单脉冲气象雷达系统分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单脉冲气象雷达系统作为高空气象探测的主要设备,一直以来都在我国高空气象探测中发挥着重要的作用。然而,随着科技的发展,基于模拟信号处理方式的单脉冲气象雷达系统的探测精度已无法满足当前高空气象探测的要求,尤其是军事活动对精确高空气象信息的要求。近年来,高速数字电路技术和数字信号处理技术的飞速发展,为雷达数字中频接收提供了良好的基础,数字接收技术已成为雷达发展的必然趋势。本文紧密结合相关科研课题,对单脉冲气象雷达系统进行了深入研究,重点围绕地面雷达的三通道射频接收分系统、信号处理分系统以及用于探空仪的新型印刷天线开展了相关的研究工作。作者的主要研究成果可概括为以下几方面:
     1.对三通道射频接收分系统进行了深入的研究。首先对射频接收分系统的指标进行了分析与讨论,基于指标要求确定了完整的分系统方案。之后通过仿真软件对设计的方案进行了仿真分析,进一步验证了方案的可行性,并根据仿真结果对设计的方案进行了优化。最后对三通道射频接收分系统进行了实物加工与测试。实测结果表明本文所设计的射频接收分系统具有噪声系数低、动态范围大以及通道隔离性能良好等优点,能够很好地满足单脉冲气象雷达系统的指标要求。
     2.对射频接收分系统的通道隔离和通道一致性问题进行了研究。将三路射频接收通道进行分离式设计并分别放置在三个独立的金属腔体中,结合对本振信号进行隔离放大的方法,极大地提高了射频接收通道的隔离度。在对三路射频接收通道采用相同硬件设计的基础上,通过加入标校信号源,配合信号处理分系统完成通道间的幅相误差校正,消除了接收链路幅相误差对单脉冲测角的影响。测试结果表明,本文设计的方法能够很好地解决通道隔离和通道一致性问题。
     3.对信号处理分系统进行了研究。首先,基于信号处理分系统的功能需求,采用FPGA与DSP相结合的方式对信号处理分系统的硬件电路进行了系统的设计。然后,采用数字信号处理方法对分系统的功能进行了详细的分析与实现。雷达系统的实测结果表明采用数字信号处理技术有效地提高了系统的探测精度。
     4.结合单脉冲气象雷达系统中探空仪天线的应用背景和高空气象探测系统多频/宽带化的发展趋势,对用于探空仪的双频/宽带印刷天线进行了研究。首先,以基本印刷单极子天线为基础,分别利用加载缝隙和寄生单元的方式实现了两款具有双频和宽带特性的印刷单极子天线。然后,以探空仪对天线定向辐射的特殊需求为背景,设计了一款新型印刷环天线。通过在印刷辐射环内外两侧分别引入寄生谐振单元,构建了两个新的谐振频率,有效地展宽了天线的阻抗带宽。
As the main equipment of high-altitude meteorological detection, the monopulsemeteorological radar system, for a long time, has played an important role in the field ofChina’s high-altitude meteorological detection. However, with the development ofscience and technology, the detection accuracy of the monopulse meteorological radarsystem based on analog signal processing cannot meet the requirements of currenthigh-altitude meteorological detection, especially in various military activities whichdemand accurate high-altitude meteorological information. In recent years, the rapiddevelopments of high speed digital circuit and digital signal processing technologyprovided a firm foundation for the digital IF receiver in radar system. Digital IF receiverhas become an inevitable trend of the development of modern radar systems. With theconsideration of related research projects and an in-depth study of the monopulsemeteorological radar system, this research is mainly concerned with the study ofthree-channel RF receiver subsystem and signal processing subsystem in ground radarsystem and the analysis and design of new types of printed antennas for radiosonde. Themajor contributions of this dissertation can be outlined as follows:
     1. A detailed analysis and design of three-channel RF receiver subsystem ispresented. The requirements of RF receiver subsystem are first analyzed and discussedbased on which an integrated design is finalized. To verify its feasibility, the design issimulated and optimized by the computer simulation. Finally, the prototype of thethree-channel RF receiver subsystem is fabricated and tested. The test results show thatthe design of RF receiver subsystem in this dissertation has the advantages of low noisefigure, high dynamic range, and high isolation, which can properly meet the indicatorrequirements of the high-accuracy monopulse radar system.
