多小区OFDMA系统资源分配算法与信道估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信应用的丰富和发展,服务质量(QoS)需求与无线通信资源有限的矛盾日益尖锐。为缓解这一矛盾,必须从无线通信系统的各个层面展开研究。在物理层,正交频分复用(OFDM)是一种非常适合于宽带无线系统的技术;在链路层,采用资源分配和调度可以显著改善通信系统的频谱效率和吞吐量。另外,OFDMA技术的独特优势,为资源分配提供了灵活的自由度,因此,OFDMA系统中的资源分配算法得到了广泛的关注。
     正交频分多址(OFDMA)是将正交频分复用(OFDM)技术和频分多址(FDMA)技术相结合的多址方案,是第四代移动通信系统(4G)的关键技术之一。OFDMA以OFDM调制为基础,通过给不同用户独立地分配子载波来实现多用户接入,在多用户同时接入的情况下,OFDMA系统基于无线信道的状态、服务质量(QoS)要求等参数动态地制定资源配置方案,从而实现资源的自适应最优配置。这样,系统既能获得更高的频谱利用率,又可以更好地满足QoS要求。自适应资源配置是当前一个重要的研究课题,也是OFDMA系统急需解决的核心问题之一。
     针对这个研究方向,本文在深入研究多小区OFDMA自适应资源配置过程中提出了一种基于罚函数的资源分配算法和一种低复杂度资源分配算法,同时研究了系统中信道噪声的估计,提出了一种基于最大似然法的联合测量干扰和噪声功率水平的非数据辅助算法。全文系统地分析和研究了在多小区OFDMA系统进行自适应资源配置需要解决的问题,具体主要有如下三个方面的工作和创新:
     (1)基于罚函数的模拟退火资源分配算法,在多小区OFDMA系统中,基于集中式资源管理,考虑本小区对其他小区的干扰情况,对各个小区的子载波和功率分配进行调整,从而达到最小化总功率的目的。通过功率离散化来建立多小区OFDMA问题模型,使用罚函数法来简化问题模型,并采用改进的模拟退火算法进行求解。本文提出的罚函数SA(Penalty-Simulation Annealing)资源分配算法,简化了问题模型,从而降低了模型求解复杂度。理论分析和仿真结果表明,离散功率个数的选择在一定范围内具有随机性。文章提出的算法获得了更好的系统吞吐量,同时有效降低了求解复杂度,且对整体性能不会产生不良影响;与多分配算法相比,单位功率吞吐量有显著提高。
     (2)提出了一种低复杂度资源分配算法,通过对一组线性方程组的求解,在最小化传输功率的同时满足了用户最大传输需求。该算法把子载波和功率分配分别实施,即把资源分配过程分成子载波分配和功率分配两个独立的步骤进行,在子载波分配时,假设频效率固定简化了分配复杂度,在固定频率效率的情况下,功率分配可以通过一组线性方程组求得,当方程组的解出现负值时,通过调整算法对负值的解进行处理实现正确的分配结果,仿真结果表明该算法在系统吞吐量、功率效率、算法复杂度等方面,取得了一个介于最优算法和多分配算法之间的折衷。
     (3)提出了一个基于最大似然法的平坦信道估计算法,该算法是一种联合测量干扰和噪声功率水平的非数据辅助算法。针对确定性未知高斯白噪声干扰的有限状态离散信号,该算法首先假设在特定条件下,得到一个近似的闭形式解,然后以些解为初始值,采用迭代的方法,以最大似然准则为基础,得到完善的估计结果。仿真结果表明该方法具有收敛速度快,准确性高等特性。
With the rapid development of wireless communications, the contradiction between thelimited wireless resources and the increasing requirements for Quality of Service (QoS)becomes more and more apparent. To solve this problem various technologies at differentlayers of wireless systems should be involved. In the physical layer, Orthogonal FrequencyDivision Multiplexing (OFDM) technology has proved to be very suitable for widebandwireless systems. In the data link layer, resource allocation and scheduling can be used toimprove the frequency efficiency and throughput of communication systems. Moreover,OFDMA provides flexibility for resource allocation due to its unique characteristic. Thus,resource allocation in OFDMA systems has attracted great attention in recent years.
     Orthogonal Frequency Division Multiple Access (OFDMA) is a multiple accesstechnology combining OFDM with Frequency Division Multiple Access (FDMA) and hasbeen considered as one of the key technologies in4G mobile communication systems. Basedon the OFDM modulation,OFDMA achieves the multi-user access by allocating subcarriersto every user independently. In the scenario of multi-user accessing simultaneously, OFDMAsystems choose resource allocation strategy according to the condition of wireless channel,QoS, etc, in order to realize optimal adaptive resource allocation. Then the system can notonly achieve higher spectrum utilization, but also better satisfy QoS requirements. Therefore,adaptive resource allocation is a very important research topic and is also one of the mainproblems to be solved in OFDMA systems.
