认知无线电的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线技术的飞速发展,人们对宽带无线业务的需求不断增加,频谱这种不可再生的宝贵资源正逐渐变得短缺。一方面,频谱供需的矛盾日益突出;另一方面,在当前的频谱管理策略下,已分配频谱的利用率又极其不足。在这一背景下,认知无线电技术应运而生。认知无线电是一种具备动态频谱接入功能的智能无线通信系统,能在不干扰授权用户的前提下伺机利用频谱机会,提高已分配频谱的利用率。
     目前,认知无线电技术已成为无线通信的热点研究领域。国内外学者和研究机构都开展了相关研究,但是这些研究尚处于初期阶段,还很不成熟。鉴于此,本论文以提高认知无线电的性能和效率为目的,对认知无线电的功率优化、MAC层频谱检测效率、802.22系统中基站间的频谱共享等关键技术方面做了重点研究,所得结果对未来认知无线电系统的最终实现具有一定的参考价值和实际意义。
     本文所作的几点工作如下:
     一、本论文通过讨论当前认知无线电的研究现状,分析了其特点和面临的挑战性技术问题,并主要采用博弈论探讨了认知无线电的若干问题。认知无线电技术的主要目标是实现与授权系统的频谱共存以及与其他认知无线电系统的频谱共享,因而,协调多个相互竞争实体的频谱接入行为是其面临的关键问题。这类问题适合采用微观经济学中的博弈论来解决。博弈论是一种处理多个相互影响的实体之间竞争和协作的数学公具,它提供了丰富的博弈模型用于实现不同目标的优化。
     二、认知无线电应用的前提是能够与授权系统共存,不侵犯到授权用户的正常通信。干扰温度模型是一种认知无线电系统与授权系统共存的模型,基于该模型,共存问题转变为认知无线电网络的功率优化问题。本论文的第3章针对认知无线电ad hoc网络和授权系统的空域共存范畴,研究了多测量点场景下认知无线电网络的功率控制问题。基于干扰温度模型,从最大化认知无线电网络总效用的角度出发,利用博弈理论,提出一种全局最优的分布式功率控制(TPCG)算法。该算法不需要测量点的管理和控制,且适用于存在多个测量点的频谱共享场景。文中通过理论证明和计算机仿真验证了TPCG算法的性能。
     三、本论文的第4章研究了认知无线电的MAC层频谱检测周期优化问题。由于认知无线电终端硬件条件的限制,在仅配置一副天线的情况下,为了能够在单位时间内检测到并利用较多的频谱,需要设计高效的MAC层检测算法以提高频谱检测效率。本论文在对授权用户的信道使用情况进行建模的基础上,提出了一种新型的MAC层检测周期优化算法。该算法通过自适应的调整每条信道的检测周期,提高了单位时间内的信道利用率,仿真结果验证了本算法的自适应周期检测相比于固定周期检测的性能优势。
     四、本论文的第5章研究了IEEE 802.22 WRAN网络的基站间频谱共享问题。当多个WRAN基站的覆盖范围相互重叠时,WRAN基站间存在频谱机会的接入竞争问题。考虑到拍卖理论在平衡资源需求和激励资源共享方面的独特优势,为了鼓励基站间平衡信道分配,避免频谱接入冲突,提高系统的频谱利用率,本论文提出一种基于拍卖理论的WRAN基站间频谱租借方案。该方案将WRAN小区间的频谱共享情况抽象为一个拍卖基站和多个竟拍基站的拍卖模型,在满足基站间的干扰约束下,以提升拍卖收益为优化目标,给出一种频谱分配的近似算法,并通过计算机仿真度量了分配效率。
     最后,总结全文工作的同时,给出了下一步的研究方向。
With the rapid development of wireless communication technologies and the increasing broadband communication demands, the shortage of spectrum is becoming an outstanding problem. On one hand, the conflicion between spectrum supply and demand is increasing. On the other hand, according to the survey of related organizations the utilization of licensed spectrums is very low under the present static spectrum management mode. Under the above background, the cognitve radio (CR) technology is prposed, which aims at enhancing the utilization of licensed spectrum with intelligent using the unused spectrum of licensed systems.
     CR becomes a hot topic in wireless communication research. Related research are undergoing by scholars from universities all over the world. But the CR technology is also in the beginning stage and there are many drowbacks need to be improved. In this paper, our researches focus on CR power control scheme, MAC layer sensing efficiency and spectrum sharing in IEEE 802.22 systems. The game theory and auction theory in microeconomics are introduced to inspire new ideas. Several new algorithms are proposed and the performances are verified through computer simulations. The researches have meaningful value for the realization of CR systems.
     The work in this dissertation is concluded as following points.
     Firstly, the research progress of CR is discussed detailedly, and the characteristic and technology challeges are analyzed.
     Secondaly, in chaper 3, we considered decentralized cognitive radio networks, and we especially focusd on the multiple measurement points scenario. Interference temperature model is proposed for spectrum sharing. Based on interference temperature model, the problem of spectrum sharing can be formulated as a power optimization problem at physical layer. Game theory is used to investigate the distributed power control for providing the maximum throughput in cognitive radio networks. A tax-based power control game algorithm is introduced to implement power allocation optimization in a distributed mode, and guarantees the convergence to globally optimal power allocations.
     Thirdly, chapter 4 discussed the MAC layer spectrum sensing in cognitive radio network. Efficient MAC layer spectrum sensing scheme can improve sensing performances and find more available spectrum opportunities. Focusing on solving MAC layer the sensing period optimization problem, we proposed an adaptive sensing period adjustment algorithm. The proposed algorithm realized the automation adjusting of sensing period based on the channel model of primary users, and found more opportunities than fixed period sensing.
     Fourthly, in chapter 5 we studied the spectrum sharing problem among different IEEE 802.22 WRAN cells. Aiming at efficiently solving the spectrum sharing problem, a dynamic spectrum renting scheme is proposed. Based on auction theory, the proposed spectrum renting algorithm obtains higher spectrum utilization and higher auction benefit, and guarantees no interference between competitive WRAN base stations.
     Finally, a conclusion is drawn for the dissertation, and valuable research directions in the future are presented.
引文
[1] Mitola, J., Maguire G. Q. Jr. Cognitive radio: making software radios more personal. IEEE Personal Communications, Volume 6, Issue 4, Aug 1999, pp. 13-18.
    