     2. A study of channel isolation and channel consistency in RF receiver subsystemis given. The three receiver channels are designed separately and placed in threeindependent metal cavities. Combined with the method of isolating local oscillatorsignals, the isolation between the RF receive channels is greatly improved. On the basisof the same hardware designs for the three-channel RF receiver channels, the amplitudeand phase errors between channels are corrected by adding a calibration signal sourcecoordinated with the signal processing subsystem and the influence of receiving link’samplitude as well as phase errors on monopulse angle measurement is eliminated. The test results show that the method presented in this dissertation is a good solution to
     improve the channel isolation and channel consistency.
     3. The signal processing subsystem is analyzed and designed in detail. Firstly,based on the functional requirements of the subsystem, hardware circuits are designedsystematically by combining FPGA with DSP. Digital signal processing algorithms arethen adopted to analyze detailedly and implement each function of the subsystem. Thetest results of the radar system indicate that the system detection accuracy is effectivelyenhanced by the proposed digital signal processing technology.
     4. In the context of the application background of radiosonde antennas inmonopulse meteorological radar system and the development trends of multi-band andwideband in radar systems, dual-band and wideband printed antennas applied forradiosonde are discussed. Firstly, two types of printed monopoles with properties ofdual-band and wideband are designed by loading slot and parasitic units on thefoundation of a conventional printed monopole. Secondly, a novel printed loop antennais proposed based on the radiosonde’s special requirements for directed radiation. Byadding parasitic resonant units separately to the inner and outer sides of the printedradiating loop, two additional resonant frequencies are yielded and the impedancebandwidth of the antenna is broadened effectively.
引文
[1] Carrau M. J., High Altitude Observation Means[Z]. Google Patents,1956.
    [2] Otterman J., High Altitude Observation. Science,1959,130(3386):1434-1435.
    [3]王伟,林龙福,崔宏光等,大气探测系统信息获取能力评估研究.计算机仿真,2011.28(9):234-237.
    [4]郄秀书,吕达仁,陈洪滨等,大气探测高技术及应用研究进展.大气科学,2008.32(4):867-881.
    [5]熊超超,韩小冬,谢丽萍,高科技战争对高空气象探测装备的需求分析.气象水文海洋仪器,2010.27(002):60-63.
    [6] Sherwood S. C., Lanzante J. R. and Meyer C. L., Radiosonde Daytime Biases andLate-20th Century Warming. Science,2005,309(5740):1556-1559.
    [7] Durre I., Vose R. S. and Wuertz D. B., Overview of the Integrated GlobalRadiosonde Archive. Journal of Climate,2006,19(1):53-68.
    [8]赵柏林,大气科学,张霭琛等,大气探测原理.气象出版社,1987.
    [9]宋连春,李伟,综合气象观测系统的发展.2008.
    [10]肖乾友,黄晓革,骆志敏,一种数字中频接收机的设计与实现.电讯技术,2006.46(4):123-127.
    [11]冯振伟,武小冬,梅顺良,基于FPGA的数字中频接收机设计与实现[J].通信技术,2010.43(04):17-19.
    [12]李智群,王志功,零中频射频接收机技术.电子产品世界,2004.7:67-72.
    [13]弋稳,雷达接收机技术.电子工业出版社,2005.
    [14] Razavi B., Design Considerations for Direct-conversion Receivers. IEEETransactions on Circuits and Systems II: Analog and Digital Signal Processing,1997,44(6):428-435.
    [15] Crols J. and Steyaert M. S., Low-IF Topologies for High-performance AnalogFront Ends of Fully Integrated Receivers. IEEE Transactions on Circuits andSystems II: Analog and Digital Signal Processing,1998,45(3):269-282.
    [16] Su H. W., Chi B. Y. and Wang Z. H., System Design Considerations ofHighly-Integrated Dab Receiver RF Front-end. IEEE Transactions on ConsumerElectronics,2005,51(4):1319-1325.
    [17]漆家国,曹广平,一种射频宽带接收机的设计.电讯技术,2007.47(2):88-91.
    [18]周建政,王志功,李莉等,宽带无线接收机射频前端结构研究与设计.应用科学学报,2008.26(2):155-161.