     In this thesis,we researched on adaptive resource allocation in multi-cell OFDMA andproposed a resource allocation algorithm based on the penalty function and a low-complexityresource allocation algorithm. We also studied channel noise estimation and came up with anon-data-aided algorithm for joint measurement of interference and noise power based on themaximum likelihood criterion. Our contributions can be summarized in the following threeaspects:
     (1) In the multi-cell OFDMA systems, based on the centralized resource management,taking the interference between cells into consideration, the subcarrier and power allocationfor each cell is adjusted so as to minimize the total power. Discretize power to establish a multi-cell OFDMA model. Then the problem is simplified by penalty function and solved byan improved simulated annealing algorithm. In this thesis, a penalty function SA(Penalty-Simulation Annealing) resource allocation algorithm has been proposed to simplifythe model and reduce the complexity. Theoretical analysis and simulation results show thatthe selection of the number of discrete power is random within certain range. The proposedalgorithm can achieve better throughput with reduced complexity and the same overallperformance; compared with the multi-allocation algorithm, the unit power throughput issignificantly improved.
     (2) A low complexity resource allocation algorithm is proposed, which minimizestransmission power and in the mean time satisfies great transmission demand by solving a setof linear equations. The resource allocation process is carried out in two steps: sub-carrierassignment and power allocation. In the sub-carrier assignment, it is assumed that fixing thefrequency efficiency simplifies allocation. With fixed frequency efficiency, power allocationproblem can be solved through a set of linear equations. When the solution is negative, correctdistribution results are obtained by adjusting the algorithm. Simulation results show that thealgorithm achieves a compromise between the optimal algorithm and the multi-allocationalgorithm in throughput, power efficiency, complexity, etc.
     (3) A flat channel estimation algorithm based on Maximum Likelihood criterion isproposed. It is a non-data-aided algorithm, which carries out joint measurement ofinterference and noise power. Targeting at finite state discrete signals interfered by unknownwhite Gaussian noise, the algorithm first assumes that under certain conditions, anapproximate closed form solution can be obtained. Then with this solution as the initial value,using an iterative approach, a complete estimation result is obtained based on the maximumlikelihood criterion. Simulation results show that this method has the advantages of fastconvergence, high accuracy, etc.
引文
[1] Sari H, Levy Y, Karam G. An analysis of orthogonal frequency-division multiple access
    [C].1997.
    [2] Falahati A, Ardestani M R. An Improved Low-Complexity Resource AllocationAlgorithm for OFDMA Systems with Proportional Data Rate Constraint[C].2007.
    [3] Abrardo A, Alessio A, Detti P, et al. Centralized Radio Resource Allocation for OFDMACellular Systems[C].2007.
    [4] Changho S, Yunok C, Seokhyun Y. Dynamic subchannel and bit allocation in multiuserOFDM with a priority user[C].2004.
    [5] Jiho J, Kwang-Bok L, Yong-Hwan L. Frequency-time domain transmit power adaptationfor OFDM systems in multiuser environment[J]. Electronics Letters.2002,38(25):1754-1756.
    [6]张亮. GSM/TD-SCDMA混合组网下的网络优化研究[D].南京邮电大学,2011.
    [7] Heng-Sheng S, Po-Yi W, Hsiang-Chun P, et al. Hybrid CATV and16-QAM OFDM to thehome device networks[C].2011.
    [8] Manli Q, Hardjawana W, Yonghui L, et al. Inter-cell interference coordination throughadaptive soft frequency reuse in LTE networks[C].2012.
    [9] Bouras C, Kavourgias G, Kokkinos V, et al. Interference management in LTE femtocellsystems using an adaptive frequency reuse scheme[C].2012.
    [10] Song G, Li Y, Jr. Cimini L J, et al. Joint channel-aware and queue-aware data schedulingin multiple shared wireless channels[C].2004.
    [11] Yiwei Y, Dutkiewicz E, Xiaojing H, et al. Load Distribution Aware Soft FrequencyReuse for Inter-Cell Interference Mitigation and Throughput Maximization in LTENetworks[C].2011.
    [12]曾春亮,张宁,王旭莹. WiMax/802.16原理与应用[M].机械工业出版社,2007.
    [13] Fattouehe M. Method and Apparatus for Multiple Access between Transceivers inWireless Communications using OFDM spread spectrum[P].5282222.
    [14] Bingham J A C. Multicarrier modulation for data transmission: an idea whose time hascome[J]. Communications Magazine, IEEE.1990,28(5):5-14.