    [2] Mitola J. Cognitive radio: An integrated agent architecture for software defined radios [D]. Stockholm, Sweden: Royal Institute Technology (KTH), 2000.
    
    [3] D. Raychaudhuri. Adaptive wireless networks using cognitive radios as a building block. MobiCom, Sept. 2004, pp.6466-6470.
    
    [4] Akella A., Judd G., Seshan S. Selfmanagement in chaotic wireless deployments. Wireless Networks, Oct. 2006, pp.737-755.
    
    [5] FCC. Spectrum policy task force report [R]. Tech. Rep 02-155, 2002.
    
    [6] Weiss T.A., Jondral F.K. Spectral pooling: an innovative strategy for the enhancement of spectral efficiency. IEEE Communications Magazine, Volume 42, Issue 3, Mar 2004, pp.8-14.
    
    [7] Margulies A.S., Mitola, J. Software defined radio: a technical challenge and a migration strategy. in proceedings of IEEE 5th International Symposium on Spread Spectrum Techniques and Applications, Volume 2, Issue , 2-4, Sep 1998, pp.551-556.
    
    [8] Mitola J. Software radio architecture: a mathematical perspective. IEEE Journal on Selected Areas in Comms, April 1999, pp.514-538.
    
    [9] Mitola J. SDR architecture refinement for JTRS. Milcom 2000, pp.214-218.
    
    [10] F. Capar, I. Martoryo, T. A. Weiss. Analysis of coexistence strategies for cellular and wireless local area networks. VTC 2003 Fall, pp.1812-1816.
    
    [11] F. Capar, Friedrich Jondral. Resource allocation in a spectrum pooling system for packet radio networks using OFDM/TDMA. IST Mobile and Wireless Telecommunications Summit, June 2002, pp.551-555.
    
