无线协同通信网络中的资源管理与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协同通信技术通过多跳或多点协作,充分整合、利用网络中的无线资源,提高频谱效率,扩大网络覆盖。但是由于增加了新的网元和通信机制,网络中的资源扩充到时域、频域、空域、功率、节点、天线等多个维度。因此本文从系统级的角度研究了在无线协同通信网络中的无线资源管理和优化。
     第一,本文首先验证在网络中采用多跳传输的可行性。分别在宏蜂窝、曼哈顿城区和室内场景中研究中继网络部署方案,并重点在室内场景中研究中继部署的位置、数量及其工作模式。针对复杂的室内环境,提出一种环境建模方法;提出一种中继网络部署的研究及仿真方案:1.确定与实际环境相符合的模型参数,并预测其系统性能要求;2.其次根据模型及性能需求,设计并仿真评估得到可行的接入节点(Access Point, AP)基本部署方案;3.微调AP的位置,进一步提高系统容量,并完成网络部署。此外,本文分析了中继网络中的时延特性,通过理论分析和数值计算,认为中继网络可以通过合理的无线资源管理函数和MAC层函数等方式保证实时业务的QoS。
     第二,针对引入type Ⅰ型中继后的复杂干扰情况,本文研究了OFDM蜂窝中继网络中的资源复用与干扰抑制技术。分析得到了typeⅠ型OFDM-中继网络中接入链路上的干扰模型:8%的直传用户受限于中继干扰,而绝大多数中继用户受限于基站(evolved Node B,eNB)干扰。继而提出基于信噪比干扰比协调的频率划分策略:提出干扰比因子RI描述干扰模型;根据用户的SINR和R,将所有用户分为3个集合;根据三个用户集合的大小,在第二时隙上分配正交的频率,并将第一时隙上满足eNB(?)RN链路需求后剩余的频率资源分配给不可复用的直传用户集合;针对不同的干扰受限系统提出扩展方案。分别在WINNER场景和LTE-A场景下仿真评估本文提出的算法,仿真结果表明该算法可以显著提升频谱效率,并改善数据包的接收SINR。
     第三,针对混合多业务的不同QoS需求和MIMO-中继网络中的传输特性变化,本文提出基于效用函数的自适应调度算法(UBASA)。设计了适用于MIMO-中继网络中多业务的效用函数,并引入权重因子w和ratio以区分用户类型和保证业务QoS。推导在给定子载波、空间子信道和用户的情况下,混和多业务的比特分配问题(定理4-1和准则4-1),通过定理4-2得到多载波多业务的调度算法4-1及其次优算法。仿真分析证明,UBASA算法可以有效地满足混合多业务的QoS需求,而在系统频谱效率性能方面,相比MCI算法有一定的损失;UBASA的次优方案可以得到与UBASA算法非常相近的性能,而计算复杂度却大大降低。因此在未来多用户-MIMO-Relay网络中,UBASA次优策略为推荐的混合多业务调度算法。
     第四,首先针对单用户-协作多点传输(Single User-Coordinated Multipoint, SU-CoMP)中可能存在的资源浪费,提出动态联合协作集选择和资源分配算法:处理单元(Processing Unit, PU)通过算法5-1,充分考虑协作小区的负载和边缘用户得到的协作增益,根据量化后的系统协作增益为多RB上的所有CoMP请求选择协作小区,使小区选择有据可依,并解决可能出现的请求碰撞;同时该算法提高了轻负载小区接受CoMP请求的可能性,从而起到系统负载均衡的作用。仿真发现该算法能够在提升边缘用户性能的同时,提升系统总吞吐量,改善用户公平性情况。其次,在MU-CoMP场景下的协作小区和配对用户选择中提出“候选配对用户集合”概念,缩小需要测量、反馈的UE范围,从而减少空口的反馈和小区间的信令交互开销;针对具有不同功能的小区,分别给出了集中式和分布式选择处理流程,并提供两种计算候选配对用户集合的方法;提出了扩展算法Cell-based方案以进一步降低信令和反馈开销。仿真结果显示,本文提出的多种算法,包括Cell-based方案,与Non-CoMP系统相比,均能够大幅提升小区平均频谱效率和边缘频谱效率;而与全信道方法相比,提出的方案可提供相似的性能,却显著降低backhaul和空口的信令与反馈开销。
     第五,针对边缘用户可能经历的多种CoMP传输模式,本文在分析各模式下的接收信号、性能增益和计算复杂度之后,根据边缘用户的传输质量和业务传输要求等提出了基于半静态用户分组的CoMP模式管理算法,即在用户组内进行传输模式的选择和切换,具体包括:1.根据统计信道信息进行半静态的用户分组;2.请求小区根据统计信道信息确定边缘用户的传输模式并告知协作小区;3.协作小区确定配对用户的反馈策略,并传输数据。同时,本算法为配对用户提供了相应的反馈策略:只有在相关-多用户-联合传输模式下或在基站请求下才反馈与请求小区间的瞬时信道信息;否则仅测量上报统计信道信息。通过仿真发现,本文提出的算法可以有效地保障边缘用户的传输质量,并为小区平均频谱效率提供增益。同时,也将减少系统内进行CoMP相关测量和计算的小区与用户数目,并降低配对用户的反馈开销。
     最后总结全文。
Through the collaboration of multiple hops and/or points, cooperative communication technology is able to make full use of the radio resource in the system and improve the spectral efficiency. However, because the new elements and communication mechanisms are introduced in, radio resource is far beyond the concept of the time and frequency domains. So this dissertation discussed the radio Resource Management and Optimization in Wireless Cooperative Networks.
