天基GMTI与解模糊方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基雷达实现地面运动目标指示功能具有重要的意义,其信号处理方法已成为目前雷达界研究的热点。本文以天基多通道、多基地GMTI雷达为应用背景,系统地研究了天基稀疏孔径空时自适应处理面临的基本问题和距离、多普勒、角度模糊对GMTI雷达性能的影响与消除方法。全文的主要工作如下:
     第二章研究了天基稀疏阵空时自适应处理的基础性问题。在分析分布式小卫星编队构形和单星雷达超大孔径天线结构的基础上建立了天基GMTI雷达天线阵列模型:稀疏子阵列和稀疏子天线,随后基于空时等效理论分析得到了预测两种阵列杂波自由度的简单准确方法,在此基础上分析了天基雷达实现GMTI的基本约束条件。研究了适用于天基雷达的高效STAP算法结构与处理流程,从理论上推导了受地球自转影响的天基雷达杂波多普勒表达式,研究了地球自转对天基稀疏阵STAP性能的影响与消除方法,结果表明简单的距离向回波多普勒校正即可有效消除其影响。
     第三章从天基雷达回波多普勒历程出发分析了距离、多普勒角度模糊对天基稀疏阵STAP和GMTI性能的影响,纠正了已有结论的片面性和局限性,指出距离模糊阻碍距离向回波多普勒校正,恶化最小可检测速度,引起输出SCNR损失;多普勒角度模糊对GMTI性能的影响与杂波先验信息和阵列结构紧密相关。
     第四章研究了基于阵列信号处理理论的角度模糊抑制方法。改进了迭代线性约束最小二乘方向图综合方法,使其适用于随机稀疏阵;通过理论推导将随机稀疏阵的方向图综合问题转化为二次锥规划问题,利用高效的内点法求解。基于上述方法研究了方向图特性与阵列结构的关系,为消除栅瓣测速盲区建立了基础。提出了基于阵列信号处理理论的角度模糊抑制方法:对均匀稀疏阵阵元位置施加随机扰动消除测速盲区,利用波束陷零法抑制虚假目标。给出了两种空时二维处理器的波束陷零方法——线性约束自适应空时处理器和人工干扰波束陷零法以,提出了一种重影空时导向矢量估计方法,仿真结果表明模糊抑制方法稳健、有效。
     第五章研究了基于可变脉冲重复周期的距离、多普勒模糊抑制方法。对多重PRF组,针对多目标应用背景,提出采用参量加权的聚类分析方法区分真实目标与重影,利用简单的遗传算法进行PRF组的优化设计,获得了良好的消除测速测距盲区、抑制重影和解模糊的效果。对参差脉冲重复间隔(PRI),提出了两种改变PRI的方式——固定PRI加随机扰动和均匀递增扰动,仿真分析表明二者均能有效抑制测速盲区,同引起约2dB的输出SCNR损失。
     第六章研究了频率正交波形解多普勒、角度模糊的方法。从理论上分析了解模糊对正交信号个数和频差等波形参数的约束,研究了相关参数对空时频自适应处理器输出SCNR的影响。提出了综合利用频率正交信号空时频自适应处理和不同频率信号分别空时自适应处理结果的二级检测解模糊方法,仿真结果表明该方法能有效解模糊,同降低虚警概率和漏警概率。
Ground Moving Target Indicator (GMTI) using Space Based Radar (SBR) is attractive and the signal processing theories are studied by many researchers around the world. With the space based multi-channel and multi-static radar as the background, this dissertation focuses on the fundamentals of space based Space-Time Adaptive Processing (STAP), the effects of range, doppler and angle ambiguities on ground moving target indicator radar and the mitigation methods. The main achievements of this paper are as follows:
     Elementary problems for space based STAP are studied in chapter 2. Based on the analysis of formation configurations of distributed small satellites system and the very large aperture antenna geometries of single satellite based radar system, the antenna arrays of space based GMTI radar are modeled as sparse subarrays and sparse array with non-isotropic elements. Simple and accurate clutter rank estimating formulas are derived for these two sparse array models using space time equivalence theory. Basic constraints of space based GMTI radar are presented based on the formulas. Then efficient STAP algorithms and architectures are provided according to the limitations of SBR. The earth rotation effects on STAP performance are analyzed with a formula for clutter Doppler returns affected by the earth's rotation given. And a simple mitigation method based on range-doppler compensation is provided.