    [12] T. A. Weiss, Marcus Spiering, F. K. Jondral. Quality of service in spectrum pooling systems. PIMRC 2004, Barcelona, Spain 5-8 Sept 2004, pp.347-349.
    [13]Robert W.Brodersen,Adam Wolisz,Danijela Cabric,Shridhar Mubaraq Mishra and,Daniel Willkomm.CORVUS:a cognitive radio approach for usage of virtual unlicensed spectrum.white paper.Berkeley Wireless Research Center,UC Berkeley,July 29,2004.
    [14]End-to-End Recofigurability E2R_WP5_D5.3_050727.available at:http://e2r.motlabs.com/Deliverables/E2R_WP5_D5.3_050727.pdf.
    [15]D.Grandblaise,C.Kloeck,K.Moessner,et al.Techno-economic of collaborative based secondary spectrum usage E2R research project outcomes overview.DySPAN 2005,Nov.2005,pp.318-327.
    [16]P.Demestichas,G.Dimitrakopoulos,V.Stavroulaki.Introducing reconfigurability in wireless B3G environments,available at:http://www.cs.ucsb.edu/-htzheng/cognitive/index.html
    [17]XG Working Group.The XG architecture framework.RFC vl.0 available at:http://www.ir.bbn.eom/projects/xmac/ffe/rfe-af.pdf.
    [18]XG Working Group The XG Vision,RFC v2.0.available at:http://www.ir.bbn.Com/-ramanath/pdf/ffe_vision.pdf.
    [19]Haitao Zheng,Chunyi Peng.Collaboration and fairness in opportunistic spectrum access.IEEE International Conference on Communications,May 2005,Volume:5,pp.3132- 3136.
    [20]Lili Cao,Haitao Zheng.Distributed spectrum allocation via local bargaining.The second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks,2005.Sept.,pp.475-486.
    [21]Zheng,H.Lili Cao.Device cCentric spectrum management.DySPAN 2005,Nov.2005,pp.56-65.
    [22]Peng,C.,Zheng,H.,Zhao,B.Y.Utilization and fairness in spectrum assignemnt for opportunistic spectrum access.Mobile Networks and Applications(MONET),May 2006,pp.555-576.
    [23]Lili Cao,Haitao Zheng.Stable and Efficient Spectrum Access in Next Generation Dynamic Spectrum Networks.IEEE INFOCOM 2008,April 2008,pp.870-878.
    [24]Lei Yang,Lili Cao,Heather Zheng.Traffic-aware dynamic spectrum access.WiCON 2008.
    [25]Xia Zhou Mettu,S.Zheng,H.,Belding,E.M.Traffic-Driven Dynamic Spectrum Auctions.SECON Workshops 2008,June 2008,pp.1-6.
    [26] IEEE 802 LAN/MAN Standards Committee 802.22 WG [EB/OL]. available at: http: //.ieee802.org/22/.
    
    [27] IEEE 802.16's License-Exempt Task Group, available at: http: // www. ieee802. org/16/le/.
    [28] IEEE P1900 WG available at: http: // grouper, ieee. org/ groups/ emc/ emc/1900/ index.html.
    
    [29] IEEE Std 802.11h?-2003 Part 11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 5: Spectrum and Transmit Power Management Extensions in the 5 GHz band in Europe [S]. 2003.
    
    [30] IEEE P802.11-Task Group Y-Meeting Update: Status of project IEEE 802.11y [EB/OL]. http://grouper.ieee.Org/groups/802/11/Reports/tgy_update.html.
    
    [31] FCC. Notice of proposed rule making and order [R]. FCC Et Docket no. 03-322, 2003.
    
    [32] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp.201-205.
    
    [33] T.A. Weiss, F.K.Jondral. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, March 2004,42(3), pp.8-14.
    
    [34] B. Wild and K. Ramchandran. Detecting primary receivers for cognitive radio applications. in Proc. IEEE Symp. New Frontiers Dynamic Spectrum Access Networks, Nov. 2005, pp. 124-130.
    
    [35] Tandra R. Fundamental limits on detection in low SNR.International Conference on Wireless Networks, Communications and Mobile Computing, Jun. 2005, pp.464-469.
    