    [19]陈邦媛,射频通信电路.科学出版社,2006.
    [20]王自强,张春,王志华,无线接收机结构设计.微电子学,2004.34(4):455-459.
    [21] Laskar J., Matinpour B. and Chakraborty S., Modern Receiver Front Ends:Systems, Circuits, and Integration. Wiley-Interscience,2004.
    [22] Abidi A. A., Direct-Conversion Radio Transceivers for Digital Communications.IEEE Journal of Solid-State Circuits,1995,30(12):1399-1410.
    [23] Laskar J., Matinpour B. and Chakraborty S., Modern Receiver Front Ends:Systems, Circuits, and Integration. Wiley-Interscience,2004.
    [24] Gu Q., RF System Design of Transceivers for Wireless Communications. SpringerScience Business Media,2005.
    [25] Abidi A. A., Direct-Conversion Radio Transceivers for Digital Communications.Solid-state Circuits, IEEE Journal of,1995,30(12):1399-1410.
    [26] Yoshida H., Tsurumi H. and Suzuki Y., DC offset Canceller in a DirectConversion Receiver for QPSK Signal Reception: The Ninth IEEE InternationalSymposium on Personal Indoor and Mobile Radio Communications,1998. IEEE.
    [27]李智群,王志功,零中频射频接收机技术.电子产品世界,2004.7:67-72.
    [28]王自强,张春,王志华,无线接收机结构设计.微电子学,2004.34(4):455-459.
    [29]周建政,王志功,李莉等,DRM接收机射频前端芯片的频率规划设计.高技术通讯,2008.18(5):480-486.
    [30]李智群,王志功,射频集成电路与系统.科学出版社,2008.
    [31]李永明,林敏,范俊等,无线局域网中的零/低中频技术.集成电路应用,2003.8:24.
    [32]冯振伟,武小冬,梅顺良,基于FPGA的数字中频接收机设计与实现[J].通信技术,2010.43(04):17-19.
    [33]王彦,曹鹏,费元春,数字中频接收机的设计与实现.电讯技术,2004.44(5):41-44.
    [34]王冰,靳学明,韩华,DBF体制雷达中多通道数字中频接收机设计.现代雷达,2003.25(12):47-50.
    [35]杨小牛,无线电工作者,楼才义等,软件无线电原理与应用.电子工业出版社,2001.
    [36]高俊,大动态范围模拟与数字中频接收机的研究与实现.电子科技大学,2006.
    [37] Malmqvist R., Gustafsson A. and Alfredsson M. et. al., A Tunable Active MmicFilter for On-chip X-Band Radar Receiver Front-ends: Microwave SymposiumDigest,2002IEEE MTT-S International,2002. IEEE.
    [38] Gresham I., Jenkins A. and Egri R. et. al., Ultra Wide Band24GHz AutomotiveRadar Front-End: Microwave Symposium Digest,2003IEEE MTT-SInternational,2003. IEEE.
    [39] Cojocaru V., Low-cost UWB Front-End System for Pulse Radar AutomotiveApplications at24GHz: Wireless and Microwave Technology,2005. WAMICON2005. The2005IEEE Annual Conference,2005. IEEE.
    [40] Leib M., Mayer W. and Bilzer H. et. al., A Multilayer Front-end for an ImagingRadar Sensor: Microwave Symposium Digest,2005IEEE MTT-S International,2005. IEEE.
    [41] Thiesies H. and Berg H., A Phase and Amplitude Control Front End Chip in Sigefor Phased-Array C-Band Radar Applications: IEEE MTT-S InternationalMicrowave Symposium digest,2005. Institute of Electrical and ElectronicsEngineers.
    [42] Lin K., Wang Y. E. and Pao C. et. al., A Ka-Band Fmcw Radar Front-end withAdaptive Leakage Cancellation. IEEE transactions on microwave theory andtechniques,2006,54(12):4041-4048.
    [43] Wang L., Borngraeber J. and Winkler W.,77GHz Automotive Radar ReceiverFront-end in Sige: C Bicmos Technology: Solid-State Circuits Conference,2006.ESSCIRC2006. Proceedings of the32nd European,2006. IEEE.