     First, the feasibility of multi-hop transmission should be verified. This dissertation researched the relay deployment in wide area, Manhattan area and indoor area respectively, and the position, number, power and work mode of relay nodes in indoor environment are focused on. A mathematical model is designed for indoor area, where parameters are adaptive for practical systems. Moreover, a3-step method to research the deployment in indoor scenario is presented. The packet delay in relay-aided systems is also analyzed. According to the theoretical derivation and numerical results, it is believed that the relay networks are able to guarantee the QoS of real-time services through effective radio resource management mechanisms and functions in MAC layer.
     Second, this dissertation studied the interference model in type I relay based OFDM networks. It is found that SINR in the access links of most relay users are constrained by interference from eNBs, while for about8%direct UEs the major interference is from relay nodes. Therefore, a novel intra-cell frequency planning scheme based on interference coordination is exploited for cellular OFDM-Relay systems. A factor R, is introduced to model the interference in the2nd slot. According to R, and SINR the scheduler groups all the users into three sets. Furthermore, the total spectrum in the2nd slot is divided into three parts based on the size of user sets, so that the frequency recourses in access links are reused properly. The proposed method was evaluated in WINNER and LTE-A scenarios. Simulation results show that the proposed method enhances the system performance in terms of both system capacity and cell edge users'SINR with low overheads and computational complexity.
     Third, heterogeneous services in MIMO-Relay systems are investigated, and a utility based adaptive scheduling algorithm is proposed, which aims to maximize the user satisfaction as well as system spectral efficiency. Two factors ratio and w are introduced in order to differentiate QoS and users. A heterogeneous services spatial subchannel scheduling strategy is derived to decide the optimal bits of proper services loaded in spatial subchannels (according to Theorem4-1and Criterion4-1). A multiuser carrier scheduling algorithm is designed to allocate carriers to users (according to Theorem4-2and Algorithm4-1). Moreover, a suboptimal solution is also presented for the sake of decreasing computational complexity and processing delay. Simulation results show that the proposed strategy can guarantee QoS of multiple services with a tolerable decline in terms of spectral efficiency compared with traditional maximum carrier/interference (MCI) algorithm. Besides, the complexity can be reduced obviously by utilizing the suboptimal scheme, which achieves nearly the same performance compared with the optimal solution.
     Fourth, a joint cooperative set selection and resource allocation algorithm is exploited for single user (SU)-CoMP transmission. In the approach, the problem is divided into2separate decisions for the candidate cells and serving cell respectively. The processing unit (PU) decides "whether and which CoMP request should be answered" and "the resource allocation for the potential co-channel UE " according to the load of candidate cells and the throughput of cell edge UEs through the Algorithm5-1. In this way, the potential CoMP collision from different cells will be solved. Moreover, the probability that cells with light load approve CoMP requests is increaseed and therefore the load in the system is balanced. Simulation results show that both the system capacity and communication quality of cell edge users are enhanced. In the selection of transmission set and pairing users for multi user (MU)-CoMP scenarios, the concept "candidate pairing user set" is proposed to narrow the range of UEs who need to measure and feedback Hil. Based on the ability of different cells, a centralized and a distributed processing method and two algorithms are provided to calculate candidate paring user set. Besides, an extended approach called Cell-based is designed to further decrease the overheads. Simulation results show that the proposed schemes are able to improve both the cell average and the cell edge spectrum efficiency and achieve the similar performance compared with the full-CSI based one, while the overheads in both the backhaul and the air interface are decreased a lot.
     Fifth, a CoMP transmission mode management strategy based on semi-static user grouping is studied. After the analysis of the performance and calculating complexity of different transmission modes, it is decided to limit the mode management within user groups. The serving cells determine the transmission mode according to the statistical channel information feedback. Besides, the corresponding feedback mechanisms for cell edge UE and pairing UE are designed. The cell edge UE needs to feedback instant channel information of the links between it and the cells in its measurement set. As for the pairing UE, only in coherent-MU-joint transmission mode, the instant channel information of the link between it and the cell launching the CoMP request is needed; otherwise, the statistical channel information is enough. According to the simulation, it is proved that the proposed scheme is able to improve the system performance in terms of both the cell average spectral efficiency and the transmission quality of cell edge users while the users'feedback and the numbers of involved cells and users are cut down.
     Finally, the conclusion is presented in the end of this dissertation.
引文
[1-1]P. Zhang, X. Tao, J. Zhang, Y. Wang, L. Li, Y.Wang, "A vision from thefuture: beyond 3G TDD", IEEE Commun. Mag., vol.43, no.1, pp.38-44, Jan.2005
    [1-2]http://www.ieee802..org//11
    [1-3]IEEE802.11-04/662rl6, "IEEE 802.11 TGs Usage Models"
    [1-4]IEEE 802 11-04/56r1, "Five Criteria for IEEE 802.11s ESS Mes"
    [1-5]IEEE 802.11-04/1477r3, "Terms and Definitions for 802.11s"
    [1-6]http://standards.ieee.org/findstds/standard/802.16-Conformance04-2006.html
    [1-7]http://standards.ieee.org/findstds/standard/802.16j-2009.html
    [1-8]http://standards.ieee.org/findstds/standard/802.16m-2011.html
    [1-9]http://www.3gpp.org/LTE
    [1-10]http://www.3gpp.org/ftp/Specs/html-info/36-series.htm
    [1-11]沈嘉,索士强等,"3 GPP长期演进(LTE)技术原理与系统设计”,人民邮电出版社,2008年
    [1-12]ITU-R M.2078, Estimated spectrum bandwidth requirements for the future development of IMT-2000 and IMT-Advanced,2006
    [1-13]ITU-R M.2079, Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced,2008
    [1-14]ITU-R M.2133, Requirements, evaluation criteria and submission templates for the development of IMT-Advanced,2008
    [1-15]ITU-R M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s),2008
    [1-16]ITU-R M.2135, Guidelines for evaluation of radio interface technologies for IMT-Advanced,2008
    [1-17]陈坤,“协作通信中的链路自适应传输技术”,北京邮电大学硕士论文,2009年3月。
    [1-18]R. Madan, N. Mehta, A. Molisch, J. Zhang, "Energy-efficient Cooperaitve Relaying over Fading Channels with Simple Relay Selection", IEEE Transactions on Wireless Communications, vol.7, pp.3013-3025, Aug.,2008.
