高效灵活的正交频分复用无源光网络技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(OFDM)技术具有频谱效率高、兼容各种基带调制格式和便于利用数字信号处理算法等优点,因此被研究者公认为是下一代光接入网——无源光网络(PON)中最具竞争力的方案之一。但是当前OFDM-PON系统中,OFDM技术更多的是作为一种传输手段。因此如何充分利用OFDM技术的优点,针对PON系统的特点设计合理的方案以提高OFDM-PON系统的效率和灵活性成为OFDM-PON系统研究亟待解决的问题。
     针对系统的传输效率问题,论文主要从提高系统频谱利用率以及减小传输冗余两个方面着手。在提高频谱效率方面,论文提出了一种基于离散傅立叶变换的快速OFDM信号的产生和解调方法,使快速OFDM具有了和普通OFDM一样的单边带信号的特性和几乎一样的产生和解调方法,使其能方便的用于OFDM-PON系统。在减小传输冗余方面,论文充分考虑OFDM-PON作为接入网系统传输距离较短,链路切换迅速,信道特性相对固定等特点,提出了一种新的链路色散补偿方法。在只添加一个训练码的条件下,利用每个子载波上星座图本身的特点来进行链路色散补偿,不仅大大减小了因为频繁添加训练码导致的传输冗余,还提高了系统对于链路切换的响应速度。
     论文主要从光网络单元(ONU)无色化和基于选择性接收的OFDM-PON系统速率分配两个方面着手提高系统灵活性。论文利用OFDM信号频谱与其基带数据之间的特殊对应关系,构造出一种信号边带与载波相分离的特殊的OFDM信号,因此下行信号的载波很容易被滤出并复用做上行传输。基于此论文提出了一种利用周期性光滤波器的无色ONU方案,并实现了系统上行、下行的对称速率传输。在带宽分配方面,论文将关注点转移到实际的传输速率上,提出综合利用Bitloading和Power loading在固定用户带宽的情况下进行传输速率灵活分配的方案;在信号接收方面,论文打破当前以OFDM边带为最小接收单位的思路,提出一种利用相干混频以及带限接收机的选择性接收方案,使得ONU可以直接接收其感兴趣的任意子载波。论文提出的基于选择性接收的系统速率分配方案极大的降低了OFDM-PON系统对ONU接收机的带宽要求,从而大大降低了系统成本。
Orthogonal frequency division multiplxing (OFDM) technology is now widelyconsidered to be one of the most promising candidate of the next generation opticalaccess networks——passive optical network (PON) for its advantages of high spectraefficiency, compatibility with all kinds of baseband modulation formats, and convenientapplication of digital signal processing. While in the current OFDM-PON systems,OFDM is just used as a transmission method, how to improve the transmissionefficiency and flexibility based on the characteristics of OFDM technology and PONsystem becomes the key issues.
     To improve the transmission efficiency of OFDM-PON systems, proposals aregiven on further increasing the spectra efficiency and reducing the redundancy of thesystem. In order to further increase the spectra efficiency of OFDM-PON system, a newsignal generation and demodulation method based on fast Fourier transformation (FFT)for fast-OFDM is proposed. As a result, fast-OFDM realizes signal-sideband signalgeneration and shares the same system signal modulation and demodulation processwith the ordinary OFDM system, making it possible to utilize the new fast-OFDM tofurther increase the spectra efficiency of OFDM-PON system. To reduce thetransmission redundancy of the system, considering the characteristics of the shorttransmission distance, fast transmission link switch and relative stable channelcharacteristic of the access network, a new transmission chromatic dispersioncompensation method is proposed. The consteallation of every single subcarrier is usedto compensate the chromatic dispersion originated from transmission on the conditionthat only one training symbol is added before the data stream. Not only the transmissionredundancy because of frequent training symbol addition is greatly reduced, and theresponse of channel switch is improved as well.