     Special effects of range, Doppler and angle ambiguities on the performance of space based STAP and GMTI are analyzed based on echo Doppler in chapter 3. Original conlusions are developed forward and described as follows: Range ambiguity obstructs range-doppler compensation of clutter returns, degrading the Minimum Detectable Velocity (MDV) and output Signal to Clutter plus Noise Ratio (SCNR) and increasing false alarm probability. Apriori clutter information and array geometry fluctuate the Doppler and angle ambiguities effects on GMTI performance.
     Angle ambiguity mitigation methods based on array signal processing theory are studied in chapter 4. Two random sparse array pattern synthesis approaches are lucubrated. Firstly the iterative linear constraints least square method are revised and made applicable to random sparse array. Then the problem is expressed as second order cone programming which is solved with interior point method. The approaches are used to analyse the influence of array geometries on array patterns, which gives a direction to suppress velocity bind zone induced by grating lobes. The angle ambiguity mitigation method is described as follows: The element positions of sparse uniform array are randomized to reduce blind speed zones, then the so called "nulling STAP" algorithm is used to suppress false targets. The linear constraints STAP method and the man-made interference method are provided to form nulls in the directions of ghosts. Experimental results illustrate that the ambiguity mitigation method is robust and effective.
     Range and Doppler ambiguity suppression methods using variable Pulse Repetition Frequency (PRF) are studied in chapter 5. When multiple PRF sets are used, a weighted clustering algorithm is provided to distinguish the real targets from ghosts if multiple targets detected. Simple evolutionary algorithms are used to select appropriate PRF sets. The range and velocity bind zones, ambiguities and the ghosts are eliminated effectively using this method. Two Pulse Repetition Interval (PRI) variation schemes, the random disturbance and the uniform step disturbance, are added to the constant PRI when staggered PRI waveform is used. Simulation results show that preferable velocity coverage is achieved at the price of about 2dB output SCNR degradation for both the schemes.
     Doppler and angle ambiguity mitigation methods using frequency orthogonal waveform are studied in chapter 6. Limitations of waveform parameters, such as frequency gap and the number of signals, are analyzed and their effects on the output SCNR of space time frequency adaptive processor are addressed. T hen a two-step detection algorithm is presented to reject Doppler and angle ambiguities, which collaborates the results of the space time frequency adaptive processor and space time adaptive processors of each frequency. Simulation results illustrate that the algorithm is effective in resolving Doppler and angle ambiguities, decreasing both the false alarm probability and the leak alarm probability.
引文
[1]Skolnik M.I.著,王军等译,雷达手册(第二版),北京:电子工业出版社,2003
    [2]魏钟铨,合成孔径雷达卫星,北京:科学出版社,2001
    [3]袁孝康,星载合成孔径雷达导论,北京:国防工业出版社,2002
    [4]王超,张红,刘智,星载合成孔径雷达干涉测量,北京:科学出版社,2002
    [5]郭华东,雷达对地观测理论与应用,北京:科学出版社,2000
    [6]Delap R.A.,Recent and current air force space based radar efforts,1999 IEEE Aerospace conference:185-194
    [7]Davis M.,Space based radar moving target detection challenges,Proc.2002 IEE radar conference,Edinburgh Scotland,Occtober 2002
    [8]Davis M.,Technology challenges for affordable space based radar,Proc.2000 IEEE Radar Conference,Alexandria,VA,May:18-23
    [9]Melvin W.L.,A Global Perspective of Affordable Radar Systems for the New Millennium space based radar,Proc.2005 IEEE Radar Conference:18-23
    [10]Beaaulne P.D.,Gierull C.H.,Livinstone C.E.,and etc.,Preliminary design of a SAR-GMTI processing system for RADARSAT-2 MODEX data,Proc.2003 IEEE radar conference,Huntsville,AL,May:1019-1021
    [11]Davis M.,Maher J.,and Hncock R.,High fidelity modeling of space-based radar,2003 IEEE radar conference,AL:185-191