    [15] Jacobsen K S, Cioffi J M. High-performance multimedia transmission on the cabletelevision network[C].1994.
    [16] Jacobsen K S, Bingham J A C, Cioffi J M. Synchronized DMT for multipoint-to-pointcommunications on HFC networks[C].1995.
    [17] Ciochina C, Sari H. A review of OFDMA and single-carrier FDMA[C].2010.
    [18] Steendam H, Moeneclaey M, Sari H. The effect of carrier phase jitter on the performanceof orthogonal frequency-division multiple-access systems[J]. Communications, IEEETransactions on.1998,46(4):456-459.
    [19] Munz G, Pfletschinger S, Speidel J. An efficient waterfilling algorithm for multipleaccess OFDM[C].2002.
    [20] Ying J Z, Letaief K B. Multiuser adaptive subcarrier-and-bit allocation with adaptive cellselection for OFDM systems[J]. Wireless Communications, IEEE Transactions on.2004,3(5):1566-1575.
    [21] Jiho J, Kwang B L. Transmit power adaptation for multiuser OFDM systems[J]. SelectedAreas in Communications, IEEE Journal on.2003,21(2):171-178.
    [22] Gjendemsjo A, Gesbert D, Oien G E, et al. Optimal Power Allocation and Scheduling forTwo-Cell Capacity Maximization[C].2006.
    [23] Gjendemsj A, Gesbert D, Oien G E, et al. Binary Power Control for Sum RateMaximization over Multiple Interfering Links[J]. Wireless Communications, IEEETransactions on.2008,7(8):3164-3173.
    [24] Rhee W, Cioffi J M. Increase in capacity of multiuser OFDM system using dynamicsubchannel allocation[C].2000.
    [25] Cheong Y W, Cheng R S, Lataief K B, et al. Multiuser OFDM with adaptive subcarrier,bit, and power allocation [J]. Selected Areas in Communications, IEEE Journal on.1999,17(10):1747-1758.
    [26] Pischella M, Belfiore J C. QoS-Based Resource Allocation with Cooperative Diversity inOFDMA[C].2008.
    [27] Kanghee K, Insoo K, Seokjin S, et al. Multiple QoS support using M-LWDF in OFDMAadaptive resource allocation[C].2004.
    [28] Campello J. Practical bit loading for DMT[C].1999.
    [29] Wong I C, Zukang S, Evans B L, et al. A low complexity algorithm for proportionalresource allocation in OFDMA systems[C].2004.
    [30] R. Soft Frequency Reuse Scheme for UTRAN LTE[S]. Athens, Greece,2005.
    [31] R. Inter-cell Interference Handling for E-UTRA[S]. London, UK,2005.
    [32] R. Interference Mitigation–Considerations and Results on Frequency Reuse[S].London, UK,2005.
    [33] R. Interference Coordination in new OFDM DL air interface[S]. Athens, Greece,2005.
    [34] Abrardo A. A A D P. Radio Resource Allocation Problem for OFDMA CellularSystems[J]. Computer and Operations Research.2009,36(5):1572-1581.
    [35]邢文训.现代优化计算方法[M].清华大学,1999:298.
    [36]王永学,陈芳炯,韦岗.基于遗传算法的多用户OFDM系统资源分配[J].华南理工大学学报(自然科学版).2005(11):61-65.
    [37]陈刚,武欣嵘,周斌,等.基于遗传模拟退火算法的OFDMA系统资源分配[J].军事通信技术.2010(01):17-21.
    [38]张天魁,郑洁莹,曾志民. OFDMA系统中节能的遗传禁忌搜索功率分配[J].北京邮电大学学报.2010(02):69-73.
    [39]蒋韡琳. OFDMA系统小区间干扰消除与资源分配算法研究[D].哈尔滨工业大学,2011.
    [40] Zaki A N, Fapojuwo A O. Optimal and Efficient Graph-Based Resource AllocationAlgorithms for Multiservice Frame-Based OFDMA Networks[J]. Mobile Computing,IEEE Transactions on.2011,10(8):1175-1186.
    [41] Wei W, Keun C H, Kwang B L, et al. Resource allocation for heterogeneous services inmultiuser OFDM systems[C].2004.
    [42] Xin W, Giannakis G B. Resource Allocation for Wireless Multiuser OFDM Networks[J].Information Theory, IEEE Transactions on.2011,57(7):4359-4372.
    [43] Jing S, Guanding Y, Zhaoyang Z, et al. Resource Allocation in OFDM based MultihopWireless Networks[C].2006.
    [44] Guocong S, Ye L. Utility-based resource allocation and scheduling in OFDM-basedwireless broadband networks[J]. Communications Magazine, IEEE.2005,43(12):127-134.