    [1-19]R. Pabst, B. Walke, and D. Schultz, et al., "Relay-based deployment concepts for wireless and mobile broadband radio", IEEE Commun. Mag., vol.42, no.9, pp.80-89, Sept.2004.
    [1-20]J. Yuan, Y. Li, L. Chu, "Differential Mudulation and Relay Selection with Detect-and-forward Cooperative Relaying", IEEE Transactions on Vehicular Technology, vol.59, pp.261-268, Jan.,2010.
    [1-21]黄晶,“协作式Relay系统中的资源分配策略”,北京邮电大学硕士论文,2009年3月。
    [1-22]俞欣旻,"OFDMA蜂窝中继网络中的资源分配策略研究”,北京邮电大学硕士论文,2009年3月。
    [1-23]吴彤,“下一代无线中继系统中多维资源联合优化策略”,北京邮电大学博士论文,2010年6月。
    [1-24]江帆,“移动通信系统中协作中继网络若干关键技术研究”,北京邮电大学博士论文,2010年6月。
    [1-25]贾琪“无线通信中的协作分集技术研究”,北京邮电大学硕士论文,2009年3月。
    [1-26]Yushan Pei, Hui Tian, Tong Wu, Ying Wang, "Frequency Planning Scheme Based on Interference Coordination for OFDM-Relay Systems", IEEE Communications Letters, Vol.15, no.1:13-15 JAN 2011.
    [1-27]Yushan Pei, Tong Wu, Ying Wang, Hui Tian:Utility Based Adaptive Scheduling Algorithm for Heterogeneous Services in Multiuser MIMO-Relay Systems. VTC Spring 2010:1-5.
    [1-28]裴郁杉,田辉,王莹,宋磊,“室内中继网络部署及其优化”,应用科学 学报,29(1),2011:15-21.
    [1-29]Yushan Pei, Xinmin Yu, Tong Wu, Ying Wang, "A QoS-oriented Routing Scheme in Integrated Cellular Relaying Network", Future Techenology Conference, Oct.2007:288-292.
    [1-30]T. Wu, Y. Wang, X. Yu, J. Huang, P. Zhang, "Semi-distributed resource allocation scheme based on multihop equilibrium for cellular OFDM-relay networks", IEICE Trans. on Commun., vol.92, no.9, pp.2961-2963, Sept.2009.
    [1-31]Li Gen, Wang Ying, Wu Tong, Huang Jing, "Joint Linear Filter Design in Multi-user Cooperative Non-regenerative MIMO Relay Systems", EURASIP Journal on WCN, Vol.2009, pp.1-13, Sept.2009.
    [1-32]Huang Jing, Wang Ying, Wu Tong, Yu Xinmin, Zhang Ping, "Antenna and Node Selection for Multi-Antenna Relay Networks in Correlated Channels", IEICE Transactions on Communications, pp.629-639, March 2010.
    [1-33]http://www.ist-WINNER.org
    [1-34]IST-4-027756 WINNER II, D3.5.2 v1.0, "Assessment of relay based deployment concepts and detailed description of multi-hop capable RAN protocols as input for the concept group work", June,2007.
    [1-35]IST-4-027756 WINNER II, D3.5.1 v1.0, "Relaying concepts and supporting actions in the context of CGs", Oct.2006.
    [1-36]IST-4-027756 WINNER II, D4.6.1 Version 1.0, The WINNER II "Air Interface:Refined multiple access concepts", Nov.2006
    [1-37]http://www.ieee802.org/16/relay
    [1-38]3GPP TS 36.116 v.s.0.2.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Relay radio transmission and reception,2011-3-25
    [1-39]3GPP TS 36.117 v.s.0.2.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Relay conformance testing,2011-3-25
    [1-40]3GPP TS 36.216 v.s.10.3.1 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation,2011-9-27
    [1-41]3GPP TS 36.806 v.s.9.0.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Relay architectures for E-UTRA (LTE-Advanced),2010-4-21
    [1-42]L. Li, et al.. Adaptive Bit, Power Allocation and Sub-Carrier Coupling for AF-OFDM Relaying Systems, IEEE VTC-Spring 2008, pp.1494-1489, May 2008.
    [1-43]Q. Zhang, et al.. Power allocation for regenerative relay channel with rayleigh fading. IEEE VTC-Spring 2004, vol.59, no.2, pp.1167-1171, May 2004.
    [1-44]A. Host-Madsen, J. Zhang. Capacity bounds and power allocation for wireless relay channels. IEEE Trans. on Information Theory, vol.51, no.6, pp. 2020-2040, Jun.2005.