    [44] Mayer W., Gronau A. and Menzel W. et. al., A Compact24GHz Sensor forBeam-forming and Imaging: Control, Automation, Robotics and Vision,2006.ICARCV'06.9th International Conference on,2006. IEEE.
    [45] Yang F., Tang X. and Wu T., The Scheme and Key Components Design ofW-Band Coherent Doppler Velocity Radar Front-end: Microwave, Antenna,Propagation and EMC Technologies for Wireless Communications,2007. IEEE.
    [46] Hartmann M., Wagner C. and Seemann K. et. al., A Low-power Low-noiseSingle-chip Receiver Front-end for Automotive Radar at77GHz in Silicon-germanium Bipolar Technology: Radio Frequency Integrated Circuits (RFIC)Symposium,2007IEEE,2007. IEEE.
    [47] Hernández C. C., Krozer V. and Vidkj r J. et. al., Design and PerformanceAssessment of an Airborne Ice Sounding Radar Front-End: Microwaves, Radarand Remote Sensing Symposium,2008. MRRS2008,2008. IEEE.
    [48] Maas A. and van Vliet F. E., A Multi-Channel S-band Fmcw Radar Front-End:Microwave Conference,2008. EuMC2008.38th European,2008. IEEE.
    [49] Jain V., Sundararaman S. and Heydari P., A22-29GHz UWB Pulse-RadarReceiver Front-End in0.18. IEEE Transactions on Microwave Theory andTechniques,2009,57(8):1903-1914.
    [50] Lee H. L., Lim W. and Oh K. et. al.,24GHz Balanced Doppler Radar Front-endwith Tx Leakage Canceller for Antenna Impedance Variation and MutualCoupling. IEEE Transactions on Antennas and Propagation,2011,59(12):4497-4504.
    [51] Pohl N., Klein T. and Aufinger K. et. al., A Low-power Wideband TransmitterFront-end Chip for80GHz FMCW Radar Systems with Integrated23GHzDownconverter VCO. IEEE Journal of Solid-state Circuits,2012,47(9):1974-1980.
    [52] Djerafi T., Daigle M. and Boutayeb H. et. al., Substrate Integrated WaveguideSix-Port Broadband Front-end Circuit for Millimeter-Wave Radio and RadarSystems: Microwave Conference,2009. EuMC2009. European,2009. IEEE.
    [53] Li Z. and Wu K., On the Leakage of FMCW Radar Front-end Receiver:Millimeter Waves,2008. GSMM2008. Global Symposium on,2008. IEEE.
    [54] Li Z., Ligthart L. P. and Huang P. et. al., Design Considerations of the RFFront-end for High Dynamic Range Digital Radar Receivers: Microwaves, Radarand Wireless Communications,2008. MIKON2008.17th InternationalConference on,2008. IEEE.
    [55] Hernández C. C., Krozer V. and Vidkj r J. et. al., Polaris: Esa's Airborne IceSounding Radar Front-end Design, Performance Assessment and First Results:Microwave Symposium Digest,2009. MTT'09. IEEE MTT-S International,2009.IEEE.
    [56] Tatu S. O., Boukari B. and Moldovan E. et. al., Millimeter-Wave Multi-PortRadar Sensor with Integrated Receiver Front-End for Automotive Applications:Microwave Symposium Digest (MTT),2012. IEEE.
    [57]王乐朋,张福洪,易志强,直扩接收机射频前端的设计与仿真.杭州电子科技大学学报,2012(05):167-170.
    [58]黄家栋,X波段微波低噪声混合集成接收前端.舰船电子对抗,1997(01):30-33.
    [59]曾耿华,陈鹏,李中云,低温共烧陶瓷雷达引信接收前端.探测与控制学报,2009(02):10-13.
    [60]王闯,钱蓉,孙晓玮,高增益K波段MMIC低噪声放大器.半导体学报,2006(07):1285-1289.
    [61]周亚辉,雷达接收机前端的系统设计.弹箭与制导学报,2006(03):262-265.
    [62]李辉,杨子杰,常丽娜等,高频地波雷达频谱监测系统的前端电路设计.武汉大学学报(理学版),2003(05):653-657.
    [63] Oscarsson F., Konrad: Wide Band Digital Hf Receiver. NASA STI/ReconTechnical Report N,1994,94:37813.