    [36] Cabr D., M Ishra Sm, Brodersen Rw. Implementation issues in spectrum sensing for cognitive radios. 38th Asilomar Conference on Signals, Systems and Computers Asilomar. California, USA, 2004, pp.772-776.
    
    [37] J. Proakis. Digital communications, 3rd edition, Mc Graw Hill.
    
    [38] Urkowitz H. Energy detection of unknown deterministic signals. In Proceedings of IEEE 1967, 55(4), pp.523-531.
    
    [39] Digham FF., Alouini MS., Simon MK. On the energy detection of unknown signals over fading channels. In Proceedings of the IEEE International Conference on Communications (ICC), May2003, pp.3575-3579.
    [40]W.A.Gardner.Signal interception:a unifying theoretical framework for feature detection.IEEE Trans.on Communications,vol.36,no.8,August 1988,pp.897-909.
    [41]Betz J.Feature detection,Tutorial presented at the FCC,February 2003.
    [42]Han Ning,Shon Sunghwan,Chung Jae Hak.Spectral correlation based signal detection method for spectrum sensing,in IEEE 802.22 WRAN,Phoenix Park.Korea,2006,pp.1765-1770.
    [43]Q.Zhao,L.Tong,and A.Swami.A cross-layer approach to cognitive MAC for spectrum agility.2005.the Thirty-Ninth Asilomar Conference on Signals,Systems and Computers,October 2005,pp.200- 204.
    [44]Hyoil Kim,Shin,K.G,Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks.IEEE Transactions on Mobile Computing,Volume 7,Issue 5,May 2008.pp.533 - 545.
    [45]Hyoil Kim,Shin,K.G.Adaptive MAC layer sensing of spectrum availability in cognitive radio networks,IEEE Radio and Wireless Symposium,2007,25(1),pp.464-469.
    [46]Q.Zhao,L.Tong,A.Swami,Y.Chen.Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework.IEEE J.Selected Areas in Commun.:Special Issue on Adaptive,Spectrum Agile and Cognitive Wireless Networks,vol.25,no.3,Apr.2007,pp.589-600.
    [47]Q.Zhao,L.Tong,and A.Swami.Decentralized cognitive MAC for dynamic spectrum access,in Proc.IEEE Symp.New Frontiers Dynamic Spectrum Access Networks(DySPAN),Nov.2005,pp.224-232.
    [48]Q.Zhao and A.Swami.A decision-theoretic framework for dynamic spectrum access.IEEE Wireless Commun.Mag.:Special Issue on Cognitive Wireless Networks,2007.
    [49]Q.Zhao;B.M.Sadler.A Survey of dynamic spectrum access.IEEE Signal Processing Magazine,Volume 24,Issue 3,May 2007,pp.79 - 89
    [50]A.Ghasemi and E.Sousa.Collaborative spectrum sensing for opportunistic access in fading environments,in Proc.IEEE DySPAN,Baltimore,MD,Nov.2005,pp.131-136.
    [51]G Ghurumuruhan,Y.Li.Agility improvement through cooperative diversity in cognitive radio,in Proc.IEEE GLOBECOM,St.Louis,MO,Nov.2005,pp.2507-2509.
    [52] Zhi Quan, Shuguang Cui, A.H. Sayed. Optimal linear cooperation for spectrum sensing in cognitive radio networks,. IEEE Journal on Selected Topics in Signal Processing, Volume 2, Issue 1, Feb. 2008, pp.28 - 40.
    
    [53] E. Vistotsky, S. Kuffner, R. Peterson. On collaborative detection of TV transmissions in support of dynamic spectrum sharing. in Proc. IEEE DySPAN, Baltimore, MD, Nov. 2005, pp.338 - 345.
    
    [54] Lunden J., Koivunen V., Huttunen A., Poor H.V. Censoring for collaborative spectrum sensing in cognitive radios. ACSSC 2007, Nov. 2007, pp.772-776.
    
    [55] Chia-han Lee, Wolf W. Energy efficient techniques for cooperative spectrum sensing in cognitive radios. CCNC 2008, Jan. 2008, pp. 968-972.
    