    [1-45]J. N. Laneman, et al.. Cooperative diversity in wireless networks:Efficient protocols and outage behavior. IEEE Trans. on Information Theory, vol.50, no.12, pp.3062-3080, Dec,2004.
    [1-46]Liu Tao, Rong Mengtian, Xue Yisheng. Joint Routing and Resource Partitioning in Relay Enhanced Cellular Network. IEEE WCNC 2007.2007:1-6.
    [1-47]Klaus Doppler, He Xiaoben, Carl Wijting. Adaptive Soft Reuse for Relay Enhanced Cells. IEEE VTC 2007-spring.2007:1-5.
    [1-48]张静美,邵春菊,王莹等.基于不同信道状态信息的两跳中继系统最优功率分配.北京邮电大学学报.28(4).2005:1-4.
    [1-49]Xie Lin, Zhang Xi. TDMA and FDMA Based Resource Allocations for Quality of Service Provisioning Over Wireless Relay Networks. IEEE WCNC 2007.2007:1-5.
    [1-50]Liu Tao, Rong Mengtian, Xue Yisheng. Resource Scheduling for OFDMA/TDD Based Relay Enhanced Cellular Networks. IEEE WCNC 2007. 2007:1-5.
    [1-51]T. Riihonen, S. Werner, R. Wichman, Hypoexponential Power-Delay Profile and Performance of Multihop OFDM Relay Links IEEE Transactions on Wireless Communications, Volume:9, Issue:12, Dec.2010
    [1-52]H. Boostanimehr, V.K. Bhargava, Selective Subcarrier Pairing and Power Allocation for DF OFDM Relay Systems with Perfect and Partial CSI IEEE Transactions on Wireless Communications,Volume:10, Issue:12, Dec.2011
    [1-53]Xing Chengwen, Ma Shaodan e.t. a.l, Transceiver Design for Dual-Hop Nonregenerative MIMO-OFDM Relay Systems Under Channel Uncertainties, IEEE Transactions on Signal Processing, Volume:58, Issue:12, Dec.2010
    [1-54]Nan Zhou, Xu Zhu, Gao Jingbo, Huang Yi, Optimal asymmetric resource allocation with limited feedback for OFDM based relay systems IEEE Transactions on Wireless Communications, Volume:9, Issue:2, Feb.2010
    [1-55]Cheol Jeong, Il-Min Kim, Dong In Kim, Joint Secure Beamforming Design at the Source and the Relay for an Amplify-and-Forward MIMO Untrusted Relay System, IEEE Transactions on Signal Processing, Volume:60, Issue:1, Jan.2012
    [1-56]Yue Rong, Khandaker, M.R.A., On Uplink-Downlink Duality of Multi-Hop MIMO Relay Channel IEEE Transactions on Wireless Communications, Volume:10, Issue:6, June 2011
    [1-57]Ting Kong, Yingbo Hua Optimal Design of Source and Relay Pilots for MIMO Relay Channel Estimation Signal Processing, IEEE Transactions on, Volume:59, Issue:9, Sept.2011
    [1-58]Chao-Kai Wen, Kai-Kit Wong; Ng, C.T.K. On the Asymptotic Properties of Amplify-and-Forward MIMO Relay Channels IEEE Transactions on Communications, Volume:59, Issue:2, Feb.2011
    [1-59]Poramate Tarasak, Yong Hoon Lee. Joint Cooperative Diversity and Scheduling in OFDMA Relay Systems. IEEE WCNC 2007.2007:1-5.
    [1-60]Lin Dai, Bo Gui, Leonard J. Cimini. Selective Relaying in OFDM Multihop Cooperative Networks. IEEE WCNC 2007.2007:1-6.
    [1-61]LIGEN Megumi Kaneko, Petar Popovski. Adaptive Resource Allocation in Cellular OFDMA System with Multiple Relay Stations. IEEE VTC 2006-fall. 2007:1-5.
    [1-62]3GPP TSG R1-082024. A discussion on some technology components for LTE-Advanced. Ericsson. June 30-July 4,2008.
    [1-63]王稀君,“协作中继网络中的MIMO技术与资源分配策略研究”,北京邮电大学硕士学位论文,2009.03.
    [1-64]3GPP TSG R1-083229. LTE-A Multiple Point Coordination and Its Classification. Motorola. August 18-22,2008.
    [1-65]3GPP TSG R1-082469. LTE-Advanced Coordinated Multipoint transmission/reception. Ericsson. June 30-July 4,2008.
    [1-66]3GPP TSG R1-093036. Practical Analysis of CoMP Coordinated Beamforming. Huawei, August 24-28,2009.
    [1-67]3 GPP TSG R1-084400. Coordinated Multi-Point downlink transmission in LTE-Advanced. Qualcomm Europe. Nov.10th-14th,2008.
    [1-68]3GPP TSG R1-091617. Summary of email discussions for CoMP. Qualcomm Europe.2009.
    [1-69]3GPP TSG R1-084144. Coordinated Multipoint Transmission/Reception (CoMP). Nov.10th-14th,2008.
    [1-70]3GPP TSG R1-091835. Consideration on UE Feedback in Support of CoMP. San Francisco. May 04-08,2009.
    [1-71]3GPP TSG R1-092655. Comparison between Explicit and Implicit Feedbacks for CoMP. Shenzhen, China, August 24-28,2009.
    [1-72]3GPP TSG R1-092776. Analysis of SRS scheme for CoMP. Shenzhen, China, August 24-28,2009.