     To increase the flexibility of OFDM-PON system, efforts are devoted to therealization of colorless optical network unit (ONU) and transmission capacity allocationbased on subcarrier selectively receiving. The fantastic correspondence between thespectrum and the baseband data of OFDM signal is utilized and a special OFDM signalis intentionally generated, where there is a freuquency gap between the optical carrier and the OFDM signal band. As a result, the optical carrier of the downstream OFDMsignal can be easily filtered out and reused for upstream transmission. Based on this, acolorless ONU scheme with periodical optical narrow band pass filter is proposed, andsymmetric transmission of both downstream and upstream transmission is also realized.For flexible system capacity allocation, the focus is shifted from the bandwidth to thereal transmission capacity of the ONUs. A flexible transmission capacity allocationstrategy is proposed by bit loading and power loading method under the premise ofkeeping the bandwidth of every ONU fixed. To receive signal more efficiently, thelimitation of the OFDM band is broken and a new selectively receiving scheme withcoherent detection and bandwidth-limited receiver as well as the corresponding signalprocessing algorithm is proposed, making it possible for the ONUs to only receive anyof their interested subcarriers instead of the whole OFDM band. With the proposedselectively receiving based transmission capacity allocation scheme, the bandwidthrequirement of the receiver in the ONUs is greatly relaxed, but the expense of thesystem is also tremendously reduced.
引文
[1]科技资讯网: Gartner:2013年智能手机超PC成主要上网设备)(http://www.cnetnews.com.cn/2010/0601/1762067.shtml)
    [2] Chen C D, Kim I, Mizuhara O, et al.1.2Tbit/s (30ch×40Gbit/s) WDM transmission over85km fibre[J]. Electronics Letters,1998,34(10):1002-1004.
    [3] Srivastava A K, Radic S, Wolf C, et al. Ultra-dense terabit capacity WDM transmission inL-band[C]//Optical Fiber Communication Conference,2000. IEEE,2000,4:248-250.
    [4] Shibano E, Nakagawa S, Kawazawa T, et al.96x11.4Gbit/s transmission over3,800kmusing C-band EDFA and non-zero dispersion shifted fiber[C]//Optical Fiber CommunicationConference. Optical Society of America,2001.
    [5] Daikoku M, Morita I, Taga H, et al.100-Gb/s DQPSK transmission experiment withoutOTDM for100G Ethernet transport[J]. Journal of Lightwave Technology,2007,25(1):139-145.
    [6] van den Borne D, Sleiffer V, Alfiad M S, et al. POLMUX-QPSK modulation and coherentdetection: the challenge of long-haul100G transmission[C]//Optical Communication,2009.ECOC'09.35th European Conference on. IEEE,2009:1-4.
    [7] Fan S H, Chien H C, Liu J, et al. Toward terabit optical access network usingspectrally-efficient, polarization-interleaved orthogonal wavelength-division-multiplexing[C]//Photonics Society Summer Topical Meeting Series,2011IEEE. IEEE,2011:107-108.
    [8] Hsu D Z, Wei C C, Chen H Y, et al.2.1-Tb/s×km OFDM Long-Reach PON Transmissionusing a Cost-Effective Electro-Absorption Modulator[C]//Optical Fiber CommunicationConference. Optical Society of America,2011.
    [9] Xu Z, Cheng X, Yeo Y K, et al.1.24-Tb/s Hybrid SCM/WDM Passive OpticalNetworks[C]//European Conference and Exposition on Optical Communications. OpticalSociety of America,2011.
    [10] Kramer G, Pesavento G. Ethernet passive optical network (EPON): Building anext-generation optical access network[J]. Communications magazine, IEEE,2002,40(2):66-73.
    [11] Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based onwavelength-division-multiplexing passive optical network[J]. Journal of LightwaveTechnology,2004,22(11):2582.
    [12] Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based onwavelength-division-multiplexing passive optical network[J]. Journal of LightwaveTechnology,2004,22(11):2582.
    [13] Mcgarry M, Reisslein M, Maier M. Ethernet passive optical network architectures anddynamic bandwidth allocation algorithms[J]. Communications Surveys&Tutorials, IEEE,2008,10(3):46-60.
    [14] Hung W, K Chan C, K Chen L, et al. An optical network unit for WDM access networks withdownstream DPSK and upstream re-modulated OOK data using injection-locked FPlaser[C]//Optical Fiber Communication Conference. Optical Society of America,2003.
    [15]互动百科:APON(http://www.baike.com/wiki/APON)
    [16]百度百科:GPON(http://baike.baidu.com.cn/view/1172234.htm)
    [17]百度百科:EPON(http://baike.baidu.com/view/60609.htm)
    [18] Peters S W, Panah A Y, Truong K T, et al. Relay architectures for3GPP LTE-Advanced[J].EURASIP Journal on Wireless Communications and Networking,2009,2009:1.