    [12]Rosen P.and Davis M.,A joint space-borne radar technology demonstration mission for NASA and the air force,2003 IEEE Aerospace conference,Big Sky,MT,March8-15,2003
    [13]Fischman M.A.,Le C.and Rosen P.A.,A digital beamforming processor for the joint DoD/NASA space based radar mission,Proc.2004 IEEE radar conference:9-14
    [14]Martin M.and Kilberg S.,TechSat 21 and Revolutionizing Space Missions Using Microsatellites,AIAA,SSC01-1-3
    [15]Winter J.E.and Anderson L.N.C.,Distributed aperture implementation on the techsat21 satellites,Proc.IEEE aerospace conference,2003:815-823
    [16]Amoit T.and Douchin F.,The interferometric cartwheell:A multi-purpose formation of passive radar microsatellites,Proc.IGARSS,2002:435-437
    [17]Massonnet D.and Thouvenot E.,A wheel of passive radar microsats for upgrading existing SAR projects,Proc.IGARSS,2002:1000-1003
    [18]Massonnet D.,Capabilities and limitations of the interferometric cartwheel,IEEE trans.GRS,2001,39(3):506-520
    [19]Kwag Y. K., Multi-mode SAR system model design for small satellite platform, EUSAR, 2002
    [20]Ender J.H.G.., Spacebased SAR/MTI using multistatic satellite configurations, EUSAR, 2002
    [21] Hacker T.L., Performance analysis of a space-based GMTI radar system using separated spacecraft interferometry, Master thesis, Massachusetts Institute of Technology, 2000
    [22]Marais K. and Sedwick R., Space based GMTI using scanned pattern interferometric radar(SPIR), P roc. 2001 IEE radar conference:2047-2055
    [23] Sedwick R.J., Hacker T.L. and Miller D.W., Optimum Aperture placement for a space-based radar system using separated spacecraft interferometry, AIAA'99, August, 1999
    [24] Fiedler H., Krieger G. and etc., Analysis of bistatic configurations for spaceborne SAR interferometry, EUSAR, Cologne, Germany,June, 2002: 29-32
    [25] Fiedler H., Krieger G. and etc, Analysis of satellite configurations for spaceborne SAR interferometry. International symposium of formation flying: mission & technologies, Toulouse, Oct. 2002
    [26]Nohara T. J., Comparison of DPCA and STAP for space based radar, Proc. 1995 IEEE Radar Conference: 113-119
    [27]Tuley M.T., Miller T.C. and Sullivan R.J., Ionospheric scintillation effects on a space-based, foliage penetration, ground moving target indication radar. IDA document D-2579, August 2001
    [28]Garnham J., Wainwright R. and Brms R., Enabling research and development for flight demonstration of sparse aperture sensing, AIAA'01, Albuquerque,NM, Aug.,2001
    [29]Leatherwood D. A., Melvin W. L. and Garnham J., High-fidelity MTI modeling and analysis of a distributed aperture spaceborne concept, AIAA Sept. 2000
    [30]Leatherwood D. A., Melvin W. L. and Berger S., Adaptive signal processing for a spaceborne distributed aperture, AIAA, Albuquerque,NM, Aug., 2001
    [3 l]Leatherwood D. A. and Melvin W. L., Adaptive processing in a nonstationary spaceborne environment, Proceedings of IEEE Aerospace conference, Big Sky, MT, Mar., 2003
    [32]Leatherwood D.A., Melvin W.L. and Acree R., Configuring a sparse aperture antenna for spaceborne MTI radar, IEEE radar conference 2003:139-146
    [33]Cerutti-Maori D.J.E. and Ender J.H.G..,An approach to multistatic space borne SAR/MTI processing and performance analysis, Proc. IGARSS, July 2003:4446-4449
    
    [34] Goodman N.A., Lin S.C., Rajakrishna D. and Stiles J.M., Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR, IEEE Trans. on GRS, 2002,40(4):841-852
    [35] Goodman N.A., Lin S.C., Rajakrishna D. and Stiles J.M., Wide swath, high resolution SAR using multiple receive apertures, Proc. IGARSS, 1999:1767-1769
    [36] Goodman N.A., SAR and MTI processing of sparse satellite clusters, Ph.D. dissertation, University of Kansas, Lawrence, 2002
    [37] Goodman N.A. and Stiles J., Resolution and Synthetic Aperture Characterization of Sparse Radar Arrays, IEEE Trans. on AES, 2003, 39(3):921-935
    [38] Goodman N.A., Lin S.C., Rajakrishna D. and Stiles J.M., Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR, IEEE Trans. on GRS, 2002, 40(4):841-852.