    [1-73]黄帆,“移动通信系统中协作传输技术的研究”,北京邮电大学,博士学位论文,2011年6月。
    [1-74]3GPP, R1-084352, "Some results on DL coordinated beam switching for interference management in LTE-Advanced", Huawei.
    [1-75]3GPP, R1-090068, "Interference management for broadband transmission with antenna port 5", Hitachi.
    [1-76]3GPP, R1-081873, "Semi-Static Interference Coordination Method", Alcatel-Lucent.
    [1-77]WINNER+Deliverable D2.1 v1.0, "Preliminary WINNER+ System Concept", May 2009, available at http://www.ist-winner.org.
    [1-78]3GPP TR 36.819 V1.0.0, "Coordinated Multi-Point Operation for LTE Physical Layer Aspects(Release 11)",2011-05
    [1-79]Rave S., Fettweis W., "Combinatorial advantages due to joint resource allocation in uplink CoMP systems Wesemann", IEEE International Symposium on Wireless Communication Systems (ISWCS),2011, Page(s):740-744.
    [1-80]Minghai Feng; Xiaoming She; Lan Chen; Enhanced Dynamic Cell Selection with Muting Scheme for DL CoMP in LTE-A.IEEE Vehicular Technology Conference (VTC 2010-Spring), Page(s):1-5.
    [1-81]Jingya Li; Hui Zhang; Xiaodong Xu; A Novel Frequency Reuse Scheme for Coordinated Multi-Point Transmission, IEEE Vehicular Technology Conference (VTC 2010-Spring), Page(s):1-5
    [1-82]Dongwook Choi; Dongwoo Lee; Jae Hong Lee, Resource Allocation for CoMP With Multiuser MIMO-OFDMA IEEE Transactions on Vehicular Technology, Volume:60, Issue:9,2011, Page(s):4626-4632
    [1-83]Ding Zhiguo, Krikidis I., Thompson J., Channel Estimation for OFDM Modulated Two-Way Relay Networks, IEEE Transactions on Signal Processing, Feb.2011
    [2-1]http://www.ieee802..org//11
    [2-2]IEEE802.11-04/662r 16, IEEE 802.11 TGs Usage Models
    [2-3]IEEE 802 11-04/56r 1, Five Criteria for IEEE 802.11s ESS Mes
    [2-4]IEEE 802.11-04/1477r3, Terms and Definitions for 802.11s
    [2-5]http://www.ieee802.org/16/relay
    [2-6]http://www.ist-WINNER.org
    [2-7]IST-4-027756 WINNER Ⅱ, D3.5.2 v1.0, Assessment of relay based deployment concepts and detailed description of multi-hop capable RAN protocols as input for the concept group work, June,2007.
    [2-8]IST-4-027756 WINNER II, D3.5.1 v1.0, Relaying concepts and supporting actions in the context of CGs, Oct.2006.
    [2-9]华为公司-北京邮电大学,中继项目报告,“中继部署阶段技术报告”,2008,4。
    [2-10]IST-4-027756 WINNER II, D4.6.1 Version 1.0, The WINNER II Air Interface:Refined multiple access concepts, Nov.2006.
    [2-11]ITU-R M.2133, Requirements, evaluation criteria and submission templates for the development of IMT-Advanced,2008
    [2-12]ITU-R M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s)
    [2-13]ITU-R M.2135, Guidelines for evaluation of radio interface technologies for IMT-Advanced
    [2-14]A. Sendonaris, E. Erkip, and B. Aazhang, User Cooperation Diversity, Part I:System Description/Part II:Implementation Aspects and Performance Analysis, IEEE Trans. Commun., vol.51, no.11, pp.1927-1948, Nov.2003.
    [2-15]S. Boyd and L. Vandenberghe, Convex Optimization. New York:Cambridge University Press,2004.
    [2-16]IST-4-027756 WINNER II, Dl.1.2 V1.0, WINNER II Channel Models, Sept. 2007
    [2-17]IST-4-027756 WINNER II, D6.13.12 v1.0, Final CG'local area' description for integration into overall System Concept and assessment of key technologies
    [2-18]Schultz D.C., Pabst, R.; Walke, B., Analytical Estimation of Packet Delays inRelay-Based IMT-Advanced Networks, IEEE Vehicular Technology Conference,2008. Spring.
    [3-1]M. Liang, F. Liu, Z. Chen, Y. Wang, D. Yang, "A Novel Frequency Reuse Scheme for OFDMA Based Relay Enhanced Cellular Networks", IEEE VTC-spring, pp.1-5, April 2009.
    [3-2]Tafazolli, "Cooperative networks for the future wireless world", IEEE Commun. Mag., vol.42, no.9, pp.70-79, Sept.2004.
    3-3] R. Madan, N. Mehta, A. Molisch, J. Zhang, "Energy-efficient Cooperaitve Relaying over Fading Channels with Simple Relay Selection", IEEE Transactions on Wireless Communications, vol.7, pp.3013-3025, Aug.,2008.
    3-4] J. Yuan, Y. Li, L. Chu, "Differential Mudulation and Relay Selection with Detect-and-forward Cooperative Relaying", IEEE Transactions on Vehicular Technology, vol.59, pp.261-268, Jan.,2010.
    3-5] A. Nosratinia, T. Hunter, A. Hedayat, "Cooperative communication in wireless networks", IEEE Commun. Mag., vol.42, no.10, pp.74-80, Oct.2004.
    3-6] G. Farhadi, N. Beaulieu, "On the Ergodic Capacity of Wireless Relaying
    3-7] X. Tang, and Y. Hua, " Optimal design of non-regenerative MIMO wireless relays," IEEE Trans. Wireless Commun., vol.6, no.4, pp.1398 1407, Apr.2007.