    [19] Berkmann J, Carbonelli C, Dietrich F, et al. On3G LTE terminal implementation-standard,algorithms, complexities and challenges[C]//Wireless Communications and MobileComputing Conference,2008. IWCMC'08. International. IEEE,2008:970-975.
    [20]黄载禄,殷蔚华.通信原理[M].科学出版社,2005.
    [21] Qian D, Hu J, Yu J, et al. Experimental demonstration of a novel OFDM-A based10Gb/sPON architecture[C]//Optical Communication (ECOC),200733rd European Conference andEhxibition of. VDE,2007:1-2.
    [22] Giacoumidis E, Wei J L, Yang X L, et al. Adaptive-modulation-enabled WDM impairmentreduction in multichannel optical OFDM transmission systems for next-generation PONs[J].Photonics Journal, IEEE,2010,2(2):130-140.
    [23] Yeh C H, Chow C W, Chen H Y, et al. Using adaptive four-band OFDM modulation with40Gb/s downstream and10Gb/s upstream signals for next generation long-reach PON[J].Optics Express,2011,19(27):26150-26160.
    [24] Liu B, Xin X, Zhang L, et al. Broad convergence of32QAM-OFDM ROF andWDM-OFDM-PON system using an integrated modulator for bidirectional accessnetworks[C]//National Fiber Optic Engineers Conference. Optical Society of America,2010.
    [25] Hsueh Y T, Huang M F, Fan S H, et al. A novel lightwave centralized bidirectional hybridaccess network: seamless integration of RoF with WDM-OFDM-PON[J]. PhotonicsTechnology Letters, IEEE,2011,23(15):1085-1087.
    [26] Chow C W, Yeh C H, Wang C H, et al. Rayleigh backscattering performance of OFDM-QAMin carrier distributed passive optical networks[J]. Photonics Technology Letters, IEEE,2008,20(22):1848-1850.
    [27] Iannone P P, Reichmann K C. Optical access beyond10Gb/s PON[C]//OpticalCommunication (ECOC),201036th European Conference and Exhibition on. IEEE,2010:1-5.
    [28] Cvijetic N, Qian D, Hu J, et al. Orthogonal frequency division multiple access PON(OFDMA-PON) for colorless upstream transmission beyond10Gb/s[J]. Selected Areas inCommunications, IEEE Journal on,2010,28(6):781-790.
    [29] Skubic B, In de Betou E, Ayhan T, et al. Energy-efficient next-generation optical accessnetworks[J]. Communications Magazine, IEEE,2012,50(1):122-127.
    [30] Lin Y M, Tien P L. Next-generation OFDMA-based passive optical network architecturesupporting radio-over-fiber[J]. Selected Areas in Communications, IEEE Journal on,2010,28(6):791-799.
    [31] Wong E. Next-generation broadband access networks and technologies[J]. LightwaveTechnology, Journal of,2012,30(4):597-608.
    [32] von Hoyningen-Huene J, Grie er H, Eiselt M H, et al. Experimental Demonstration ofOFDMA-PON Uplink-Transmission with Four Individual ONUs[C]//Optical FiberCommunication Conference. Optical Society of America,2013.
    [33] TANG J, Hugues-Salas E, Giddings R P. First Experimental Demonstration of Real-TimeAdaptive Transmission of20Gb/s Dual-band Optical OFDM Signals over500m OM2MMFs[C]//Optical Fiber Communication Conference. Optical Society of America,2013.
    [34] Cano I, Peralta A, Polo V, et al. Differential link-loss compensation through dynamicbandwidth assignment in statistical OFDMA-PON[C]//Optical Fiber CommunicationConference. Optical Society of America,2013.
    [35] Nishihara M, Kato T, Tanaka T, et al. Highly Efficient Data Aggregation on Single OpticalCarrier through Fiber Frequency Conversion of Discrete Multi-Tone Signal[C]//Optical FiberCommunication Conference. Optical Society of America,2013.
    [36] Agmon A, Nazarathy M, Marom D M, et al. Bi-directional Ultra-densePolarization-muxed/diverse OFDM/WDM PON with Laserless Colorless1Gb/s ONUs Basedon Si PICs and<417MHz Mixed-Signal ICs[C]//Optical Fiber Communication Conference.Optical Society of America,2013.