    [39] Goodman N.A., and Stiles J.M., Radar satellite constellations: SAR characterization and analysis. Proc. of the 2003 Advanced SAR Workshop, Montreal, Canada, June, 2003
    [40]Goodman N.A., Lin S.C., Rajakrishna D. and Stiles J.M.. Wide swath, high resolution SAR using multiple receive apertures, Proc. IGARSS, 1999: 1767-1769
    [41] Stiles J.M., Goodman N.A. and Lin S., Performance and processing of SAR Satellite clusters, Proc. IGARSS, 2000: 883-885
    [42] Goodman N.A. and Stiles J.M., A MMSE filter for range sidelobe reduction, Proc. IGARSS, 2000: 2365-2367
    [43] Stiles J.M. and Goodman N.A., Procesising of multi-aperture SAR to produce fine-resolution images of arbitrarily large extent, IEEE Radar conference, 2001:451-456
    [44] Goodman N.A. and Stiles J.M., The information content of multiple receive aperture SAR system, Proc. IGARSS, 2001
    [45] Goodman N.A. and Stiles J.M., Synthetic aperture characterization of radar satellite constellations, Proc.IGARSS, 2001
    [46] Steyskal H., Schindler J. K. and etc,. Pattern synthesis for TechSat21 - a distributed space-based radar system. IEEE Antennas and Propagation Magazine, 2003,45(4): 19-25
    [47] Schindler J. K., Steyskal H. and etc,. Pattern synthesis for moving target detection with techsat21 - a distributed space-based radar system, Proc. IEEE radar conference, 2002 :375-379
    [48] Steyskal H., and Schindler J. K., Separable space-time pattern synthesis for the techsat21 space-based radar system, Proc. IEEE aerospace conference, 2003: 955-959
    
    [49] Adve R., Schneible R. and McMillan R., Adaptive space/frequency processing for distributed aperture radars,Proc.IEEE radar conference,2003:160-164
    [50]梁甸农,小卫星分布式雷达系统总体技术研究,分布式微型航天器新概念及其应用技术研讨会,北京,2004:290-295
    [51]保铮,对于分布式小卫星群天基雷达信号处理一些基本问题的思考,第九届全国雷达学术年会,烟台,2004:20-22
    [52]陈杰,周荫清,李春升,分布式SAR小卫星编队轨道设计方法研究,中国科学(E辑),2004,34(6):654-662
    [53]徐华平,周荫清等,基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法,电子学报,2003,31(12):1790-1794
    [54]雷万明,刘光英,黄顺吉,分布式卫星SAR的波束形成和多视处理成像,电子与信息学报,2002,24(11):1620-1626
    [55]李真芳,邢孟道,王彤,保铮,分布式小卫星SAR实现全孔径分辨率的信号处理,电子学报,2003,31(12):1800-1803
    [56]李真芳,保铮,王彤,刑孟道,分布式小卫星SAR宽域和高方位分辨率处理方法,CSAR2003,合肥,2003:30-33
    [57]杨凤凤,梁甸农,基于ATI方法的星载SAR动目标检测,分布式微型航天器新概念及其应用技术研讨会,北京,2004:561-566
    [58]郑明洁,杨汝良,稀疏孔径雷达系统运动目标检测研究,分布式微型航天器新概念及其应用技术研讨会,北京,2004:556-560
    [59]宁蔚,廖桂生,双星多工作频率下的地面慢速运动目标检测方法,西安电子科技大学学报,2004,31(21:199-204
    [60]Brule L.,Smyth J.and Baeggli H.,RADARSAT-2 programm update,Proc.IGARSS,Sept.2004:1186-1189
    [61]汤子跃,张守融著,双站合成孔径雷达系统原理,北京:科学出版社,2003关于STAP与杂波秩估计相关文献
    [62]郗晓宁,王威,近地航天器轨道基础,长沙:国防科技大学出版社,2003
    [63]刘林,航天器轨道理论,北京:国防工业出版社,2001
    [64]王永良,彭应宁,空时自适应信号处理,北京:清华大学出版社,2000年
    [65]Ward J.,Space-time adaptive processing for airborne radar,Tech.Rep.MIT Lincoln Laboratory,Dec.1994
    [66]Melvin W.L.,A STAP overview,IEEE A&E system magazine,2004,19(1):19-35
    [67]Ward J.,Space-time adaptive processing for airborne radar,IEE Radar conference,Savory Place,London,1998:2/1-2/6
    [68]Brown B.D.,Schneible R.A.,Wicks M.C.,Wang H.and Zhang Y.,STAP for clutter suppression with sum and difference beams,IEEE trans.AES,2000, 36(2):634-646
    [69]Robey F. C., Furhman D. R., Kelly E. J. and Nitzberg R., A CFAR adaptive matched filter detector, IEEE trans. AES, 1992,28(1):208-216
    [70]Kelly E. J., An adaptive detection algorithm, IEEE trans. AES, 1986, 22(1):115-127
    [71]Zatman M., Space-time adaptive processing using sparse arrays, 11~(th) annual ASAP workshop, Mar.2003
    [72] Zhang Q. and Mikhael W.B., Estimation of the clutter rank in the case of subarraying for space-time adaptive processing, Electronics letters, 1997, 33(5):419-420