    [3-8]3GPP TS 36.216 v.s.10.3.1 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation,2011-9-27
    [3-9]IST-4-027756 WINNER II, D3.5.2 v1.0, Assessment of relay based deployment concepts and detailed description of multi-hop capable RAN protocols as input for the concept group work.2007,6,30.
    [3-10]IST-4-027756 WINNER Ⅱ, D3.5.1 v1.0, Relaying concepts and supporting actions in the context of CGs.2006,10,31.
    [3-11]IST-4-027756 WINNER II, D4.6.1 Version 1.0, The WINNER II Air Interface:Refined multiple access concepts.2006,11,30.
    [3-12]Patent:Shu-Shaw Wang, Adrian Boariu, Shashikant Maheswari, Tejas Bhatt, Anthony Reid. Relay-Station Assignment/Re-assignment and frequency Re-use. Nokia Corp., Appl. No:11/888,800, Pub. No:US 2008/0031197 Al, Pub. Data:2, 7,2008.
    [3-13]Klaus Doppler, Xiaoben He, Carl Wijting, Antti Sorri. Adaptive Soft Reuse for Relay Enhanced Cells. Vehicular Technology Conference,2007. VTC2007-Spring. IEEE 65th.22-25 April 2007 Page(s):758-762.
    [3-14]Ping Li, Mengtian Rong, et.al.,"Reuse Partitioning Based Frequenciy Planning For Cellular Network With Two-Hop Fixed Relay Nodes", IEEE PIMRC'06.
    [3-15]Ping Li, Mengtian Rong, et.al., "Reuse One Frequency Planning for Two-hop Cellular System with Fixed Relay Nodes", IEEE WCNC 2007.
    [3-16]Patent:Yeon-Woo Lee, Sang-Boh Yun, Seung-Young Park, Yuug-Soo Kim. Relay Communication Method for an OFDMA-based Cellular Communication System. SAMSUNG ELECTRONIC CO., LTD., Suwon-si(KR). Appl. No: 11/322,121, Pub. No:US 2006/0193280 A1, Pub Date:8,31,2006.
    [3-17]Patent:Chang-Yoon Oh, Eun-Taek Lim, Young-Bin Chang, Cheng Shan, Dong-Seek Park, Pan-Yuh Joo, Apparatus and Method for Frequency Reuse to Avoid Interference Between Relay Station and Mobile Station in Multi-Hop Relay System. SAMSUNG ELECTRONIC CO., LTD., Suwon-si(KR). Appl. No: 11/804,699, Pub. No:US2007/0270113 A1, Pub. Data:11,22,2007.
    [3-18]Patent:Lee Hyo-Jin, Chung Hyun-Kyn. Relay Station, Terminal and Base Station in Cellular System, and Method for Relaying between Termianl and Base Station. Electronic And Telecommunications Research Institute[KR]. Appl. No: PCT/KR2007/002480. Pub. No:WO 2007/136220 Al, Pub. Date:11,29,2007.
    [3-19]Patent:Herdin, Markus, Dr. Method, Apparatus and System for Reusing Resources in a Telecommunication Network Using Repeaters. NTT DoCoMo, Inc. Appl. No:06009844.9 Pub. No:EP 1 855 492 Al, Pub. Data:11,14,2007.
    [3-20]专利:刘竞秀,潘振岗,陈岚.基于中继器的蜂窝小区信道复用方法及装置.NTT DoCoMo, Inc申请号:200610000314.7.公开号:CN 1996787 A.公开日期:7,11,2007.
    [3-21]专利:王莹,吴彤,裴郁杉,李根,中继系统资源复用的方法和网络侧设备,专利申请号"200910147921.X”,2009.6.
    [3-22]Schultz D.C., Pabst, R.; Walke, B., Analytical Estimation of Packet Delays inRelay-Based IMT-Advanced Networks, IEEE Vehicular Technology Conference,2008. Spring
    [3-23]北京邮电大学-华为项目,OFDM中继系统资源复用方案_finalv1.10.
    [3-24]Yushan Pei, Hui Tian, Tong Wu, Ying Wang, "Frequency Planning Scheme Based on Interference Coordination for OFDM-Relay Systems", IEEE Communications Letters, Vol.15, no.1:13-15 JAN 2011.
    [3-25]吴彤,“下一代无线中继系统中多维资源联合优化策略”,北京邮电大学博士论文,2010年6月。
    [3-26]3GPP TS 36.214, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements,2011-3-23
    [3-27]3GPP TR 36.814 v9.0.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects", Mar. 2010.
    [4-1]Cheol Jeong, Il-Min Kim, Dong In Kim, Joint Secure Beamforming Design at the Source and the Relay for an Amplify-and-Forward MIMO Untrusted Relay System, IEEE Transactions on Signal Processing, Volume:60, Issue:1, Jan.2012
    [4-2]Yue Rong, Khandaker, M.R.A., On Uplink-Downlink Duality of Multi-Hop MIMO Relay Channel IEEE Transactions on Wireless Communications, Volume:10, Issue:6, June 2011
    [4-3]Ting Kong, Yingbo Hua Optimal Design of Source and Relay Pilots for MIMO Relay Channel Estimation Signal Processing, IEEE Transactions on, Volume:59, Issue:9, Sept.2011
    [4-4]Chao-Kai Wen, Kai-Kit Wong; Ng, C.T.K. On the Asymptotic Properties of Amplify-and-Forward MIMO Relay Channels IEEE Transactions on Communications, Volume:59, Issue:2, Feb.2011
    [4-5]X. Tang, and Y. Hua, " Optimal design of non-regenerative MIMO wireless relays," IEEE Trans. Wireless Commun., vol.6, no.4, pp.1398 1407, Apr.2007.