    [45]张渝.第三代移动通信系统中的无线资源管理算法研究[D].电子科技大学,2004.
    [46]许方敏,王海泉,胡玉琴.多小区OFDMA系统中分数频率复用方法的优化分析[J].电路与系统学报.2012(02):34-37.
    [47]杨乐.多业务OFDMA系统中无线资源优化分配研究[D].西安电子科技大学,2008.
    [48]崔海霞.分布式无线网络协作资源分配研究[D].华南理工大学,2011.
    [49]贺彬.基于多模式SDR的WCDMA关键技术研究[D].上海交通大学,2010.
    [50] Nogueroles R, Bossert M, Donder A, et al. Improved performance of a random OFDMAmobile communication system[C].1998.
    [51] Holma H. Toshkala A. UMTS中的WCDMA:HSPA演进及LTE[M].第4版.北京:机械工业出版社,2008:454-455.
    [52]刘佳佳,鲍慧. OFDMA技术在电力应急通信系统中的应用[J].电力系统通信.2010(04):62-64.
    [53]许可,王智鹏. OFDMA技术在电力应急通信系统中的运用[J].科技传播.2013(03):146-178.
    [54]柴宇,罗进文.超宽带无线通信及其两大标准[J].电信工程技术与标准化.2006(05):22-25.
    [55] Yueyun C, Shuaiqi G. A Downlink Dynamic Resource Allocation Scheme for Multi-cellOFDMA System[C].2009.
    [56] Papandreou N, Antonakopoulos T. A new computationally efficient discrete bit-loadingalgorithm for DMT applications[J]. Communications, IEEE Transactions on.2005,53(5):785-789.
    [57] Lei You, Mei Song, JunDe Song. Adaptive resource allocation in OFDMA-basedcooperative cellular network[C].2007.
    [58] Krongold B S, Ramchandran K, Jones D L. An efficient algorithm for optimal marginmaximization in multicarrier communication systems[C].1999.
    [59] Haykin S. Cognitive Dynamic Systems: Radar, Control, and Radio [Point of View][J].Proceedings of the IEEE.2012,100(7):2095-2103.
    [60] Mahmood A, Jaffrot E. Computationally Efficient Algorithm for Optimal PowerAllocation in Multicarrier Systems with Peak-Power Constraint[C].2007.
    [61] Li-Ping Z, Xiaofeng Z, Yan Y, et al. Computationally Efficient Optimal Discrete BitAllocation for Medium and High Target Bit Rate DMT Transmissions[C].2007.
    [62] Krongold B S, Ramchandran K, Jones D L. Computationally efficient optimal powerallocation algorithm for multicarrier communication systems[C].1998.
    [63] Lixin S, Kunqi G, Shilou J. Cross layer design of efficiency and fairness trade-off forresource allocation in multiuser downlink wireless networks[C].2010.
    [64] Qingwen L, Shengli Z, Giannakis G B. Cross-layer combining of queuing with adaptivemodulation and coding over wireless links[C].2003.
    [65] Lei Y, Mei S, Junde S. Cross-Layer Optimization for Fairness in OFDMA CellularNetworks with Fixed Relays[C].2008.
    [66] Xuncheng Z, Zhizhong D, Punal O, et al. Design and Implementation of Base-BandAlgorithms for OFDM-Based Wireless Communication Systems[C].2011.
    [67] Guoqing L, Hui L. Downlink Radio Resource Allocation for Multi-Cell OFDMASystem[J]. Wireless Communications, IEEE Transactions on.2006,5(12):3451-3459.
    [68] Mathias B, James G, Adam W, et al. Dynamic resource allocation in OFDM systems: anoverview of cross-layer optimization principles and techniques[J]. Network, IEEE.2007,21(1):53-59.
    [69] Guoqing L, Hui L. Dynamic resource allocation with finite buffer constraint inbroadband OFDMA networks[C].2003.
    [70] Ho W W L, Ying-Chang L. Efficient Resource Allocation for Power Minimization inMIMO-OFDM Downlink[C].2008.
    [71] Ying H, Yongming H, Luxi Y, et al. Energy-efficient resource allocation in multi-userOFDMA systems[C].2011.
    [72] Soumaya H, Philippe G, Sami T. Enhanced Capacity for Multi-Cell OFDMA Systemswith Efficient Power Control and Reuse Partitioning[C].2006.
    [73] Kai C, Biling Z, Danpu L, et al. Fair Resource Allocation in OFDMA Two-HopCooperative Relaying Cellular Networks[C].2009.
    [74] Kobayashi M, Caire G. Iterative Waterfilling for Weighted Rate Sum Maximization inMIMO-MAC[C].2006.