    [73]Klemm R. and Ender J., New aspects of airborne MTI, Pro. IEEE radar conference, Arlington, VA, May 1990:335-340
    [74] Buckley K.M., Spatial/spectral filtering with linearly constrained minimum variance beamformers, IEEE trans. ASSP, 1987, 35(3):249-266
    [75] Ward J., Space-time adaptive processing with sparse antenna arrays, 32~(nd) Asiloma conference on signals, systems & computers, 1998,2:1537-1541
    [76]Borsari G., Mitigating effects on STAP processing caused by an inclined array, Proc. IEEE radar conference, Dallas, 1998:135-140
    [77]Basler R.P., Sparse array antennas and clutter suppression processing for space-based radars, AFRL Tech. report, New York, 2000
    [78]Zhang Y., Hajjari A., Adzima L. and Himed B., Adaptive beam-domain processing for space-based radars, Proc. IEEE radar conference, 2004:230-234
    [79]Rabindeau D.J.and Kogon S.M., A signal processing architecture for space-based GMTI radar, Proc. IEEE radar conference, Waltham, MA, 1999:96-101
    [80]Kogon S., Rabideau D. J.and Barnes R., Clutter mitigation techniques for space-based radar, Proc. IEEE radar conference, Boston MA, 1999:2323-2326
    [81]Zulch P., Davis M. and Adzima L., The earth rotation effect on a LEO L-Band GMTI SBR and mitigation strageties, Proc. IEEE radar conference, 2004:24-32
    [82]Liao G., Bao Z. and Xu Z., Evaluation of adaptive space-time processing for inclined sideways looking array airborne radars, Proc. CIE radar conference, 1996:78-81
    [83]Bao Z., Liao G. and Zhang Y., Partially adaptive space-time processing for clutter suppression in airborne radars, Proc. IEEE radar conference, 1995:120-124
    [84] Wang Y.L., Peng Y.L. and Bao Z., Space-time adaptive processing for airborne radar with various array orientations, IEEE proc. Radar, Sonar and Navigation, 1997,144:330-340
    [85] Wang Y.L., Bao Z. and Peng Y.L., STAP with medium PRF mode for non-side-looking airborne radar, IEEE trans. AES, 2000, 36:609-620
    [86]Zhang Y.and Himed B.,Effects of geometry on clutter characteristic of bistatic radars,Proc.IEEE radar conference,Huntsville,AL,2003:417-424
    [87]Himed B.,Zhang Y.and Hajjari A.,STAP with angle-doppler compensation for bistatic airborne radars,Proc.IEEE radar conference,Long Beach,CA,2002:311-317
    [88]Klemm R.,Comparison between monostatic and bistatic antenna configuration for STAP,IEEE trans.AES,2000,36(2):596-607
    [89]Tomlinson P.G.,Modeling and analysis of monostatic/bistatic space-time adaptive processing for airborne and spacebased radar,Proc.IEEE radar conference,Boston,MA,1999:102-107
    [90]魏进武,王永良,陈建文,双基地机载预警雷达空时自适应处理方法,电子学报,2001,29(12):1936-1939
    [91]Himed B.,Michels J.H.,Zhang Y.,Bistatic STAP performance analysis in radar applications,Proc.IEEE radar conference,Atlanta,GA,2001:198-203
    [92]Melvin W.L.,Callahan M.J.and Wicks M.C.,Bistatic STAP:application to airborne radar,Proc.IEEE radar conference,2002:1-7
    [93]Klemm R.,Ambiguities in bistatic STAP radar,Proc.IGARSS,2000:1009-1010
    [94]Klemm R.,Adaptive airborne MTI:comparison of sideways and forward looking radar,Proc.IEEE radar conference,1995:614-618
    [95]Klemm R.,Effect of doppler ambiguities on GMTI radar.Proc.IEE radar conference,Edinburgh,UK,Oct.2002:148-152
    [96]Koch W.,Effect of doppler ambiguities on GMTI tracking,Proc.IEE radar conference,Edinburgh,UK,Oct.2002:153-157
    [97]刘建平,梁甸农,主星伴随微小卫星编队SAR系统的模糊性分析,系统工程与电子技术,2004,26(10):1429-1431
    [98]陶海红,廖桂生,用于解距离模糊的变二相码波形优化设计,分布式微型航天器新概念及其应用技术研讨会,北京,2004:486-493
    [99]王彤,保铮,廖桂生,邢孟道,分布式小卫星成像解方位模糊方法,分布式微型航天器新概念及其应用技术研讨会,北京,2004:506-515