    [64] Garrod A., Digital Modules for Phased Array Radar: Phased Array Systems andTechnology,1996, IEEE International Symposium on,1996. IEEE.
    [65] Cheng M., Intermodulation in Channelized Digital ESM Receivers. DTICDocument,1996.
    [66] Chien-In H. C., FFT Based VLSI Digital One Bit Electronic Warfare Receiver.DTIC Document,1998.
    [67] Song W. S., A New3-GSPS65-GOPS UHF Digital Radar Receiver and itsPerformance Characteristics: Signals, Systems&Computers,1997. ConferenceRecord of the Thirty-First Asilomar Conference on,1997. IEEE.
    [68] Ghuman P., Sheikh S. and Koubek S. et. al., High Rate Digital Demodulator Asic.NASA,1998(19980237957).
    [69] Gray A., Srinivasan M. and Simon M. et. al., Flexible All-Digital Receiver forBandwidth Efficient Modulations.2000.
    [70] Davies N. C., A High Performance HF Software Radio.2000.
    [71] Deitersen H., A Flexible Digital Receiver Architecture for Radar Applications:Radar Symposium,2006. IRS2006. International,2006. IEEE.
    [72] Prakasam L., Roy T. and Meena D., Digital Signal Generator and Receiver Designfor S-Band Radar: Radar Conference,2007IEEE,2007. IEEE.
    [73] Yu J., Zhao F. and Cali J. et. al., A Single-Chip X-Band Chirp Radar Mmic WithStretch Processing: Custom Integrated Circuits Conference (CICC),2012IEEE,2012. IEEE.
    [74]王金础,杨正远,一种高性能数字中频接收机的设计及实现.现代雷达,2002.24(1):71-73.
    [75]王金础,杨梅,适用于不同相参体制的雷达数字中频接收机.现代雷达,2005(09):64-66.
    [76]冯振伟,梅顺良,VHF雷达数字中频接收机研究与实现.舰船电子工程,2009(06):116-120.
    [77]周川,皮亦鸣,LFMCW雷达中频接收机的设计与实现.电子设计工程,2011(07):147-149.
    [78]邱冬冬,鲁新龙,董炯等,一种数字化中频接收机的研究与实现.电子设计工程,2012(24):68-70.
    [79] http://www.wikipedia.org
    [80]丁鹭飞,耿富录,雷达原理.西安电子科技大学出版社,2003.
    [81] Skolnik M. I.,王军,雷达手册.2003.
    [82]钱志强,基于DSP平台的单脉冲雷达测距系统研究[D].2007.
    [83]列昂诺夫,黄虹,雷达技术,单脉冲雷达.国防工业出版社,1974.
    [84]王德纯,丁家会,程望东,精密跟踪测量雷达技术.电子工业出版社,2006.
    [85]王洪,刘昌忠,汪学刚,二次雷达S模式综述.电讯技术,2008(07):113-118.
    [86]张宇,单脉冲二次雷达接收机的研制.电子科技大学,2005.
    [87]陈健,机载二次雷达应答机的研制.电子科技大学,2008.
    [88]郑殷超,二次雷达接收系统设计及幅相处理.现代电子技术,2011(09):13-16.
    [89]郭林辉,浅谈二次雷达S模式及雷达新技术.科技信息,2011(27):64-65.
    [90]高树萍,S模式二次雷达的简单介绍.空中交通管理,2010(07):21-23.
    [91]王欢,王志功,徐建等,具有稳定工作状态的无线接收用超再生振荡器.
    [92]胡忠贵,吴兴洋,李立平,L波段雷达探空系统镁电池浸泡技术.贵州气象,2009.33(006):41-42.
    [93]王文丰,某型机载气象雷达天线方位扫描伺服系统设计.南京航空航天大学,2011.
    [94]赵文普,主动雷达导引头发射机关键技术探讨.航空兵器,2001.3:1-4.
    [95] Janonis V. F., Massatti R. K. and Novitskey R. E., Uninterruptible PowerSystem[Z]. Google Patents,1997.
    [96] Kawabe T. and Satoh T., Uninterruptible Power System[Z]. Google Patents,2001.