    [75] Guocong S, Ye L, Cimini L J. Joint channel-and queue-aware scheduling for multiuserdiversity in wireless OFDMA networks[J]. Communications, IEEE Transactions on.2009,57(7):2109-2121.
    [76] Bing X, Wen'An Z, Chenxi H, et al. Joint channel-aware and queue-aware relay selectionand resource allocation in cooperative OFDMA networks[C].2010.
    [77] Li M, Chen Z, Tan Y. Joint power allocation and bit loading for enhanced SVC videodownlink transmissions over SDMA/OFDMA networks[C].2011.
    [78]白铂. OFDMA资源分配的解析研究[D].清华大学,2010.
    [79] Yong L, Wenbo W, Jia K, et al. Power Allocation and Subcarrier Pairing inOFDM-Based Relaying Networks[C].2008.
    [80] Su Y, Gang W, Yong X. QoS-Enabled Dynamic Resource Management in Multi-CellOFDMA-Based Systems[C].2011.
    [81] Li G, Liu H. Resource allocation for OFDMA relay networks[C].2004.
    [82] Xiaofan L, Jianhua Z, Yi L, et al. Resource Allocation in Successive Relaying forHalf-Duplex Relay-Based OFDMA Systems[C].2010.
    [83] Haykin S, Thomson D J, Reed J H. Spectrum Sensing for Cognitive Radio[J].Proceedings of the IEEE.2009,97(5):849-877.
    [84] Gross J, Klaue J, Karl H, et al. Subcarrier allocation for variable bit rate video streams inwireless OFDM systems[C].2003.
    [85] Gross J, Paoluzzi I, Karl H, et al. Throughput study for a dynamic OFDM-FDMA systemwith inband signaling[C].2004.
    [86] Wenlin W, Jing L, Dapeng L, et al. Throughput-Based Adaptive Resource-AllocationAlgorithm for OFDMA Cellular System with Relay Stations[C].2011.
    [87] Mung C. To layer or not to layer: balancing transport and physical layers in wirelessmultihop networks[C].2004.
    [88] Inhyoung K, In-Soon P, Lee Y H. Use of linear programming for dynamic subcarrier andbit allocation in multiuser OFDM[J]. Vehicular Technology, IEEE Transactions on.2006,55(4):1195-1207.
    [89] Zhao Q, Pan W. An improved penalty-SA based resource allocation algorithm forOFDMA cellular systems[J]. Journal of Networks.2012,7(8):1260-1265.
    [90]潘少华,蒋金山,何春雄.最优计算方法[M].广州:华南理工大学数学科学学院,2005.
    [91]赵清利,纪纯妹.多小区OFDMA系统基于改进PSA的资源分配算法[J].电讯技术.2011(07):133-137.
    [92]纪纯妹.基于模拟退火的多小区OFDMA系统资源分配[D].华南理工大学,2011.
    [93] Ieee.802.16m evaluation methodology document[G].2008.
    [94] Gpp. Physical Layer Aspects for Evolved Universal Terrestrial Radio Access(UTRA)(Release7[S].2006.
    [95]陈喆. MIMO SCM信道模型与容量研究[D].天津大学,2012.
    [96] Zhao Q, Chen F, Xiong S, et al. Low-complexity resource allocation algorithm formulticell OFDMA system[J]. IEICE Transactions on Communications.2013, E96-B(5):1218-1221.
    [97] Sadr S, Anpalagan A, Raahemifar K. Radio Resource Allocation Algorithms for theDownlink of Multiuser OFDM Communication Systems[J]. Communications Surveys&Tutorials, IEEE.2009,11(3):92-106.
    [98] Zhong R, Ji F, Chen F. Distributed Subcarrier and Power Allocation for CellularOFDMA Systems[J]. Advances in Intelligent and Soft Computing.2010,79:349-356.
    [99] Sheng D, Fangjiong C, Xiaodong C, et al. Optimal power allocation of pilot symbols forLS channel estimation in OFDMA uplink[C]. Kuala Lumpur:2012.
    [100] Hui B, Xiaokun W. A Downlink Multicell Resource Allocation Scheme for OFDMASystem[C].2010.
    [101] Rabiul Islam S M, Hossain M. A wireless video streaming system based on OFDMAwith multi-layer H.264coding and adaptive radio resource allocation[C].2011.
    [102] Xing Z, En Z, Renshui Z, et al. Adaptive multiuser radio resource allocation forOFDMA systems[C].2005.
    [103] Alikhani E S, Mahboobi B, Ardebilipour M, et al. Adaptive radio resource allocationwith frequency reusing for OFDMA cellular relay networks[C].2011.