    [37] Cvijetic N, Huang M F, Ip E, et al.1.2Tb/s symmetric WDM-OFDMA-PON over90kmstraight SSMF and1:32passive split with digitally-selective ONUs and coherent receiverOLT[C]//Optical Fiber Communication Conference. Optical Society of America,2011.
    [38] Cvijetic N. OFDM for next-generation optical access networks[J]. Lightwave Technology,Journal of,2012,30(4):384-398.
    [39] Liu X, Buchali F, Tkach R W. Improving the nonlinear tolerance ofpolarization-division-multiplexed CO-OFDM in long-haul fiber transmission[J]. LightwaveTechnology, Journal of,2009,27(16):3632-3640.
    [40] Shieh W, Djordjevic I. OFDM for optical communications[M]. Academic Press,2009.
    [41] Chan C K, Chem L K, Lin C. WDM PON for next-generation optical broadband accessnetworks[C]//Proc. OECC.2006:1-8.
    [42] Wong E, Lee K L, Anderson T B. Directly modulated self-seeding reflective semiconductoroptical amplifiers as colorless transmitters in wavelength division multiplexed passive opticalnetworks[J]. Journal of Lightwave Technology,2007,25(1):67-74.
    [43] Kani J I. Enabling technologies for future scalable and flexible WDM-PON andWDM/TDM-PON systems[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2010,16(5):1290-1297.
    [44]中国科学院信息领域战略研究组.中国至2050年信息科技发展路线图.2009.
    [45] Kartalopoulos S V. Optical bit error rate: an estimation methodology[J]. Optical Bit ErrorRate: An Estimation Methodology, by Stamatios V. Kartalopoulos, pp.291. ISBN0-471-61545-5. Wiley-VCH, September2004.,2004,1.
    [46] Rodrigues M R D, Darwazeh I. Fast OFDM: A proposal for doubling the data rate of OFDMschemes[J].2002.
    [47] Zhao J, Ellis A D. A novel optical fast OFDM with reduced channel spacing equal to half ofthe symbol rate per carrier[C]//Optical Fiber Communication Conference. Optical Society ofAmerica,2010.
    [48]刘树棠,黄建国.离散时间信号处理[J].2001.
    [49] Lei C, Chen H, Chen M, et al. A high spectral efficiency optical OFDM scheme based oninterleaved multiplexing[J]. Optics Express,2010,18(25):26149-26154.
    [50] Long W, Zhang J, Wang D, et al. Mitigation of the interference between odd and even termsin optical fast OFDM scheme based on interleaved multiplexing[J]. Photonics TechnologyLetters, IEEE,2012,24(13):1160-1162.
    [51] Winzer P J, Gnauck A H, Chandrasekhar S, et al. Generation and1,200-km transmission of448-Gb/s ETDM56-Gbaud PDM16-QAM using a single I/Q modulator[C]//OpticalCommunication (ECOC),201036th European Conference and Exhibition on. IEEE,2010:1-3.
    [52] Huang Y K, Ip E, Huang M, et al.10×456-Gb/s DP-16QAM transmission over8×100km ofULAF using coherent detection with a30-GHz analog-to-digitalconverter[C]//OptoeElectronics and Communications Conference (OECC),201015th. IEEE,2010:1-2.
    [53] Srivastava A K, Sun Y, Sulhoff J W, et al.1Tb/s Transmission of100WDM10Gb/s ChannelsOver400km of True WaveTMFiber[C]//Optical Fiber Communication Conference. OpticalSociety of America,1998.
    [54] Sotobayashi H, Chujo W, Kitayama K.1.6-b/s/Hz6.4-Tb/s QPSK-OCDM/WDM (4OCDM x40WDM x40Gb/s) transmission experiment using optical hard thresholding[J]. PhotonicsTechnology Letters, IEEE,2002,14(4):555-557.
    [55] Roberts K, O'Sullivan M, Wu K T, et al. Performance of dual-polarization QPSK for opticaltransport systems[J]. Journal of Lightwave Technology,2009,27(16):3546-3559.
    [56] CTTC: Experimental platform for Optical OFDM systems(http://wikiona.cttc.es/ona/index.php/Experimental_platform_for_Optical_OFDM_systems)
    [57] Shieh W, Bao H, Tang Y. Coherent optical OFDM: theory and design[J]. Opt. Express,2008,16(2):841-859.