    [100]何峰,星载双/多基地SAR成像理论与信号处理技术,长沙:国防科技大学博士学位论文,2005
    [101]Johnson D.H.and Dudgeon D.E.,Array signal processing:concepts and techniques,Prentice-Hall,1993
    [102]Pillai S.U.,Array signal processing,Springer-Verlag New York Inc.,1989
    [103]何振亚著,自适应信号处理,北京:科学出版社,2002
    [104]龚耀寰著,自适应滤波,北京:电子工业出版社,1989
    [105]Cardone G.,Cincotti G.and etc,Optimization of wide-band linear arrays,IEEE trans. ultrasonics, ferroelectrics, and frequency control, 2001, 48(4):943-951
    [106] Trucco A. and Repetto F., A stochastic approach to optimization the aperture and the number of elements of an aperiodic array, IEE/MTS DCEANS,1996:1510-1515
    [107] Athley R, Optimization of element positions for direction finding with sparse arrays, Proc. 11~(th) IEEE signal processing, 2001:516-519
    [108] Holm S., Elgetun B. and Dahl G., Properties of the beampattern of weight- and layout- optimized sparse arrays, IEEE trans. ultrasonics, ferroelectrics, and frequency control, 1997, 44(5):983-991
    [109] Holm S. and Elgetun B.. Optimization of the beampattern of 2D sparse arrays by weighting, Proc. IEEE Symp. Ultrason., Seattle,WA, 1995:1345-1348
    [110] Turnbull D. H. and Foster F. S., Beam steering with pulsed two-dimensional transducer arrays, IEEE trans. ultrasonics, ferroelectrics, and frequency control, 1991,38(4):320-333
    [111] Smith S. W, Davidsen R. E. and etc. Updating on 2-D array transducers for medical ultrasound, Proc. IEEE Symp. Ultrason., Seattle,WA, 1995:1273-1278
    [112] Dotlic I. D., and Zejak A. J., Arbitrary antenna array synthesis using minimax algorithm. Electronics Letters, 2001, 37(4):206-208
    [113] Olen C. A. and Compton R. T., A numerical pattern synthesis algorithm for arrays, IEEE trans. antennas propag., 1990, 38:1666-1676
    [114] Tseng C. and Griffiths L. J., A simple algorithm to achieve desired patterns for arbitrary arrays, IEEE trans. signal processing, 1992,40(11):2737-2746
    [115] Swart W. A. and Oliver J. C, Numerical synthesis of arbitrary discrete arrays, IEEE trans. antennas propag., 1993,41(8):1171-1174
    [116] Melde K. L. and Taylor M. L., Pattern characteristics of linear arrays using the constrained least squares distribution, IEEE trans. antennas and propag., 2003, 51(4):772-775
    [117] Wang F., Yang R., and Frank C., A new algorithm for array pattern synthesis using the recursive least squares method, IEEE processing letters,2003, 10(8):235-238
    [118] Wu L., Zielinski A. and Bird J. S., A point-matching method for array pattern synthesis. IEEE trans. uotrasonics, ferroelectrics, and frequency control, 1996, 43(5):773-81
    [119] McMahon G.W., Hubley B. and Mohammed A., Design of optimum directional arrays using linear programming techniques, J.Acoust. Soc. Amer., 1972, 51(1):304-309
    [120] Wang R, Balakrishnan V. and etc, Optimal array pattern synthesis using semidefinite prgramming, IEEE trans. signal processing, 2003, 51(5): 1172-1183
    [121] Ng B. P., Er M. H. and Kot C, A flexible array synthesis method using quadratic programming, IEEE trans. Antennas Propagation, 1993, 41(11):1541-1550
    [122] Nordebo S., Zang Z. and Claesson I., A semi-infinite quadratic programming algorithm with applications to array pattern synthesis, IEEE trans. signal processing, 2001,48(3):225-231
    [123] Lebret H. and Boyd S., Antenna array pattern synthesis via convex optimization, IEEE trans. signal processing, 1997, 45(3):526-532
    [124] Sim S. L. and Er M. H., Constrained optimization technique for general array pattern synthesis, electronics letters, 1996, 32(10):861-862
    [125] Lorenz R. and Boyd S., Robust minimum variance beamforming, To appear in IEEE.