    [56] Peng C., Zheng H., Zhao B. Y. Utilization and fairness in spectrum assignemnt for opportunistic spectrum access. Mobile Networks and Applications (MONET), May 2006, pp.555-576.
    
    [57] Zheng H., Peng C. Collaboration and fairness in opportunistic spectrum access. In Proc. ICC Vol. 5. May 2005, pp.3132- 3136.
    
    [58] Birk V., Rozner E., Banarjee S., Bahl P. DSAP: a protocol for coordinated spectrum access. In Pro. IEEE DySPAN 2005, November 2005, pp.611-614.
    
    [59] Milind M. Buddhikot, Paul Kolodzy, Scott Miller, Kevin Ryan, Jason Evans. DIMSUMNet: new directions in wireless networking using coordinated dynamic spectrum access. IEEE WoWMoM05, Jun. 2005, pp.78-85
    
    [60] Ileri O., Samardzija D., Mandayan N. B. Demand responsive pricing and competitive spectrum allocation via spectrum server. In Proc. IEEE DySPAN, Nov. 2005, pp. 194-202.
    
    [61] Raman C., Yates R. D., Mandayam N. B. Scheduling variable rate links via a spectrum server. In Proc. IEEE DySPAN, Nov. 2005, pp.110-118.
    
    [62] Zekavat S. A., Li X. User-central wireless system: ultimate dynamic channel allocation. In Proc. IEEE DySPAN 2005, November 2005, pp.82-87.
    
    [63] Cao L., Zheng H. Spectrum allocation in ad hoc networks via local bargaining. In Proc. SECON, Sep. 2005, pp.475-486.
    [64]Lili Cao,Haitao Zheng.Distributed rule-regulated spectrum sharing.IEEE Journal on Selected Areas in Communications,Volume 26,Issue 1,Jan.2008,pp.130 - 145.
    [65]Zheng H.,Cao L.Device-centric spectrum management.In Proc.1EEE DySPAN,Nov.2005.
    [66]Zhao J.,Zheng H.,Yang G H.Distributed coordination in dynamic spectrum allocation networks,in Proc.IEEE DySPAN,Nov.2005,pp.259-268.
    [67]Xing,Y.,Chandramouli,R.,Mangold,S.,Shankar,S.Dynamic spectrum access in open spectrum wireless networks.IEEE J.Select.Areas Commun.24(3),March 2006,pp.626-637.
    [68]Neel J.,Reed J.Performance of distributed dynamic frequency selection schemes for interference reducing networks.In Proc.Milcom,Oct.2006,pp.1-7.
    [69]Nie N.,Comaniciu C.Adaptive channel allocation spectrum etiquette for cognitive radio networks.Mobile Networks and Applications,Oct.2006,pp.779-797.
    [70]Etkin R.,Parekh A.,Tse D.Spectrum sharing for unlicensed bands,in Proc.IEEE DySPAN 2005,November,2005,pp.251-258.
    [71]Menon R.,Buehrer R.M.,Reed J.H.Outage probability based comparison of tmderlay and overlay spectrum sharing techniques.In Proc.IEEE DySPAN 2005,Nov.2005,pp.101-109.
    [72]B.Wild,K.Ramchandran.Detecting primary receivers for cognitive radio applications,in Proc.IEEE DySPAN 2005,Nov.2005,pp.124-130.
    [73]V.Kanodia,A.Sabharwal,E.Knightly.MOAR:a multi-channel opportunistic auto-rate media access protocol for ad hoc networks,in Proc.IEEE BROADNETS 2004,October 2004,pp.600-610.
    [74]S.Krishnamurthy,M.Thoppian,S.Venkatesan,R.Prakash.Control channel based MAC-layer configuration,in Proc.IEEE MILCOM 2005,October 2005,pp.1-6.
    [75]I.F.Akyildiz,Y.Li.OCRA:OFDM-based cognitive radio networks.Broadband and Wireless Networking Laboratory Technical Report,March 2006.
    [76]S.Krishnamurthy,M.Thoppian,S.Venkatesan et al.Control channel based MAC-layer configuration,MILCOM 2005,Oct.2005,pp.1-6.
    [77] V. Rodriguez, K. Moessner, R. Tafazolli. Auction driven dynamic spectrum allocation: optimal bidding, pricing and service priorities for multi-rate, multi-class CDMA. in Proc. IEEE PIMRC'05, Sept. 2005, vol. 3, pp. 1850-1854.
    
