffraction Axicons bypolychromatic illumination. Appl. Opt.,1996,35(7):1025-1032
    [94] Pu J, Nemoto S. Design and Analysis of Diffractive Axicons for Gaussian Beamillumination. Chinese journal of lasers,2001, B10(3):228-232
    [95] Pu J, Zhang H, Nemoto S. Uniform-intensity Axicon: A lens coded with asymmetrically cubic phase plate. Optical and Quantum Electronics,2001,33(6):653-660
    [96] Gerchberg R W, Saxton W O. A practical algorithm for the determination ofphase from image and diffraction plane pictures. Optik,1972,35(1):237-246
    [97] Fienu J R. Phase retrieval algorithms: a comparison. Appl. Opt.,1982,21(15):2758-2769
    [98] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithmsfor phase retrieval in a nonunitary transform system: a comparison. Appl. Opt.,1994,33(2):209-218
    [99] Gu B Y, Yang G Z, Dong B Z. General theory for performing an opticaltransform. Appl. Opt.,1986,25(18):3197-3206
    [100] Yang G Z, Gu B Y, Tan X, et al. Iterative optimization approach for the designof diffractive phase elements simultaneously implementing several opticalfunctions. J. Opt. Soc. Am. A,1994,11(5):1632-1640
    [101] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing.Science,1983,220(4598):671-680
    [102]羊国光.用于衍射光学元件优化设计的遗传算法及其与模拟退火算法的比较.光学学报,1993,13(1):577-584
    [103] Avriel M. Nonlinear programming: analysis and methods. Englewood Cliffs:New Jersey,1976,299-307
    [104] Dallas W J. Digital Computation of Image Complex Amplitude From Image andDiffraction-intensity: An Alternative to Holography. Optik,1975,44(1):45-59
    [105] Huiser A M J, Toom E V, Ferwerda H A. On the problem of phase retrieval inelectron microscopy form image and diffraction pattern. Optik,1977,47(1):l-8
    [106]张静娟,张艳,吕俊峰等.用加权串行迭代算法设计衍射光学元件.光电子激光,2002,13(12):1207-1210
    [107]颜树华.加权杨-顾算法研究.光子学报,2007,36(3):530-535
    [108]胡晓军,郑子文,戴一帆等.控制三维光场的纯相位衍射光学元件优化设计.应用光学,2007,28(6):778-782
    [109] Liu J S, Thomson M, Waddie A J, et al. Design of diffracctive optical elementsfor high-power laser applications. Opt. Eng.,2004,43(11):2541-2547
    [110]张巍,舒方杰,张晓波等.均匀照明用衍射光学器件的空间频域优化设计算法.2007,34(10):1388-1392
    [111]谭峭峰,严瑛白,金国藩等.衍射激光束匀滑器件的精细化设计.中国激光,2002, A29(1):29-32
    [112]李社蕾,李海涛,杨喜娟.基于蚁群算法的二元光学优化设计.应用光学,2008,29(5):758-762
    [113] Carpena P, Gasparian V, Ortu o M. Energy spectra and level statistics ofFibonacci and Thue-Morse chains. Phys. Rev. B,1995,51(18):12813-12816
    [114] Chakrabarti A, Karmakar S N, Moitra R K. Role of a new type of correlateddisorder in extended electronic states in the Thue-Morse lattice. Phys. Rev. Lett.,1995,74(8):1403-1406
    [115] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubiccase. J. Opt. Soc. Am. A,1990,7(9):1792-1800
    [116] Ho K M, Chan C T, Soukolllis C M.Existence of a photonic gap in perodicdielectric structures. Phys. Rev. Lett.,1990,65(25):3152-3155
    [117] Pendry J B, MacKinnon A. Calculation of photon dispersion relations. Phys.Rev. Lett.,1992,69(19):2772-2775
    [118] Pendry J B. Photonic band gaps and localization. Plenum Press,1993,12-18
    [119] Sheen M. IEEE Transactions on Microwave Theory and Techniques.2006,7(1):66-72
    [120] Leung K M, Qiu Y. Multiple-scattering calcution of the two-dimensionalphotonic band srtucture. Phys. Rev. B,1993,48(11):7767-7771
    [121] Taflove A, Hagness S C. Computational electrodynamics: the finite-differenetime-domain method. Artach House INC, Norwood,1995,1-50