    [104] Wei L, Yahui H, Song C, et al. Adaptive Resource Allocation and Scheduling forCognitive Radio MIMO-OFDMA Systems[C].2011.
    [105] Yongxue W, Fangjiong C, Gang W. Adaptive subcarrier and bit allocation for multiuserOFDM system based on genetic algorithm[C].2005.
    [106] Odhah N A, Dessouky M I, Al-Hanafy W E, et al. C32. Greedy power allocationalgorithm for proportional resource allocation in multi-user OFDM systems[C].2012.
    [107] Belleschi M, Detti P, Abrardo A. Complexity analysis and heuristic algorithms for radioresource allocation in OFDMA networks[C].2011.
    [108] Borst S, Markakis M, Saniee I. Distributed power allocation and user assignment inOFDMA cellular networks[C].2011.
    [109] Dou N, Fangjiong C, Cunmei J. Lagrange Multiplier Based Fair Resource Allocationfor MIMO-OFDMA Systems[C].2009.
    [110] Schwarz S, Mehlfuhrer C, Rupp M. Low complexity approximate maximum throughputscheduling for LTE[C].2010.
    [111] Maciel T F, Klein A. On the Performance, Complexity, and Fairness of SuboptimalResource Allocation for Multiuser MIMO–OFDMA Systems[J]. VehicularTechnology, IEEE Transactions on.2010,59(1):406-419.
    [112] Kaneko M, Popovski P. Radio Resource Allocation Algorithm for Relay-Aided CellularOFDMA System[C].2007.
    [113] Juncai S, Aiqun H. Radio Resource Allocation Algorithm for the Uplink OFDMASystem[C].2008.
    [114] Ping G, Ke Y, Yumei W. Radio resource allocation for multiuser OFDMA distributedantenna systems[C].2009.
    [115] Huiling Z. Radio Resource Allocation for OFDMA Systems in High SpeedEnvironments[J]. Selected Areas in Communications, IEEE Journal on.2012,30(4):748-759.
    [116] Cheol J, Hyung-Myung K. Radio resource allocation in OFDMA multihop cellularcooperative networks[C].2008.
    [117] Kabaou M O, Rhaimi B C, Abdelkrim M N, et al. Radio ressource allocation formultimedia traffic over wireless channels in OFDMA downlink systems[C].2010.
    [118] Guoliang L, Yuanmin Z. The0-1Programming Solution for the Problem of ResourceAllocation[C].2009.
    [119] Zarifi K, Gershman A B. Blind Subspace-Based Signature Estimation in DS-CDMASystems With Unknown Wide-Sense Stationary Interference[J]. Signal Processing,IEEE Transactions on.2007,55(7):3325-3335.
    [120] Johnson S. Comments on "Orthogonal Subspace Projection (OSP) Revisited: AComprehensive Study and Analysis[J]. Geoscience and Remote Sensing, IEEETransactions on.2007,45(2):532-533.
    [121] Bandiera F, Besson O, Orlando D, et al. GLRT-Based Direction Detectors inHomogeneous Noise and Subspace Interference[J]. Signal Processing, IEEETransactions on.2007,55(6):2386-2394.
    [122] Dahl T, Pereira S S, Christophersen N, et al. Intrinsic Subspace Convergence in TDDMIMO Communication[J]. Signal Processing, IEEE Transactions on.2007,55(6):2676-2687.
    [123]王锋. MIMO系统的容量及信道估计算法研究[D].西安科技大学,2007.
    [124] Nayeb Nazar S, Psaromiligkos I N. Minimum Variance Channel Estimation inMC-CDMA Systems: Bias Analysis and Cramér–Rao Bound[J]. SignalProcessing, IEEE Transactions on.2007,55(6):3143-3148.
    [125] Benveniste A, Mevel L. Nonstationary Consistency of Subspace Methods[J]. AutomaticControl, IEEE Transactions on.2007,52(6):974-984.
    [126] Mansour M F. On the Optimization of Oversampled DFT Filter Banks[J]. SignalProcessing Letters, IEEE.2007,14(6):389-392.
    [127] Liping S, Guoan B, Liren Z. Orthonormal Subspace Tracking Algorithm forSpace–Time Multiuser Detection in Multipath CDMA Channels[J]. VehicularTechnology, IEEE Transactions on.2007,56(6):3838-3845.
    [128] Xin L, Kah C T, Gunawan E. Performance Analysis of Blind-Adaptive-SubspaceMultiuser Detectors Over Multipath Fading Channels[J]. Vehicular Technology, IEEETransactions on.2007,56(2):631-640.