    [78] C. Kloeck, H. Jaekel, F. K. Jondral. Dynamic and local combined pricing, allocation and billing system with cognitive radios. in Proc. IEEE DySPAN'05, Nov. 2005, pp.73-81.
    
    [79] O. Ileri, D. Samardzija, T. Sizer, N. B. Mandayam. Demand responsive pricing and competitive spectrum allocation via a spectrum server. in Proc. IEEE DySPAN'05, Nov. 2005, pp. 194-202.
    
    [80] Niyato, D., Hossain E. Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of Nash equilibrium, and collusion. IEEE Journal on Selected Areas in Communications, Volume 26, Issue 1, Jan. 2008, pp. 192 - 202.
    
    [81] Yan Chen, Guanding Yu, Zhaoyang Zhang, Hsiao-Hwa Cheny, Peiliang Qiu. On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, Volume 7, Issue 7, July 2008, pp.2752 - 2761.
    
    [82] Anh Tuan Hoang, Ying-Chang Liang. A two-phase channel and power allocation scheme for cognitive radio networks. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2006, pp. 1-5.
    
    [83] Y. Xing, C. N. Mathur, M.A. Haleem. Dynamic spectrum access with QoS and interference temperature constraints. IEEE transactions on mobile computing, Vol. 6, No. 4, Apr. 2007.
    
    [84] J. Huang, R. Berry, M. L. Honig. Auction based spectrum sharing. ACM Mobile Networks and Applications Journal, vol. 11, no. 3, June 2006, pp.405-418.
    
    [85] G. J. Foschini, Z. Miljanic. A simple distributed autonomous power control algorithm and its convergence. Transactions on Vehicular Technology, vol. 42, Nov. 1993. pp.641-646.
    
    [86] Sung Chi Wan, Wong Wing Shing. A non-cooperative power control game for multi-rate CDMA data networks. IEEE Trans on Wireless Communications, 2003,2(1), pp. 186-194.
    
    [87] Goodman D., Mandayam N. Power control for wireless data. IEEE International Workshop on Mobile Multimedia Communications (MoMuCp99). San Diego, 1999, pp.55-63.
    
    [88] Goodman D., Mandayam N. Power control for wireless data. IEEE Personal Communications, 2000, 7(2), pp.482-54.
    [89]Shah V.,Mandayam N.B.,Goodman D,J.Power Control for Wireless Data Based on Utility and Pricing.Indoor and Mobile Radio Communications,1998,3(8),pp.1427-1432.
    [90]Wei Yu,George Ginis,John M.Cioffi.Distributed multiuser power control for digital subscriber lines.IEEE JSAC,June,2002,20(5),pp.1105-1115.
    [91]G.Scutari,D.P.Palomar,S.Barbarossa.Simultaneous iterative water-filling for Gaussian frequency-selective interference channels.Proc.IEEE International Symposium on Information Theory(ISIT),July 2006,pp.600-604.
    [92]A.Mas-Colell M.D.,Whinston J.R.Microeconomic theory.Oxford University Press,2002.
    [93]M.Osborne,A.Rubinstein.A course in game theory,MIT Press,1994.
    [94]M.Chiang,C.W.Tan,D.P.Palomar.Power control by geometric programmming.IEEE Trans.Commun.,Jul.2007,Vol.6,pp.2640-2651.
    [95]D.Cabric,S.M.Mishra,D.Willkomml.A cognitive radio approach for usage of virtual unlicensed spectrum.UC Berkeley White Paper,July 2004.
    [96]J.Zhao,H.Zheng,G.H.Yang.Distributed coordination in dynamic spectrum allocation networks.IEEE Dynamic Spectrum Access Networks,2005,pp.259-268.
    [97]L.P.Ma,X.F.Han,C.C.Shen.Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks.IEEE Dynamic Spectrum Access Networks,2005,pp.203-213.
    [98]Qianchuan Zhao,Stefan Geirhofer,Lang Tong,Brian M.Sadler.Opportunistic spectrum access via periodic channel Sensing.IEEE Transations on Signal Processing,VOL.56,NO.2,Feb.2008,pp.785-796
    [99]Tian Feng,Yang Zhen.A new algorithm for weighted proportional faimess based spectrum allocation of cognitive radios.Proceedings of International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing (SNPD'07),Vol 1,Jul.2007,pp.531-536.
    [100]Cheng Geng,Liu Wei,Li Yunzhao et al.Joint on-demand routing and spectrum assignment in cognitive radio networks.Proceedings of IEEE International Conference on Communications(ICC'07),Jun.2007,pp.6499-6503.
    [101] Wang Qiwei, Zheng Haitao. Route and spectrum selection in dynamic spectrum networks. Proceedings of 3rd IEEE Consumer Communications and Networking Conference (CNCC'06), Jan. 2006, pp.25-629.
    