    [122] Tayeb G, Maystre D. Rigorous theoretical study of finite-size two-dimensionalphotonic crystals doped by microcavities. J. Opt. Sot. Am. A,1997,14(12):3323-3332
    [123] Chan C T, Yu Q L. Order-N spectral method for electromagnetic waves. Phys.Rev. B,1993,48(11):8434-8437
    [124] Raineri F, Dumeige Y, Levenson A, et al. Nonlinear decoupled FDTD codephase-matching in2D defective photonic crystals. Electronics Lett.,2002,38(25):1704-1706
    [125] Wang X, Zhang X G, Yu Q, et al. Multiple-scattering theory for electromagneticwaves. Phys. Rev. B,1993,47(8):4161-4167
    [126]刘娟.偏振衍射光学元件的设计及微透镜光场调制的矢量分析:[中国科学院博士学位论文].北京:中国科学院,2001,2-7
    [127] Goldbet D E. Genetic algorithm in search, optimization and machine learning.Addison-Wesley:Mass,1987,1-28
    [128] Mcleod J H. Iterative method applied to image reconstruction and tocomputer-generated holograms. Opt. Eng.,1980,19(3):297-306
    [129] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions.J. Opt. Sot.Am. A,1986,3(11):1897-1907
    [130] Kohmoto M, Kadanoff L P, Tang C. Localization problem in one dimension:mapping and escape. Phys. Rev. Lett.,1983,50(23):1870-1872
    [131] Ostlund S, Pandit R, Rand D, et al. One-dimensional schr dinger equation withan almost periodic potential. Phys. Rev. Lett.,1983,50(23):1873-1876
    [132] Shechtman D, Black J, Grafias D, et al. Metallic phase with long-rangeorientational order and no translational symmetry. Phys. Rev. Lett.,1984,53(20):1951-1953
    [133] Merlin R, Bajima K, Clark R, et al. Quasiperiodic GaAs-AlAs heterostructures.Phys. Rev. Lett.,1985,55(17):1768-1770
    [134] Kohmoto M, Sutherland B, Tang C. Critical wave functions and a Cantor-setspectrum of a one-dimensional quasicrystal model. Phys. Rev. B,1987,35(3):1020-1033
    [135] Fabio B. All-optical diode action with quasiperiodic photonic crystals. J. Appl.Phys.,2008,104(9):093113-1-5
    [136] Zhao H, Zaccaria R P, Song J F, et al. Photonic quasicrystals exhibitzero-transmission regions due to translational arrangement of constituent parts.Phys. Rev. B,2009,79(11):115118-1-7
    [137] Kono K, Nakada S. Resonant transmission and velocity renormalization of thirdsound in one-dimensional random lattices. Phys. Rev. Lett.,1992,69(8):1185-1188
    [138] Luck J M. Cantor spectra and scaling of gap widths in deterministic aperiodicsystems. Phys. Rev. B,1989,39(9):5834-5849
    [139] Cheng Z M, Savit R, Merlin R. Structure and electronic properties ofThue-Morse lattices. Phys. Rev. B,1988,37(9):4375-4382
    [140] Maciá E, Adame F D. Physical Nature of Critical Wave Functions in FibonacciSystems. Phys. Rev. Lett.,1996,76(16):2957-2960
    [141] Liu N H. Propagation of light waves in Thue-Morse dielectric multilayers. Phys.Rev. B,1997,55(6):3543-3547
    [142] Huang D H, Gumbs G, Kolá M. Localization in a one-dimensional Thue-Morsechain. Phys. Rev. B,1992,46(18):11479-11486
    [143] Tamura S, Nori F. Transmission and frequency spectra of acoustic phonons inThue-Morse superlattices. Phys. Rev. B,1989,40(14):9790-9801
    [144] Doria M M, Nori F, Satija I I. Thue-Morse quantum Ising mode. Phys. Rev. B,1989,39(10):6802-6806
    [145] Chattopadhyay S, Ghosh A, Chakrabarti A. Frequency dependent response of aThue-Morse aperiodic lattice. Phys. Rev. B,2001,63(6):064201-1-8
    [146] Ghulinyan M, Oton C, Negro L, et al. Light-pulse propagation in Fibonacciquasicrystals. Phys. Rev. B,2005,71(9):94204-1-8
    [147] Chen A L, Wang Y S, Guo Y F, etal. Band structures of Fibonacci phononicquasicrystals. Solid State Communications,2008,145(3):103-108