    [129] Ferrara S, Matsumoto T, Nicoli M, et al. Soft Iterative Channel Estimation WithSubspace and Rank Tracking[J]. Signal Processing Letters, IEEE.2007,14(1):5-8.
    [130] Abdallah S, Psaromiligkos I N. Widely Linear Minimum Variance Channel Estimationfor MC-CDMA Systems Using Real Modulation[C].2007.
    [131] Feifei G, Nallanathan A. A simple subspace-based blind channel estimation for OFDMsystems[C].2006.
    [132] Greco A S, Bandiera F, De Maio A, et al. Adaptive Radar Detection of DistributedTargets in Partially-Homogeneous Noise Plus Subspace Interference[C].2006.
    [133] Yi-Sheng C, Ching-An L. Blind Channel Identification for MIMO Single Carrier ZeroPadding Block Transmission Systems[C].2006.
    [134] Nazar S N, Psaromiligkos I N. Further Results on the Performance of MinimumVariance Channel Estimation Algorithms for MC-CDMA Systems[C].2006.
    [135] Gaubitch N D, Hasan M K, Naylor P A. Generalized Optimal Step-Size for BlindMultichannel LMS System Identification[J]. Signal Processing Letters, IEEE.2006,13(10):624-627.
    [136] Sharma G V V, Chockalingam A. Performance Analysis of Maximum-LikelihoodMultiuser Detection in Space–Time-Coded CDMA With Imperfect ChannelEstimation[J]. Vehicular Technology, IEEE Transactions on.2006,55(6):1824-1837.
    [137] Lashkarian N, Nassiri Toussi K. Robust estimation of signal and interference power inrayleigh fading channels[J]. Wireless Communications, IEEE Transactions on.2006,5(10):2760-2771.
    [138] Bandiera F, De Maio A, Greco A S, et al. Adaptive Radar Detection of DistributedTargets in Homogeneous Noise plus Subspace Interference[C].2005.
    [139] Zarifi K, Gershman A B. Enhanced blind subspace-based signature waveformestimation in CDMA systems with circular noise[C].2005.
    [140] Yunfei C, Beaulieu N C. NDA estimation of SINR for QAM signals[J].Communications Letters, IEEE.2005,9(8):688-690.
    [141] Benveniste A, Mevel L. Nonstationary consistency of covariance based subspacemethods[C].2005.
    [142] Yiteng H, Benesty J, Jingdong C. Optimal step size of the adaptive multichannel LMSalgorithm for blind SIMO identification[J]. Signal Processing Letters, IEEE.2005,12(3):173-176.
    [143]李国松.无线OFDM系统中的信道估计研究[D].电子科技大学,2005.
    [144]董昕. MIMO通信系统自适应均衡技术研究[D].电子科技大学,2004.
    [145] Alfano G, De Maio A, Farina A. Model-based adaptive detection of range-spreadtargets[J]. Radar, Sonar and Navigation, IEE Proceedings-.2004,151(1):2-10.
    [146] Yiteng H, Benesty J. A class of frequency-domain adaptive approaches to blindmultichannel identification[J]. Signal Processing, IEEE Transactions on.2003,51(1):11-24.
    [147] Gunther J H, Moon T K. A structured least-squares approach to blind channelidentification and equalization[C].2003.
    [148] Lev-Ari H, Ephraim Y. Extension of the signal subspace speech enhancement approachto colored noise[J]. Signal Processing Letters, IEEE.2003,10(4):104-106.
    [149] Huang Y, Benesty J. Adaptive blind channel identification: Multi-channel least meansquare and Newton algorithms[C].2002.
    [150] Zarzoso V, Nandi A K, Garcia J I, et al. Blind identification and equalization of MIMOFIR channels based on second-order statistics and blind source separation[C].2002.
    [151] Rangaswamy M, Michels J H, Himed B. Statistical analysis of the nonhomogeneitydetector for non-Gaussian interference backgrounds[C].2002.
    [152] Conte E, De Maio A, Ricci G. An adaptive matched filter detector for distributed targetsin homogeneous environment[C].2000.
    [153] Shen J, Ding Z. Direct blind MMSE channel equalization based on second-orderstatistics[J]. Signal Processing, IEEE Transactions on.2000,48(4):1015-1022.
    [154] Lindoff B, Ostberg C, Eriksson H. Channel estimation for the W-CDMA system,performance and robustness analysis from a terminal perspective[C].1999.
    [155] Lang T, Perreau S. Multichannel blind identification: from subspace to maximumlikelihood methods[J]. Proceedings of the IEEE.1998,86(10):1951-1968.
    [156] Uner M K, Varshney P K. Distributed CFAR detection in homogeneous andnonhomogeneous backgrounds[J]. Aerospace and Electronic Systems, IEEETransactions on.1996,32(1):84-97.