    [97]胡来招,电信,雷达侦察接收机设计.国防工业出版社,2000.
    [98]魏文元,宫德明,陈必森,天线原理.国防工业出版社,1985.
    [99]严厚伟,接收机灵敏度定义.舰船电子对抗,1996.1:5.
    [100]朱庆厚,通信侦察接收机的动态范围:概念,分析,讨论,测试与计算.无线电工程,1996.26(3):5-20.
    [101]钟红蕾,徐正平,种接收机动态范围的计算方法.信息与电子工程,2003.1(4).
    [102]田明坤,邵定蓉,程乃平,高动态GPS接收机的一种设计方案.遥测遥控,2002.23(3):15-20.
    [103] http://www.cetc13.cn
    [104] http://www.hittite.com
    [105] http://www.analog.com
    [106] http://www.rfmd.com
    [107]谷涛,数控衰减器在雷达DAGC系统中的应用.现代电子技术,2009.32(16):169-170.
    [108] Xia G., Zhang Q. and Yang Z., Design and Implementation of an Efficient andLarge Dynamic Range Hybrid Digital Agc for Burst Communication Systems:Signal Processing (ICSP),2012IEEE11th International Conference on,2012.IEEE.
    [109] http://www.macomtech.com
    [110] Limongi L. R., Bojoi R. and Pica C. et. al., Analysis and Comparison of PhaseLocked Loop Techniques for Grid Utility Applications: Power ConversionConference-Nagoya,2007. PCC'07,2007. IEEE.
    [111] Blanchard A., Phase-Locked Loops: Application to Coherent Receiver Design.New York, Wiley-Interscience,1976.403p. Translation,1976,1.
    [112] WANG X., LAI J. and SUN C. et. al., A Novel CMOS Charge-Pump Circuit forHigh-Speed PLL Application [J]. Journal of Fudan University,2005,6:2.
    [113]远坂俊昭,何希才,锁相环(PLL)电路设计与应用.科学出版社,2006.
    [114]黄智伟,锁相环与频率合成器电路设计.西安电子科技大学出版社,2008.
    [115] http://www.ti.com.cn
    [116]张厥盛,电子通信,郑继禹等,锁相技术.西安电子科技大学出版社,1994.
    [117] Banerjee D., PLL Performance, Simulation and Design. Dog Ear Pub Llc,2006.
    [118] http://www.minicircuits.com/homepage/homepage.html
    [119] http://www.microchip.com
    [120] http://china.maximintegrated.com
    [121] http://www.home.agilent.com/zh-cn/pc-1475688
    [122] Tsui J. B., Digital Techniques for Wideband Receivers. SCI Tech Publishing,2004.
    [123] Pace P. E., Advanced Techniques for Digital Receivers. Artech House,2000.
    [124]吴顺君,梅晓春,雷达信号处理和数据处理技术.电子工业出版社,2008.
    [125]张贤达,现代信号处理.清华大学出版社有限公司,2002.
    [126] Richards M. A.,雷达信号处理基础.北京:电子工业出版社,2008.
    [127]禹卫东,合成孔径雷达信号处理研究[D].博士论文,南京:南京航空航天大学,1997.
    [128]窦林涛,程健庆,李素民,基于Matlab的雷达信号处理系统仿真[J].指挥控制与仿真,2006.28(2):78-82.
    [129] Haykin S., Radar Signal Processing. ASSP Magazine, IEEE,1985,2(2):2-18.
    [130] Rabiner L. R. and Gold B., Theory and Application of Digital Signal Processing.Englewood Cliffs, NJ, Prentice-Hall, Inc.,1975.777p.,1975,1.
    [131] Richards M. A., Fundamentals of Radar Signal Processing. Tata McGraw-HillEducation,2005.
    [132]王洪,宽带数字接收机关键技术研究及系统实现.电《电子技术应用》2008年第11期子科技大学,2007.
    [133] Vaidyanathan P. P., Generalizations of the Sampling Theorem: Seven DecadesAfter Nyquist. Circuits and Systems I: Fundamental Theory and Applications,IEEE Transactions on,2001,48(9):1094-1109.
    [134]苏涛,何学辉,吕林夏,实时信号处理系统设计.西安电子科技大学出版社,2006.