    [4-6]Z. Fang, and Y. Hua, Joint source and relay optimization for a nonregenerative MIMO relay, IEEE Sensor Array and Multichannel Signal Process, pp.239-243,2006.
    [4-7]O. Munoz, J.Vidal, and A. Agustin, "Non-regenerative MIMO relaying with channel state information," in Proc. Int. Conf. Acoust. Speech Signal Processing, Mar.2005, vol.3, pp.361-364.
    [4-8]J. Yuan, Y. Li, L. Chu, "Differential Mudulation and Relay Selection with Detect-and-forward Cooperative Relaying", IEEE Transactions on Vehicular Technology, vol.59, pp.261-268, Jan.,2010.
    [4-9]A. Nosratinia, T. Hunter, A. Hedayat, "Cooperative communication in wireless networks", IEEE Commun. Mag., vol.42, no.10, pp.74-80, Oct.2004.
    [4-10]专利:“多天线系统中用户选择与分组方法和通信设备”专利申请号“201010128256.2”,2010.3
    [4-11]Li Gen, Wang Ying, Wu Tong, Huang Jing, "Joint Linear Filter Design in Multi-user Cooperative Non-regenerative MIMO Relay Systems", EURASIP Journal on WCN, Vol.2009, pp.1-13, Sept.2009.
    [4-12]Huang Jing, Wang Ying, Wu Tong, Yu Xinmin, Zhang Ping, "Antenna and Node Selection for Multi-Antenna Relay Networks in Correlated Channels", IEICE Transactions on Communications, pp.629-639, March 2010.
    [4-13]X.F., Lu, Z. li, J.P. Cai, and X.J. Chen, "An Adaptive Resource Allocation Algorithm Based on Spatial Subchannel in Multiuser MIMO/OFDM Systems,' IEEE International Conference on Communications, pp.4532_4536, May 2008.
    [4-14]Y. Hui, Z.J. Zhou, R. Hui, and W.Q. Zhang, "A Cross-Layer Adaptive Resource Allocation Algorithm Based on Impartiality of Wait Time,' ICMMT2008.
    [4-15]Z.X. Chen, K. Xu, and et al., "Utility Based Scheduling Algorithm for Multiple Services Per User in MIMO OFDM System," International Conference on Communications, pp.4734_4738, May 2008.
    [4-16]I. E. Telatar, Capacity of multi-antenna gaussian channels, European Transactions on Telecommunications, vol.10, no.6, pp.585C595,1999.
    [4-17]D. C.Schultz, R. Pabst, B. Walke, "Analytical Estimation of Packet Delays in Relay-based IMT-advanced Networks," Vehicular Technology Conference, pp. 2411-2415,2008. VTC Spring 2008.
    [4-18]Z. Jiang, Y. Ge, and Y. Li, Max-utility wireless resource management for best-e_ort tra_c, IEEE Trans. Wireless Commun., Jan.2005. [10] cdma2000 Evaluation Methodology,3GPP2 C.R1002-0 v 1.0, Dec.10,2004.
    [4-19]S. Boyd and L. Vandenberghe, Convex Optimization. New York:Cambridge University Press,2004.
    [4-20]3GPP TS 36.216 v.s.10.3.1 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation,2011-9-27
    [5-1]3GPP TSG R1-082024. A discussion on some technology components for LTE-Advanced. Ericsson. June 30-July 4,2008.
    [5-2]3GPP TSG R1-083229. LTE-A Multiple Point Coordination and Its Classification. Motorola. August 18-22,2008.
    [5-3]3GPP TSG R1-082469. LTE-Advanced Coordinated Multipoint transmission/reception. Ericsson. June 30-July 4,2008.
    [5-4]3GPP TSG R1-093036. Practical Analysis of CoMP Coordinated Beamforming. Huawei, August 24-28,2009.
    [5-5]3GPP TSG R1-084400. Coordinated Multi-Point downlink transmission in LTE-Advanced. Qualcomm Europe. Nov.10th-14th,2008.
    [5-6]3GPP TSG R1-091617. Summary of email discussions for CoMP. Qualcomm Europe.2009.
    [5-7]3GPP TSG Rl-084144. Coordinated Multipoint Transmission/Reception (CoMP). Nov.10th-14th,2008.
    [5-8]3GPP TSG R1-091835. Consideration on UE Feedback in Support of CoMP. San Francisco. May 04-08,2009.
    [5-9]3GPP TSG R1-092655. Comparison between Explicit and Implicit Feedbacks for CoMP. Shenzhen, China, August 24-28,2009.
    [5-10]3GPP TSG Rl-092776. Analysis of SRS scheme for CoMP. Shenzhen, China, August 24-28,2009.
    [5-11]3GPP, R1-084352, "Some results on DL coordinated beam switching for interference management in LTE-Advanced", Huawei.
    [5-12]3GPP, R1-090068, "Interference management for broadband transmission with antenna port 5", Hitachi.
    [5-13]3GPP, R1-081873, "Semi-Static Interference Coordination Method", Alcatel-Lucent.
    [5-14]3GPP TR 36.819 VI.0.0, "Coordinated Multi-Point Operation for LTE Physical Layer Aspects(Release 11)",2011-05
    [5-15]WINNER+Deliverable D2.1 v1.0, "Preliminary WINNER+System Concept", May 2009, available at http://www.ist-winner.org.