    [58] Liu X, Buchali F. Intra-symbol frequency-domain averaging based channel estimation forcoherent optical OFDM[J]. Optics express,2008,16(26):21944-21957.
    [59] Lowery A J, Du L B, Armstrong J. Performance of optical OFDM in ultralong-haul WDMlightwave systems[J]. Journal of Lightwave Technology,2007,25(1):131-138.
    [60] Chow C W, Yeh C H, Wang C H, et al. Studies of OFDM signal for broadband optical accessnetworks[J]. Selected Areas in Communications, IEEE Journal on,2010,28(6):800-807.
    [61] Zhang L, Xin X, Liu B, et al. A novel ECDM-OFDM-PON architecture for next-generationoptical access network[C]//Optical Communication (ECOC),201036th European Conferenceand Exhibition on. IEEE,2010:1-3.
    [62] Cvijetic N. Optical OFDM for next-generation PON[C]//Signal Processing in PhotonicCommunications. Optical Society of America,2010.
    [63] Agrawal G P. Nonlinear fiber optics[M]. Springer Berlin Heidelberg,2000.
    [64] Rafique D, Mussolin M, Forzati M, et al. Compensation of intra-channel nonlinear fibreimpairments using simplified digital back-propagation algorithm[J]. Optics express,2011,19(10):9453-9460.
    [65] Van de Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset inOFDM systems[J]. Signal Processing, IEEE Transactions on,1997,45(7):1800-1805.
    [66] Buchali F, Dischler R, Liu X. Optical OFDM: A promising high‐speed optical transporttechnology[J]. Bell Labs Technical Journal,2009,14(1):125-146.
    [67] Lei C, Tang C, Chen H, et al. Improving O-OFDM system performance with constellationfine adjustment[C]//Asia Communications and Photonics Conference and Exhibition. OpticalSociety of America,2010.
    [68] Lowery A J, Du L B, Armstrong J. Performance of optical OFDM in ultralong-haul WDMlightwave systems[J]. Journal of Lightwave Technology,2007,25(1):131-138.
    [69]姚天任,江太辉.数字信号处理.武汉:华中科技大学出版社,2001.
    [70] Banerjee A, Park Y, Clarke F, et al. Wavelength-division-multiplexed passive optical network(WDM-PON) technologies for broadband access: a review [Invited][J]. Journal of opticalnetworking,2005,4(11):737-758.
    [71] Maier G, Martinelli M, Pattavina A, et al. Design and cost performance of the multistageWDM-PON access networks[J]. Lightwave Technology, Journal of,2000,18(2):125-143.
    [72] Chang G K, Chowdhury A, Jia Z, et al. Key technologies of WDM-PON for future convergedoptical broadband access networks [invited][J]. Journal of Optical Communications andNetworking,2009,1(4): C35-C50.
    [73] Healey P, Townsend P, Ford C, et al. Spectral slicing WDM-PON using wavelength-seededreflective SOAs[J]. Electronics Letters,2001,37(19):1181-1182.
    [74] Lee S M, Choi K M, Mun S G, et al. Dense WDM-PON based on wavelength-lockedFabry-Pe′rot laser diodes[J]. Photonics Technology Letters, IEEE,2005,17(7):1579-1581.
    [75] Payoux F, Chanclou P, Genay N. WDM-PON with colorless ONUs[C]//Proceedings of OFC.2007.
    [76] Shin D J, Keh Y C, Kwon J W, et al. Low-cost WDM-PON with colorless bidirectionaltransceivers[J]. Journal of lightwave technology,2006,24(1):158.
    [77] Iwatsuki K, Kani J, Suzuki H, et al. Access and metro networks based on WDMtechnologies[J]. Journal of lightwave technology,2004,22(11):2623.
    [78] Iwatsuki K, Kani J. Applications and technical issues of wavelength-division multiplexingpassive optical networks with colorless optical network units [Invited][J]. Journal of OpticalCommunications and Networking,2009,1(4): C17-C24.
    [79] Wadsworth W J, Ortigosa-Blanch A, Knight J C, et al. Supercontinuum generation in photoniccrystal fibers and optical fiber tapers: a novel light source[J]. JOSA B,2002,19(9):2148-2155.
    [80] Shin D J, Keh Y C, Kwon J W, et al. Low-cost WDM-PON with colorless bidirectionaltransceivers[J]. Journal of lightwave technology,2006,24(1):158.