    [148] Nava R, Taguena-Martinez J, Rio J A del, et al. Perfect light transmission inFibonacci arrays of dielectric multilayers. J. Phys.: Condens. Matter,2009,21(15):155901-1-7
    [149] Mishra R K, Pandey P C. Study of s-polarized photonic bandgap structure inthree component optical fibonacci multilayers composed of nanoscale materials.Solid State Communications,2009,149(23):946-951
    [150] Reyes-Gmez E, Raigoza N, Cavalcanti S B, et al. Plasmon polaritons inphotonic metamaterial Fibonacci superlattices. Phys. Rev. B,2010,81(15):153101-1-4
    [151] Mauriz P W, Vasconcelos M S, Albuquerque E L. Optical transmission spectrain symmetrical Fibonacci photonic multilayers. Phys. Lett. A,2009,373(4):496-500
    [152] Coelho I P, Vasconcelos M S, Bezerra C G. Effects of mirror symmetry on thetransmission fingerprints of quasiperiodic photonic multilayers. Phys. Lett. A,2010,374(13):1574-1578
    [153] Huang X Q, Jiang S S, Peng R W, et al. Perfect transmission and self-similaroptical transmission spectra in symmetric Fibonacci-class multilayers. Phys.Rev. B,2001,63(24):245104-1-9
    [154] Yang X B, Xing D. Splitting rules for the electronic spectra of two-dimensionalFibonacci-class quasicrystals with one kind of atom and two bond lengths. Phys.Rev. B,2002,65(13):134205-1-6
    [155] Noh H, Yang J K, Boriskina S V, et al. Lasing in Thue–Morse structures withoptimized aperiodicity. Appl. Phys. Lett.,2011,98(20):201109-1-3
    [156] Li Y H, Yang X B. Optical transmission through multicomponent Thue-Morsemultilayers. Opt. Commun.,2010,283(10):2160-2165
    [157] Zhao P L, Chen X. Electronic band gap and transport in Fibonacci quasi-periodic grapheme superlattice. Appl. Phys. Lett.,2011,99(18):182108-1-3
    [158] Lu Y, Peng R W, Wang Z, et al. Resonant transmission of light waves indielectric heterostructures. J. Appl. Phys.,2005,97(12):123106-1-5
    [159] Medeiros F F de, Albuquerque E L, Vasconcelos M S. Optical transmissionspectra in quasiperiodic multilayered photonic structure. J. Phys.: Condens.Matter,2006,18(39):8737-8747
    [160] Poddubny A N, Ivchenko E L. Photonic quasicrystalline and aperiodicstructures. Physica E,2010,42(7):1871-1895
    [161] Liu Y, Fu X, Han H, et al. Spectral structure for a class of one-dimensionalthree-tile quasilattices. Phys. Rev. B,1991,43(13):13240-13245
    [162] Boissieu M, Janot C, Dubois J. Quasi-crystal structure:cold water on thePenrose tiling scheme. J. Phys.: Condens. Matter,1990,2(11):2499-2517
    [163] Yin H L, Yang X B, Guo Q, et al. Optical transmission through generalizedSML superlattices. J. Phys.: Condens. Matter,2007,19(35):356221-356236
    [164] Deng W, Wang S, Liu Y, et al. Electronic properties of a one-dimensionalthree-tile quasilattice. Phys. Rev. B,1993,47(10):5653-5659
    [165] Wang X H, Gu B Y, Li Z Y. Large absolute photonic band gaps created byrotating noncircular rods in two-dimensional lattices. Phys. Rev. B,1999,60(16):11417-11421
    [166] Zhu Q F, Wang D Y, Zhang Y. Enlargement of the band gap in themetal–insulator–metal heterowaveguide. Opt. Commun.,2009,282(6):1116-1119
    [167] Pendry J B. A chiral route to negative refraction. Science,2004,306(5700):1353-1355
    [168] Houck A A, Brock J B, Chuang I L. Experimental observation of a left-handedmaterial that obeys snell's law. Phys. Rev. Lett.,2003,90(13):137401-1-4