    [135]梁士龙,全相参数字单脉冲接收系统的研究与实现.博士论文,2002.
    [136]曹志刚,钱亚生,现代通信原理.清华大学出版社有限公司,1992.
    [137]马晓岩,雷达信号处理.湖南科学技术出版社,1999.
    [138]宗孔德,数字信号处理,多抽样率信号处理.清华大学出版社,1996.
    [139]宗孔德,多速率信号处理.北京:清华大学出版社,1996.
    [140] Giron C., Rodriguez F. J. and Huerta F. et. al., Implementing High SpeedCommunication Buses for a FPGA-DSP Architecture for Digital Control ofPower Electronics: Intelligent Signal Processing,2007. WISP2007. IEEEInternational Symposium on,2007. IEEE.
    [141]卢生春,空时抗干扰系统中A/D采样和数字下变频模块的设计与实现.国防科学技术大学,2009.
    [142] http://www.linear.com.cn
    [143] http://www.onsemi.cn
    [144]史江勇,基于DSP的单脉冲精密测量雷达MTD测距研究.南京理工大学,2008.
    [145]单新兰,张广平,刘娟,L波段高空气象探测系统应用技术分析.陕西气象,2011.4:13.
    [146]王丽,冯静,杨莹,L波段探空系统实用中重放球的原因及应对措施.气象与环境科学,2011.34(B09):160-162.
    [147] Kuo Y. and Wong K., Printed Double-T Monopole Antenna for2.4/5.2GHzDual-Band WLAN Operations. IEEE Transactions on Antennas and Propagation,2003,51(9):2187-2192.
    [148] Pan C., Horng T. and Chen W. et. al., Dual Wideband Printed MonopoleAntenna for WLAN/WiMAX Applications. Antennas and Wireless PropagationLetters, IEEE,2007,6:149-151.
    [149] Fan S., Yin Y. and Li H. et. al., A Novel Tri-band Printed Monopole Antennawith an Etched∩-Shaped Slot and a Parasitic Ring Resonator for WLAN andWiMAX Applications. Progress In Electromagnetics Research Letters,2010,16:61-68.
    [150] Darvish M. and Hassani H. R., Multiband Printed Monopole Antenna withDefected Ground Plane for GPS/WLAN/WiMAX Applications: Antennas andPropagation (EUCAP),20126th European Conference on,2012. IEEE.
    [151] Jung J., Choi W. and Choi J., A Small Wideband Microstrip-fed MonopoleAntenna. Microwave and Wireless Components Letters, IEEE,2005,15(10):703-705.
    [152] Tan K. B., An X. and Fan F. F. et. al., Design of Wideband Microstrip PrintedMonopole Antenna with Defect Ground Plane. Journal of ElectromagneticWaves and Applications,2010,24(2-3):169-178.
    [153] Fan S. T., Yin Y. Z. and Hu W. et. al., Novel CPW-fed Printed MonopoleAntenna with an n-Shaped Slot for Dual-Band Operations. Microwave andOptical Technology Letters,2012,54(1):240-242.
    [154] Liu P., Zou Y. and Xie B. et. al., Compact CPW-fed Tri-band Printed Antennawith Meandering Split Ring Slot for WLAN/WiMAX Applications. Antennasand Wireless Propagation Letters, IEEE,2012,11:1242-1244.
    [155] Zhai H., Ma Z. and Han Y. et. al., A Compact Printed Antenna for Triple-bandWLAN/WiMAX Applications. Antennas and Wireless Propagation Letters,IEEE,2013,12:65-68.
    [156] Fan S., Hu W. and Yin Y. et. al., Bandwidth Enhancement of a Printed SlotAntenna with a Pair of Parasitic Patches. Antennas and Wireless PropagationLetters, IEEE,2012,11:1230-1233.
    [157] Fan S. T., Yin Y. Z. and Kang L. et. al., Bandwidth Enhancement of a CoplanarWaveguide-Fed Asymmetrical Slot Antenna with a Rectangular Patch.Microwave and Optical Technology Letters,2010,52(10):2259-2261.
    [158] Mandal M. K. and Chen Z. N., Compact Dual-band and Ultrawideband LoopAntennas. IEEE Transactions on Antennas and Propagation,2011,59(8):2774-2779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700