    [126] Shahbazpanahi S., Gershman A. B. and etc, Robust adaptive beamforming for general-rank signal models, IEEE trans. signal processing, 2003, 51(9):2257-2269
    [127] Vorobyov,S. A. Gershman A. B. and etc, Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem, IEEE trans. signal processing, 2003, 51(2):313-324
    [128] Vorobyov S. A., Gershman A. B. and etc, Adaptive beamforming with robustness against mismatched signal steering vector and interference nonstationarity, IEEE signal processing letters,2004,11 (2): 108-111
    [129] Liu J., Gershman A. B. and etc, Adaptive beamforming with sidelobe control: a second-order cone programming approach, IEEE signal processing letters, 2003, 10(10):331-334
    [130] Coleman, T.F. and Li Y., A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables, SIAM Journal on Optimization, 1996, 6(4): 1040-1058
    [131] Mehrotra, S., On the Implementation of a Primal-Dual Interior Point Method, SIAM Journal on Optimization, 1992,2(2)575-601
    [132] Zhang, Y, Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment, Technical Report, University of Maryland ,Baltimore, MD, July 1995
    [133] Webster I., Evans R. I. and Cantoni A., Robust perturbation Algorithms for adaptive antenna arrays, IEEE trans. antennas and propagation, 1990,38(4): 195-201
    [134] Cantoni A., Lin X. G. and Teo K. L., A new approach to the optimization of robust antenna array processors, IEEE trans. antennas and propagation, 1993, 41(4):403-411
    [135] Lu M. and He Z.Y,Adaptive beamforming using split-porarity trasformation for coherence signal and interference,IEEE trans,antennas and propagation,1993,41(3):314-324
    [136]Bell K.L.,Ephraim Y.and Van Trees H.L..A bayesian approach to robust adaptive beamforming,IEEE trans,signal processing,2000,48(2):386-398
    [137]Wu S.Q.and Zhang J.Y.,A new robust beamforming method with antenna calibration errors,IEEE.WSNC,Sept.1999:869-872
    [138]Lobo M.S.,Vandenberghe L.and etc.Application of second-order cone programming,Linear Algebra and its Applications 284,Nov.1998:193-228
    [139]Vandenberghe L.and Boyd S.,Semidefinite programming,SIAM Review,1996,38(1):49-95
    [140]Vandenberghe L.,Boyd S.and Wu S.,Determinant maximization with linear matrix inequality constraints,SIAM Journal on matrix analysis and application,1998,19(2):499-533
    [141]Boyd S.,Vandenberghe L.and Grant M.,Efficient convex optimization for engineering design.Proceeding IFAC Symposium on control and design,Sept.1994:14-23
    [142]Nesterov Y.and Todd M.J.,Self-scaled barriers and interior-point methods for convex programming,Mathematics of Operations Research,1997,22(1):1-42
    [143]胡清淮,国际数学规划领域的热点问题:线性规划内点法,武汉化工学院学报,2004,26(1):92-96
    [144]胡清淮,线性规划内点法,江西铜业工程,1996(4):74-78,1997(1):69-73;1997(2):71-76;1997(3):66-69;1997(4):70-74。
    [145]Winston W.L.,Operations research:Mathematical programming,北京:清华大学出版社(影印版),2004
    [146]赵瑞安,吴方,非线性最优化理论和方法,杭州:浙江科学技术出版社,1992
    [147]方述诚,普森普拉S.,线性优化及扩展--理论与算法,北京:科学出版社,1994
    [148]Boyd S.,Vandenberghe L.,Convex optimization,Cambridge University Press,2004.