    [81] Ji H C, Yamashita I, Kitayama K I. Cost-effective colorless WDM-PON deliveringup/down-stream data and broadcast services on a single wavelength using mutually injectedFabry-Perot laser diodes[J]. Optics Express,2008,16(7):4520-4528.
    [82] Lee J H, Lee K, Lee S B, et al. Extended-reach WDM-PON based on CW supercontinuumlight source for colorless FP-LD based OLT and RSOA-based ONUs[J]. Optical FiberTechnology,2009,15(3):310-319.
    [83] Akanbi O, Yu J, Chang G K. A new scheme for bidirectional WDM-PON using upstream anddownstream channels generated by optical carrier suppression and separation technique[J].Photonics Technology Letters, IEEE,2006,18(2):340-342.
    [84] Sun X, Chan C K, Chen L K. A survivable WDM-PON architecture with centralizedalternate-path protection switching for traffic restoration[J]. Photonics Technology Letters,IEEE,2006,18(4):631-633.
    [85] Talli G, Townsend P D. Hybrid DWDM-TDM long-reach PON for next-generation opticalaccess[J]. Journal of Lightwave Technology,2006,24(7):2827.
    [86] Cho K Y, Takushima Y, Chung Y C.10-Gb/s operation of RSOA for WDM PON[J]. PhotonicsTechnology Letters, IEEE,2008,20(18):1533-1535.
    [87] Chanclou P, Payoux F, Soret T, et al. Demonstration of RSOA-based remote modulation at2.5and5Gbit/s for WDM PON[C]//Optical Fiber Communication Conference. Optical Societyof America,2007.
    [88] Payoux F, Chanclou P, Moignard M, et al. Gigabit optical access using WDM PON based onspectrum slicing and reflective SOA[C]//Optical Communication,2005. ECOC2005.31stEuropean Conference on. IET,2005,3:455-456.
    [89] Cano I N, Omella M, Prat J, et al. Colorless10Gb/s extended reach WDM PON with low BWRSOA using MLSE[C]//Optical Fiber Communication Conference. Optical Society ofAmerica,2010.
    [90] Chow C W, Yeh C H, Wu Y F, et al.13Gbit/s WDM-OFDM PON using RSOA-basedcolourless ONU with seeding light source in local exchange[J]. Electronics letters,2011,47(22):1235-1236.
    [91] van Iersel M, Lenstra D, Allaart K. Model simulations of a reflective semiconductor opticalamplifier[C]//Photonics Europe. International Society for Optics and Photonics,2006:61840J-61840J-6.
    [92] Kim S Y, Jun S B, Takushima Y, et al. Enhanced performance of RSOA-based WDM PON byusing Manchester coding[J]. Journal of Optical Networking,2007,6(6):624-630.
    [93] Yeh C H, Chow C W, Wang C H, et al. A self-protected colorless WDM-PON with2.5Gb/supstream signal based on RSOA[J]. Opt. Express,2008,16(16):12296-12301.
    [94] Kim T Y, Han S K. Reflective SOA-based bidirectional WDM-PON sharing optical source forup/downlink data and broadcasting transmission[J]. Photonics Technology Letters, IEEE,2006,18(22):2350-2352.
    [95] Payoux F, Chanclou P, Soret T, et al. Demonstration of a RSOA-based wavelengthremodulation scheme in1.25Gbit/s bidirectional hybrid WDM-TDM PON[C]//Optical FiberCommunication Conference. Optical Society of America,2006.
    [96] Han S H, Lee J H. PAPR reduction of OFDM signals using a reduced complexity PTStechnique[J]. Signal Processing Letters, IEEE,2004,11(11):887-890.
    [97] Ochiai H, Imai H. On the distribution of the peak-to-average power ratio in OFDM signals[J].Communications, IEEE Transactions on,2001,49(2):282-289.
    [98] Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequencydomain filtering[J]. Electronics letters,2002,38(5):246-247.
    [99] Yu J, Huang M F, Qian D, et al. Centralized lightwave WDM-PON employing16-QAMintensity modulated OFDM downstream and OOK modulated upstream signals[J]. PhotonicsTechnology Letters, IEEE,2008,20(18):1545-1547.