    [169] Foteinopoulou S F, Soukoulis C M. Refraction in media with a negativerefractive index. Phys. Rev. Lett.,2003,90(10):107402-1-4
    [170] Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals.Nature,2003,423:604-605
    [171] Wang X, Ren Z F, Kempa K. Unrestricted superlensing in a triangular twodimensional photonic crystal. Opt. Exp.,2004,12(13):2919-2824
    [172] Shalaev V M, Cai W, Chettiar U K, et al. Negative index of refraction in opticalmetamaterials. Opt. Lett.,2005,30(24):3356-3358
    [173] Wang D X, Ran L X, Chen H S, et al. Active left-handed material collaboratedwith microwave varactors. Appl. Phys. Lett.,2007,91(16):164101-1-3
    [174] Liu S Y, Chen W K, Du J J, et al. Manipulating negative-refractive behaviorwith a magnetic field. Phys. Rev. Lett.,2008,101(15):157407-1-4
    [175] Helgert C, Rockstuh C, Etrich C, et al. Effective properties of amorphousmetamaterials. Phys. Rev. B,2009,79(23):233107-1-4
    [176] Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally highrefractive index. Nature,2011,470:369-373
    [177] Yang X B. Transparent-component-decimation method for studying the opticaltransmission of binary aperiodic superlattices. Phys. Rev. B,2006,74(7):075408-1-5
    [178] Li J, Zhou L, Chan C T, et al. Photonic Band Gap from a Stack of Positive andNegative Index Materials. Phys. Rev. Lett.,2003,90(8):083901-1-4
    [179] Shadrivov H V, Sukhorukov A A, Kivshar Y S. Beam shaping by a periodicstructure with negative refraction. Appl. Phys. Lett.,2003,82(22):3820-3822
    [180] Zalher M, Colen E, Salzman J, et al. Exciton states in GaAs/AlGaAs Braggconfining structures studied by resonant Raman scattering. Phys. Rev. Lett.,1993,71(3):420-423
    [181] Camley R E, Rouhani B D, Dobrzynski L, et al. Transverse elastic waves inperiodically layered infinite and semi-infinite media. Phys. Rev. B,1983,27(12):7318-7329
    [182] Mizuno S, Tamura S I. Resonant interaction of phonons with surface vibrationalmodes in a finite-size superlattice. Phys. Rev. B,1996,53(8):4549-4552
    [183] Chen K Q, Duan W H, Wu J, et al. Localized interface optical phonon modes ina semi-infinite superlattice with a cap layer. J. Phys.: Condens. Matter,2002,14(50):13761-13776
    [184] Royo P, Stanley R P, Ilegems M. Coupling of impurity modes inone-dimensional periodic systems. Phys. Rev. E,2001,64(1):016604-1-6
    [185] Chen G L, Peng X F, Chen K Q, et al. The evolution of the localized plasmonmodes in a semi-infinite superlattice with cap layer. Physica E,2007,41(7):1347-1352
    [186] Yang J, Li W X, Duan W H. Localized mixed acoustic modes in non-cubic-axialsuperlattice with a cap layer. Physica E,2006,31(1):57-61
    [187] Zahler M, Brener I, Lenz G, et al. Experimental evidence of bragg confinementof carriers in a quantum barrier. Appl. Phys. Lett.,1992,61(8):949-951
    [188] Chen K Q, Wang X H, Gu B Y. Localized interface optical-phonon modes insuperlattices with structural defects. Phys. Rev. B,2000,62(15):9919-9922
    [189] Albuquerque E L, Cottam M G. Theory of elementary excitations inquasiperiodic structures. Phys. Rep.,2003,376(4):225-337
    [190] Hattori T, Tsurumachi N, Kawato S, et al. Photonic dispersion relation in aone-dimensional quasicrystal. Phys. Rev. B,1994,50(6):4220-4223
    [191] Burin A L, Ratner M A, Cao H, et al. Random Laser in One Dimension. Phys.Rev. Lett.,2002,88(9):093904-1-4
    [192] Bengtsson J. Kinoform-only Gaussian-to-rectangle beam shaper for asemiconductor laser. Appl. Opt.,1996,35(20):3807-3814