    [5-16]黄帆,“移动通信系统中协作传输技术的研究”,北京邮电大学,博士学位论文,2011年6月。
    [5-17]Rave S., Fettweis W., "Combinatorial advantages due to joint resource allocation in uplink CoMP systems Wesemann", IEEE International Symposium on Wireless Communication Systems (ISWCS),2011, Page(s):740-744.
    [5-18]Minghai Feng; Xiaoming She; Lan Chen; Enhanced Dynamic Cell Selection with Muting Scheme for DL CoMP in LTE-A.IEEE Vehicular Technology Conference (VTC 2010-Spring), Page(s):1-5.
    [5-19]Jingya Li; Hui Zhang; Xiaodong Xu; A Novel Frequency Reuse Scheme for Coordinated Multi-Point Transmission, IEEE Vehicular Technology Conference (VTC 2010-Spring), Page(s):1-5
    [5-20]Dongwook Choi; Dongwoo Lee; Jae Hong Lee, Resource Allocation for CoMP With Multiuser MIMO-OFDMA IEEE Transactions on Vehicular Technology, Volume:60, Issue:9,2011, Page(s):4626-4632
    [5-21]Richard Fritzsche, Jens Voigt, Carsten Jandura, Comparing ray tracing based MU-CoMP-MIMO channel predictions with channel sounding measurements,2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), April 2010, Page(s):1-5
    [5-22]Gao Xinying, Li Anxin, Kayama H., Low-complexity downlink coordination scheme for multi-user CoMP in LTE-Advanced system IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Sept.2009, Page(s):355-359
    [5-23]Qiang Li; Shu Fang; Yang Yang;,User pairing transmission scheme in uplink coordinated multi-point reception 2010 2nd International Conference on Future Computer and Communication (ICFCC), Volume:2,2010, Page(s):V2-17 V2-22.
    [5-24]IST-4-027756 WINNER Ⅱ, D3.4.1 v1.0, The WINNER Ⅱ Air Interface: Refined Spatial-Temporal Processing Solutions.2006,11,30.
    [5-25]Jin Jing, Wang Qixing, "A novel cooperative multi-cell MIMO scheme for the downlink LTE-Advanced system", in Proceedings of International Conference of Communication Workshops 2009, pp.14-18, June 2009.
    [5-26]沈嘉,索士强等,"3GPP长期演进(LTE)技术原理与系统设计”,人民邮电出版社,2008年
    [6-1]Liu Jing, Chang Yongyu, Pan Qun,A Novel Transmission Scheme and Scheduling Algorithm for CoMP-SU-MIMO in LTE-A System, IEEE 71st Vehicular Technology Conference (VTC 2010-Spring),2010, Page(s):1-5
    [6-2]Gao Yuan, Yi Li; Yu Hongyi, Gao Shihai, Modeling and analysis of SU-CoMP HARQ in 3GPP LTE system level simulation,6th International ICST Conference on Communications and Networking in China (CHINACOM),2011, Page(s):295-298
    [6-3]Fang Liang; Gong Ping; Wu Weiling, A user scheduling scheme for MU-MIMO system with coordinated beamforming,2010 2nd International Conference on Advanced Computer Control (ICACC), Volume:4,2010, Page(s): 462-465.
    [6-4]Li Qiang, Yang Yang, Fang Shu, Coordinated beamforming in downlink CoMP transmission system,2010 5th, International ICST Conference on Communications and Networking in China (CHINACOM),2010
    [6-5]Zhu Jun; Yang Hong-Chuan, Low-Complexity Coordinated Beamforming Transmission for Multiuser MISO Systems and Its Performance Analysis, IEEE Global Telecommunications Conference (GLOBECOM),2010, Page(s):1-5
    [6-6]Gao Xinying, Li Anxin, Kayama H., Low-complexity downlink coordination scheme for multi-user CoMP in LTE-Advanced system IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Sept.2009, Page(s):355-359
    [6-7]Qiang Li; Shu Fang; Yang Yang;,User pairing transmission scheme in uplink coordinated multi-point reception 2010 2nd International Conference on Future Computer and Communication (ICFCC), Volume:2,2010, Page(s):V2-17-V2-22.
    [6-8]Seijoon Shim, Jin Sam Kwak, Robert W. Heath, Block Diagonalization for Multi-User MIMO with Other-Cell Interference, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL.7, NO.7, JULY 2008, Page(s): 2671-2681.
    [6-9]Jin Jing, Wang Qixing, "A novel cooperative multi-cell MIMO scheme for the downlink LTE-Advanced system", in Proceedings of International Conference of Communication Workshops 2009, pp.14-18, June 2009.
    [6-10]R1-094252, "Different Types of DL CoMP Transmission for LTE-A" Fujitsu.
    [6-11]3GPP TR 36.819 V1.0.0, "Coordinated Multi-Point Operation for LTE Physical Layer Aspects(Release 11)",2011-05
    [6-12]G. H. Golub and C. F. V. Loan, Matrix Computations.3rd ed.The Johns Hopkins University Press,1989
    [6-13]IST-4-027756 WINNER II, D3.4.1 v1.0, The WINNER Ⅱ Air Interface: Refined Spatial-Temporal Processing Solutions.2006,11,30.
    [6-14]T. Wild, "Successive User Insertion for Long-Term Adaptive Beams with SDMA Using Short-Term CQI", Proc. InOWo'06, August 2006, Hamburg, Germany.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700