    [157] Guanghan X, Hui L, Lang T, et al. A least-squares approach to blind channelidentification[J]. Signal Processing, IEEE Transactions on.1995,43(12):2982-2993.
    [158] Merhav N. Universal decoding for memoryless Gaussian channels with a deterministicinterference[J]. Information Theory, IEEE Transactions on.1993,39(4):1261-1269.
    [159]杨祥.无线正交频分多址系统中自适应资源配置研究[D].华南理工大学,2005.
    [160] Adireddy S, Lang T, Viswanathan H. Optimal placement of training forfrequency-selective block-fading channels[J]. Information Theory, IEEE Transactionson.2002,48(8):2338-2353.
    [161] Le L M D, Teh K C, Li K H. Maximum-likelihood receivers for synchronous fastfrequency-hopped multiple-access M-ary frequency-shift-keying systems overfrequency-selective Rician-fading channels[J]. Communications, IET.2012,6(17):2870-2878.
    [162]曹拓荒. LTE信道估计及干扰噪声测量[D].广州:华南理工大学,2011.
    [163]赵清利,曹拓荒.基于最大似然法的平坦信道估计[J].科学技术与工程.2011(22):5432-5435.
    [164] Hao C, Yang J, Ma X, et al. Adaptive detection of distributed targets with orthogonalrejection[J]. Radar, Sonar&Navigation, IET.2012,6(6):483-493.
    [165] Chengpu Y, Cishen Z, Lihua X. Blind Identification of Multi-Channel ARMA ModelsBased on Second-Order Statistics[J]. Signal Processing, IEEE Transactions on.2012,60(8):4415-4420.
    [166] Salari S, Heydarzadeh M, Cances J P. Joint maximum-likelihood frequencysynchronization and channel estimation in MIMO-OFDM systems with timingambiguity[C].2012.
    [167] Fangjiong C, Fei J, Tuohuang C, et al. Maximum Likelihood Based Measurement ofInterference Level and Noise Power for Memoryless Gaussian Channel withDeterministic Interference[J]. Communications, IEEE Transactions on.2012,60(1):19-22.
    [168]刘艳艳. MIMO系统预编码技术研究[D].杭州电子科技大学,2012.
    [169] Al-Bayati A K S. Subspace-based blind channel estimation in nearly saturated downlink multicarrier code division multiple access systems[J]. Communications, IET.2012,6(4):408-412.
    [170]张鹏.多小区下资源分配和用户配对算法研究[D].西安电子科技大学,2012.
    [171] Xiuqin S, Hongjun S. Generalized likelihood ratio test for distributed targets inheterogeneous environments[C].2010.
    [172]郭伟. MIMO系统中迭代译码技术研究[D].重庆大学,2010.
    [173] Wei-Chieh H, Chun-Hsien P, Chih-Peng L, et al. Subspace-Based Semi-Blind ChannelEstimation in Uplink OFDMA Systems[J]. Broadcasting, IEEE Transactions on.2010,56(1):58-65.
    [174]张明. WCDMA系统中辅公共控制物理信道多天线技术的仿真实现[D].山东大学,2010.
    [175] Yi-Sheng C, Jwo-Yuh W. Statistical covariance-matching based blind channelestimation for zero-padding MIMO-OFDM systems[C].2009.
    [176]郭森宝.基于MIMO-OFDM系统的多种编译码方法的研究[D].西安电子科技大学,2009.
    [177] Roberts W J J, Ephraim Y. An EM Algorithm for Ion-Channel Current Estimation[J].Signal Processing, IEEE Transactions on.2008,56(1):26-33.
    [178] Yi-Sheng C, Ching-An L. Blind-Channel Identification for MIMO Single-CarrierZero-Padding Block-Transmission Systems[J]. Circuits and Systems I: Regular Papers,IEEE Transactions on.2008,55(6):1571-1579.
    [179] Medina C A, Vinhoza T, Sampaio-Neto R. Reduced complexity blind channelestimation for adaptive constrained minimum variance receivers in MC-CDMAsystems[C].2008.
    [180]刘春娟.基于二维导频的OFDM系统信道估计的研究与实现[D].上海交通大学,2008.
    [181] Bandiera F, De Maio A, Greco A S, et al. Adaptive Radar Detection of DistributedTargets in Homogeneous and Partially Homogeneous Noise Plus SubspaceInterference[J]. Signal Processing, IEEE Transactions on.2007,55(4):1223-1237.
    [182] Hui C, Shing C C. Blind Linear MMSE Receivers for MC-CDMA Systems[J]. Circuitsand Systems I: Regular Papers, IEEE Transactions on.2007,54(2):367-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700