    [193] Jia J, Zhou C, Sun X, et al. Superresolution laser beam shaping. Appl. Opt.,2004,43(10):2112-2117
    [194] Mohammed W, Gu X. Long-period grating and its application in laser beamshaping in the1:0um wavelength region. Appl. Opt.,2009,48(12):2249-2254
    [195] Pereira R, Weichelt B, Liang D, et al. Efficient pump beam shaping forhigh-power thin-disk laser systems. Appl. Opt.,2010,49(27):5157-5162
    [196] Mercier B, Rousseau J P, Jullien A, et al. Nonlinear beam shaper forfemtosecond laser pulses, from Gaussian to flat-top profile. Opt. Commun.,2010,283(14):2900-2907
    [197] Chang Y H, Ishij Y, Murata K. Reshaping collimated laser beams with Gaussianprofile to uniform profile. Appl. Opt.,1983,22(22):3644-3647
    [198] Jahns J. Dammann gratings for laser beam shaping. Opt. Eng.,1989,28(12):1267-1275
    [199] MCNeill M D, Poon T C. Gaussian-beam profile shaping by acousto-opticBragg diffraction. Appl. Opt.,1994,33(20):4508-4515
    [200] Yura H T, Rose T S. Gaussian beam transfer through hard-aperture optics. Appl.Opt.,1995,34(30):6826-6828
    [201] Liu Z J, Zhao H F, Liu J L, et al. Generation of hollow Gaussian beam by spatialfiltering. Opt. Lett.,2007,32(15):2076-2078
    [202] Liu Z J, Dai J M, Sun X G, et al. Generation of hollow Gaussian beam byphase-only filtering. Opt. Exp.,2008,16(24):19926-19933
    [203] Tian Z B, Nix M, Yam S H. Laser beam shaping using a single-mode fiberabrupt taper. Opt. Lett.,2009,34(3):229-231
    [204] Fratz M, Sinzinger S, Giel D, et al. Design and fabrication of polarizationholographic elements for laser beam shaping. Appl. Opt.,2009,48(14):2669-2677
    [205] Liang J, Kohn Jr R N, Becker M F, et al. High-precision laser beam shapingusing a binary-amplitude spatial light modulator. Appl. Opt.,2010,49(8):1323–1330
    [206] Haghigh A, Golnabi H. Flat-top beam profile generated using a fiber-bundleprism-coupled beam shaper. Opt. Commun.,2011,284(12):2817-2824
    [207] Zhang Y, Dong B Z, Gu B Y, et al. Beam shaping in the fractional Fouriertransform domain. J. Opt. Soc. Am. A,1998,15(5):1114-1120
    [208] Cordingley J. Application of a binary diffractive optic for beam shaping insemiconductor processing by lasers. Appl. Opt.,1993,32(14):2538-2549
    [209] Passilly N, Fromager M, Mechin L, et al.1-D laser beam shaping using anadjustable binary diffractive optical element. Opt. Commun.,2004,241(4):465-473
    [210] Zhang C, Kar A. Diffractive optical elements for pitchfork beam shaping. Opt.Eng.,2009,48(7):078001-078005
    [211] Goodman J W. Introduction to Fourier optics. McGraw-hill: San Francisco,1968,23-32
    [212]颜树华.二元光学设计理论及并行制作技术研究:[国防科技大学博士学位论文].长沙:国防科技大学,2004,48-49
    [213] Condon E U. Immersion of the Fourier transform in a continuous group offunctional transformation. Acad. Sci. USA,1937,23(3):158-164
    [214] Bargmann V. On a hilbert space of analytic functions and associated integraltransforms. Commun. Pure. Appl. Math.,1961,14(3):187-214
    [215] Namias V. The fractional order Fourier transform and its application to quantummechanics. IMA. J. Appl. Math.,1980,25(3):241-265
    [216] Mcbride A C, Kerr F H. On Namias fractional Fourier transforms. IMA. J. Appl.Math,1987,39(2):159-175
    [217] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their opticalimplementation. J. Opt. Soc. Am. A,1993,10(9):1875-1881
    [218] Finet P P. Fresnel diffraction and the fractional-order Fourier transform. Opt.Lett.,1994,19(18):1388-1390