    [149]Berger S.D.,Nonuniform sampling reconstruction applied to sparse array beamforming,Proc.IEEE radar conference,2002:98-103
    [150]Klemm R.,Space-time adaptive FIR filtering with staggered PRI,Proc.ASAP,2001:1-7
    [151]Tuszynski M.,Wojtkiewicz A.and Klembowski W.,Bimodal clutter MTI for staggered PRF radar,Proc.IEEE radar conference,1990:176-180
    [152]Sarkar T.K.and Koh J.,Coherent processing across multiple staggered pulse repetition interval(PRI)dwells in radar,Syracuse University,Technical report,2004
    [153]Kon J.and Sarkar T.K.,Spectral analysis of nonuniformly sampled data using a least square method for application in multiple PRI system,Proc.IEEE radar conference,2000:141-144
    [154]Vrana I.,Optimum statistical estimates in condition of ambiguity,IEEE trans.Information theory,1993,39(3):522-528
    [155]Trunk G.and Brockett S.,Range and velocity ambiguity resolution,Proc.IEEE radar conference,1993:146-149
    [156]Marvesti F.,Analoui M.and Gamshadzai M.,Recovery of signals from nonuniform samples using iterative methods,IEEE Trans.Signal Processing,1991,39(4):872-878
    [157]Jenq Y.C.,Perfect Reconstruction of digital spectrum from nonuniformly sampled signals,IEEE Trans.Instrument and Measurement,1997,46(3):649-652
    [158]Prendergast R.S.,Levy B.C.and Hurst P.J.,Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks,IEEE trans.circuits and system-Ⅰ,2004,51(8):1021-1030
    [159]Ferrari A.,Alengrin G.and Theys C.,Doppler ambiguity resolution using staggered PRF with a new chirp sweep-rate estimation algorithm,Proc.IEE Radar,Sonar and Navigation,Aug.1995:191-194
    [160]Milojevic D.J.and Popovic B.M.,Improved algorithm for the deinterleaving of radar pulses.Proc.IEE Radar and Signal Processing,Feb.1992:98-104
    [161]Harasawa Y.,Sekiguchi T.,Kirimoto T.and Iwamoto M.,A filter order selection method of clutter suppression filters with cascade connection using signal power ratio for staggered PRF,Proc.SICE,Fukui,Japan,August,2003:1159-1164
    [162]Harasawa Y.,Sekiguchi T.,Kirimoto T.and Hamada,N,A design method of clutter suppression filters with cascade connection using offset of zeros for staggered PRF,Proc.SICE,Aug.2002:2955-2960
    [163]Dominguez L.V.,Analysis of the digital MTI filter with random PRI.IEE proceedings-F,1993,40(2):129-137
    [164]Hashemi M.M.and Nayebi M.M.,Performance evaluation of random PRF signals in LPD radars,Proc.IEEE radar conference,2000:134-139
    [165]Gerlach K.,Second time around radar return suppression using PRI modulation,IEEE trans.AES,1989,25(6):854-862 PRF设计方法
    [166]任平,遗传算法(综述),工程数学学报,1999,16(1):1-8
    [167]张纪会,徐心和,模拟进化算法研究进展,系统工程与电子技术,1998,20(8):44-47。
    [168]数学手册编写组,数学手册,北京:高等教育出版社,1979
    [169]Kinghorn A.M.and Williams N.K.,The decidability of multiple-PRF radar waveform.Proc.IEE radar conference,October 1997:544-547
    [170]Ferrari A.,Berenguer C.and Alengrin G..,Doppler ambiguity resolution using multiple PRF,IEEE trans.AES,1997,33(3):738-751
    [171]Xia X.G..,Doppler ambiguity resolution using optimal multiple pulse repetition frequencies,IEEE trans.AES,1999,35(1):371-379
    [172]Thmoas A.G.,Medium PRF set selection:an approach through combinatorics,IEE Proc.-Radar,Sonar Navig.,1994,141(6):307-311
    [173]Albaster A.M.,Hughes E.J.and Matthew J.H.,Medium PRY radar PRF selection using evolutionary algorithms,IEEE trans.AES,2003,39(3):990-1001
    [174]Davies P.G.,Medium PRF set selection using evolutionary algorithms,IEEE trans.AES,2002,38(3):933-935
    [175]Long W.H.and Harringer K.A.,Medium PRF for the AN/APG-66 radar,IEEE proceedings,1985,73(2):301-311
    [176]Fishler E.,Haimovich A.,Blum R.and etc,Spatial Diversity in radars:models and detection performance,submitted to IEEE trans.Signal processing
    [177]Fletcher A.S.and Robey F.C.,Performance bounds for adaptive coherence of sparse array radar,Proc.11~(th)conf.on adaptive array processing,Mar.2003
    [178]Adve R.,Schneible R.,Genello G.and Antonik P.,Waveform-Space-Time adaptive processing for distributed aperture radars,Proc.IEEE radar conference,2005:93-97
    [179]梅长林,周家良,实用统计方法,北京:科学出版社,2002
    [180]张尧庭,方开泰,多元统计分析引论,北京:科学出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700