    [100] Liu B, Xin X, Zhang L, et al. A WDM-OFDM-PON architecture with centralized lightwaveand PolSK-modulated multicast overlay[J]. Optics Express,2010,18(3):2137-2143.
    [101] Huang M F, Yu J, Qian D, et al. Lightwave centralized WDM-OFDM-PON[C]//OpticalCommunication,2008. ECOC2008.34th European Conference on. IEEE,2008:1-2.
    [102] Muquet B, Wang Z, Giannakis G B, et al. Cyclic prefixing or zero padding for wirelessmulticarrier transmissions?[J]. Communications, IEEE Transactions on,2002,50(12):2136-2148.
    [103] Zhao Y, Huang A. A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing[C]//Vehicular TechnologyConference,1997, IEEE47th. IEEE,1997,3:2089-2093.
    [104] Zeng Y, Ng T S. A semi-blind channel estimation method for multiuser multiantenna OFDMsystems[J]. Signal Processing, IEEE Transactions on,2004,52(5):1419-1429.
    [105] Lei C, Chen H, Chen M, et al.16×10Gb/s symmetric WDM-FOFDM-PON realization withcolorless ONUs[J]. Optics Express,2011,19(16):15275-15280.
    [106] Cancela L G, Pires J. Impact of intrachannel crosstalk on the performance of direct-detectionDPSK optical systems[C]//Quantum Electronics and Laser Science Conference. OpticalSociety of America,2005.
    [107] Cvijetic N, Cvijetic M, Huang M F, et al. Terabit optical access networks based onWDM-OFDMA-PON[J]. Lightwave Technology, Journal of,2012,30(4):493-503.
    [108] Cvijetic N, Huang M F, Ip E, et al.1.92Tb/s coherent DWDM-OFDMA-PON with nohigh-speed ONU-side electronics over100km SSMF and1:64passive split[J]. OpticsExpress,2011,19(24):24540-24545.
    [109] Chang G K, Chowdhury A, Jia Z, et al. Key technologies of WDM-PON for future convergedoptical broadband access networks [invited][J]. Journal of Optical Communications andNetworking,2009,1(4): C35-C50.
    [110] Huang M F, Yu J, Qian D, et al. Lightwave centralized WDM-OFDM-PON networkemploying cost-effective directly modulated laser[C]//Optical Fiber CommunicationConference. Optical Society of America,2009.
    [111] Qian D, Cvijetic N, Hu J, et al.108Gb/s OFDMA-PON with polarization multiplexing anddirect detection[J]. Journal of Lightwave Technology,2010,28(4):484-493.
    [112] Ma Y, Yang Q, Tang Y, et al.1-Tb/s per channel coherent optical OFDM transmission withsubwavelength bandwidth access[C]//National Fiber Optic Engineers Conference. OpticalSociety of America,2009.
    [113] Chen S, Ma Y, Shieh W.110-Gb/s multi-band real-time coherent optical OFDM receptionafter600-km transmission over SSMF fiber[C]//Optical Fiber Communication Conference.Optical Society of America,2010.
    [114] Kim I, Lee H L, Kim B, et al. On the use of linear programming for dynamic subchannel andbit allocation in multiuser OFDM[C]//Global Telecommunications Conference,2001.GLOBECOM'01. IEEE. IEEE,2001,6:3648-3652.
    [115] Bansal G, Hossain M J, Bhargava V K. Adaptive power loading for OFDM-based cognitiveradio systems[C]//Communications,2007. ICC'07. IEEE International Conference on. IEEE,2007:5137-5142.
    [116] Yang Q, Shieh W, Ma Y. Bit and power loading for coherent optical OFDM[J]. PhotonicsTechnology Letters, IEEE,2008,20(15):1305-1307.
    [117]曹志刚,钱亚生.现代通信原理[M].清华大学出版社有限公司,1992.
    [118] Lei C, Chen M, Chen H, et al.1Tb/s WDM-OFDM-PON system with sub-band accessscheme and flexible subcarrier-level bandwidth allocation[J]. Photonics Journal, IEEE2013,5(1):7900208-7900208
    [119] Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM[J].Communications, IEEE Transactions on,1997,45(12):1613-1621.
    [120] Yu Y, Lei C, Chen M, et al.90-Tone Stable Optical Frequency Comb Generation Using aRecirculating Frequency Shifter[C]//Asia Communications and Photonics Conference.Optical Society of America,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700