    [219] Dong B Z, Zhang Y, Gu B Y, et al. Numerical investigation of phase retrieval ina fractional Fourier transform. J. Opt. Soc. Am. A,1997,14(10):2709-2714
    [220] Zhang Y, Gu B Y, Dong B Z, et al. Optical implementations of theRadon-Wigner display for one-dimensional signals. Opt. Lett.,1998,23(14):1126-1128
    [221] Ozaktas H M, Mendlovic D. Fractional Fourier transform as a tool for analyzingbeam propagation and spherical mirror resonators. Opt. Lett.,1994,19(21):1678-1680
    [222] Ozaktas H M. Convolution, filtering and multiplexing in fractional Fourierdomains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A,1994,11(2):547-559
    [223] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractionalFourier transform. IEEE, Tanns. Sign. Proc.,1996,44:2141-2150
    [224] Wu Y K, Li J, Wu J. Anomalous hollow electron beams in a storage ring. Phys.Rev. Lett.,2005,94(13):134802-1-4
    [225] Cai Y, Lu X, Lin Q. Hollow Gaussian beams and their propagation properties.Opt. Lett.,2003,28(13):1084-1086
    [226] Zhao Y, Edgar J S, Jeffries G D M, et al. Spin-to-orbital angular momentumconversion in a strongly focused optical beam. Phys. Rev. Lett.,2007,99(7):073901-1-4
    [227] Zhou S G, Shen X J. Influence of optical element misalignment of beam spreadcollimation optical system on Gaussian beam propagation and transformation. J.Appl. Opt.,2008,2(22):253-256
    [228] Tao S H, Yuan X C. Practical implementation of the phase-quantizationtechnique in an iterative Fourier transform algorithm. Appl. Opt.,2004,43(10):2089-2092
    [229] Hsu W, Lin C. Optimal quantization method for uneven-phase diffractiveoptical elements by use of a modified iterative Fourier-transform algorithm.Appl. Opt.,2005,44(27):5802-5808
    [230] Duadi H, Zalevsky Z. Optimized iterative quantizationalgorithm for phase-onlybeam shaping masks. Opt. Commun.,2010,283(6):951-957
    [231] Dong B Z, Liu J, Gu B Y, et al. Rigorous electromagnetic analysis of amicrocylindrical axilens with long focal depth and high transverse resolution. J.Opt. Soc. Am. A,2001,18(7):1465-1470
    [232] Ye J S, Dong B Z, Gu B Y, et al. Analysis of a closed-boundary axilens withlong focal depth and high transverse resolution based on rigorouselectromagnetic theory. J. Opt. Soc. Am. A,2002,19(10):2030-2035
    [233] Ye J S, Dong B Z, Gu B Y, et al. Analysis of a cylindrical microlens array withlong focal depth by a rigorous boundary-element method and scalarapproximations. Appl. Opt.,2004,43(27):5183-5192
    [234] Lin J, Liu J L, Ye J S, et al. Design of microlenses with long focal depth basedon the general focal length function. J. Opt. Soc. Am. A,2007,24(6):1747-1751
    [235] Wang S Q, Liu J, Gu B Y, et al. Rigorous electromagnetic analysis of thecommon focusing characteristics of a cylindrical microlens with long focaldepth and under multiwavelength illumination. Opt. Soc. Am. A,2007,24(2):512-516
    [236] Liu J L, Lin J, Zhao H F, et al. Analysis of closed boundary cylindricalmicrolenses with long focal depth designed by the general focal length function.Opt. Commun.,2008,281(17):4188-4193
    [237] Feng D, Yan Y B, Jin G F, et al. Rigorous concept for the analysis of diffractivelenses with different axial resolution and high lateral resolution. Opt. Exp.,2003,11(17):1987-1994
    [238] Feng D, Ou P, Feng L S, et al. Binary sub-wavelength diffractive lenses withlong focal depth and high transverse resolution. Opt. Exp.,2008,16(25):20968-20973