    [102] Hyoil Kim, Shin, K.G Efficient discovery of spectrum opportunities with MAC-layer sSensing in cognitive radio networks. IEEE Transactions on Mobile Computing, Volume 7, Issue 5, May 2008, pp.533 - 545.
    
    [103] Q. Zhao, L. Tong, A. Swami, Y. Chen. Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE J. Selected Areas in Commun.: Special Issue on Adaptive, Spectrum Agile and Cognitive Wireless Networks, vol. 25, no. 3, Apr. 2007, pp.589-600.
    
    [104] Qing Zhao, Krishnamachari B., Keqin Liu. On myopic sensing for multi-channel opportunistic access: structure, optimality, and performance. IEEE Transactions on Wireless Communications, December 2008 Volume: 7, Issue: 12, pp.5431-5440.
    
    [105] Anh Tuan Hoang, Ying-Chang Liang. Adaptive scheduling of spectrum sensing periods in cognitive radio networks. GLOBECOM '07, Nov. 2007, pp.3128-3132.
    
    [106] Yang Lei, Cao Lili, Zheng Haitao. Proactive channel access in dynaic spectrum networks. CrownCom 2007, Aug. 2007, pp.487 - 491.
    
    [107] Cordeiro C., Challapali K., Birru D. et al. IEEE802.22: the first worldwide wireless standard based on cognitive radios. Proceedings of 2005 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Nov., 2005, pp.328-337.
    
    [108] IEEE 802.22 Working Group on Wireless Regional Area Networks Homepage. http://www.ieee802.org/22.
    
    [109] D. Cavalcanti, C. Cordeiro, D. Grandblaise, W. Hu, T. Hyon B. Ji. IEEE 802.22-07/0121r1, Proposed text changes and Comment Resolution to Section 6.21.2 Self-coexistence. in IEEE 802.22/D0.2 Draft Standard, March 2007.
    
    [110] IEEE 802.22 Working Group on Wireless Regional Area Networks. IEEE 802.22 Functional Requirements [R]. 2005.
    
    [111] Chang-joo Kim. Cognitive radio technology and IEEE 802.22 standardization activities. website: http://www.krnet.or.kr/board/include/download.asp?no=36&db=program&fileno=2
    [112]IEEE P802.22/D0.1 Draft Standard for Wireless Regional Area Networks Part 22:Cognitive Wireless RAN Medium Access Control(MAC) and Physical Layer(PHY)specifications:Policies and procedures for operation in the TV Bands.
    [113]田峰,程世伦,杨震,无线区域网和认知无线电技术,中兴通讯技术,2006年8月,12(4),pp.61-64.
    [114]D.Grandblaise,K.Moessner,G.Vivier,R.Tafazolli.Credit token based scheduling for inter BS Spectrum Sharing.4th Karlsmhe Workshop on Software Radios(WSR'06),March 2006,pp.122-126.
    [115]D.Grandblaise,K.Moessner,G.Vivier,R.Tafazolli,Credit Token based Rental Protocol for Dynamic Channel Allocation.2006.1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications,pp.296-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700