    [239] Ye J S, Zhang Y. Rigorous electromagnetic analysis of metallic cylindricalfocusing micromirrors with high diffraction efficiency, achromatic aberrationand long focal depth. Opt. Commun.,2010,283(15):1661-1667
    [240] Lin J, Liu J, Tan J B. Focus depth characteristics of lenses with long focal depthdesigned by a focal depth function. Opt. Commun.,2010,283(17):3213-3217
    [241] Mei G A, Ye J S, Zhang Y, et al. Metallic cylindrical focusing micromirrorswith long axial focal depth or increased lateral resolution. J. Opt. Soc. Am. A,2011,28(6):1051-1057
    [242] Bisson J F. Radially polarized ring and arc beams of a neodymium laser with anintra-cavity Axicon.Opt. Exp.,2006,14(8):3304-3312
    [243] Jarotis V. Focusing of laguerre-gaussian beams by Axicon. Opt. Commun.,2000,184(1):105-112
    [244] Grunwald R. Scalable multichannel micromachining with pseudo-nondiffractiving vacuum ultraviolet beam arrays generated by thin film Axicons.Opt. Lett.,2006,3l(11):1666-1668
    [245] Ahluwalia B P S. Design and fabrication of a doublet-Axicon for generation oftailorable self-imaged three-dimension intensity voids. Opt. Lett.,2006,31(7):987-989
    [246] Ding Z. High-resolution optical coherence tomography over a large depth rangewith an Axicon lens. Opt. Lett.,2002,27(4):243-245
    [247] Burvall A. Comunication modes applied to Axicons. Opt. Lett.,2004,12(3):379-384
    [248] Alkelly A A, Shukri M, Alarify Y S. Intensity distribution and focal depth ofaxicon illuminated by Gaussian Schell-model beam. Opt. Commun.,2011,284(19):4658-4662
    [249] Emilie B, J L de Bougrenet de la Tocnaye. Multiple annular linear diffractiveaxicons. J. Opt. Soc. Am. A,2011,28(4):523-533
    [250] Khonina O S N, Kotlyar V V, Soifer V A. Calculation of the focusators into alongitudinal line-segment and studyof a focal area. J. Mod. Opt.,1993,40(18):761-769
    [251] Yu X, Chen K Q, Zhang Y. Optimization design of diffractive phase elementsfor beam shaping. Appl. Opt.,2011,50(31):5938-5943
    [252] Martin J T, Liu J S, Mohammad R T. Iterative algorithm for the design offree-space diffractive optical elements for fiber coupling. Appl. Opt.,2004,43(10):1996-1999
    [253] Kyongsik C, Hwi K, Byoungho L. Synthetic phase holograms forauto-stereoscopic image displays using a modified IFTA. Opt. Exp.,2004,12(11):2454-2462
    [254] Dammann H. Color separation gratings. Appl. Opt.,1978,17(15):2273–2279
    [255] Fran M W, Stern M B, Veldkamp W B, et al. Color separation by use of binaryoptics. Opt. Lett.,1993,18(15):1214-1216
    [256] Levy U, Marom E, Mendlovic D. Simultaneous multicolor image formation witha single diffractive optical element. Opt. Lett.,2001,26(15):1149-1151
    [257] Jogrgen B. Kinoforms designed to produce different fan-out patterns for twowavelengths. Appl. Opt.,1998,37(11):2011-2020
    [258] Yusuke O, Nobuhiro S, Jun T, et al. Wavelength-multiplexing diffractive phaseelements: design, fabrication, and performance evaluation. J. Opt. Soc. Am. A,2001,18(5):1082-1092
    [259] Dong B Z, Liu R, Yang G Z, et al. Design of diffractive phase elements thatgenerate monochromatic or color point and ring patterns. J. Opt. Soc. Am. A,1998,15(2):480-486
    [260]粟敬钦,魏晓峰.实现惯性约束聚变驱动器谐波分离的二元光学元件研究.光学学报,2000,20(3):405-409
    [261] Zhou C H, Zhang Y Y, Peng X, et al. Symmetric color separation gratings. Proc.SPIE,2001,5201:174-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700