基于压缩感知的宽带频谱感知技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知无线电在软件无线电的基础上发展而来,能够通过对外界频谱环境的持续感知,及时发现并使用授权频段内尚未被主用户利用的空闲频谱,是一种可以有效提高频谱资源利用效率的智能无线电技术,也能够有效缓解随着无线通信用户数量急剧增加和无线通信技术迅速发展而变得日益严峻的频谱资源稀缺问题。频谱感知技术是构建认知无线电系统、实现认知无线电应用的核心技术,也是保证认知无线电系统发现并充分利用频谱资源、保护授权主用户免受有害干扰的重要前提。随着无线通信业务的高速发展,对无线频谱资源需求急剧增加,为了进一步提高对于频谱资源的利用,宽带频谱感知技术成为认知无线电领域的重要研究方向。
     在宽带认知无线电系统中,由于主用户通常对宽带频谱利用率较低,只占用其中少量频谱资源,因此主用户信号在频域上具有稀疏性,可以利用压缩感知实现宽带频谱感知。宽带压缩频谱感知技术利用信号的频域稀疏特性,通过随机测量将高维信号投影到低维测量结果,并采用优化算法准确重构原信号,从而能够以远低于奈奎斯特准则的采样速率直接扫描宽带频谱,在降低认知用户采样负担的同时实现高效快速的宽带频谱感知。然而,宽带压缩频谱感知技术仍面临一些挑战:首先,无线衰落环境会造成隐终端问题,影响宽带压缩频谱感知的检测性能;其次,宽带频谱稀疏度先验信息受限会使认知用户在进行宽带压缩频谱感知时难以确定合适的采样速率,进而导致采样开销的浪费或是导致感知性能的下降;此外,认知无线电系统中可能存在一些恶意认知用户,通过在数据融合过程中发送虚假的感知信息来攻击系统,使宽带压缩频谱感知的性能严重降低。
     为解决上述问题,本文研究了在集中式认知无线电网络和分布式认知无线电网络中,如何通过结合压缩感知理论和多认知用户联合频谱感知技术来提高系统在无线衰落环境下对于宽带频谱的感知性能。针对主用户信号稀疏度先验信息受限的情况,本文基于顺序压缩感知提出能够自适应确定最佳随机测量次数的宽带频谱感知算法。此外,对恶意认知用户攻击下的可靠宽带压缩频谱感知算法也进行了研究。本文主要研究内容和成果列举如下:
     首先,本文对传统的窄带频谱感知技术进行介绍,并指出感知宽带频谱时认知无线电系统所面临的挑战。在详细介绍压缩感知原理的基础上,分析宽带压缩频谱感知技术特点。针对由无线衰落环境引起的隐终端问题,提出能够解决该问题的多用户联合频谱感知方法。最后对本文重点研究的多认知用户集中式和分布式宽带认知无线电网络结构进行详细分析,并给出了衡量宽带压缩频谱感知的性能指标,为本文研究工作的展开进行了铺垫。
     其次,为了解决信道衰落和噪声环境所造成的隐终端问题,以及感知宽带频谱所面临的采样负担过大的问题,本文针对所提出的集中式和分布式的宽带认知无线电网络频谱感知场景,在压缩感知理论基础上分别给出了集中式协作和分布式协作的宽带频谱感知算法。认知用户以远低于奈奎斯特准则的速率对宽带信号进行采样,并通过协作获得空间分集增益,有效缓解无线衰落环境对感知性能所造成的不利影响。同时,考虑到各个认知用户本地待重构信号频谱的联合稀疏特性,系统利用迭代支持检测技术从低维的压缩测量结果中准确重构原信号,并提升频谱感知性能。仿真表明,本文算法能够降低系统的采样负担,与基于基追踪和基于分布式一致的常规压缩频谱感知算法相比,能够更有效消除衰落环境的不利影响,更准确地感知宽带频谱。
     再次,在宽带压缩频谱感知过程中,宽带频谱稀疏度先验信息受限将导致认知无线电系统在压缩感知时采用过高或过低的采样速率对信号进行随机测量,进而产生对采样资源的浪费、或者对原信号的重构不够准确等问题。针对这一问题,本文结合顺序压缩感知理论和自适应稀疏度匹配追踪技术,提出一种新的宽带压缩频谱感知算法。该算法通过顺序测量依次获得测量结果,再根据重构误差来自适应地确定成功重构原信号所需要的最佳随机测量次数。仿真表明在事先无法确知宽带频谱实际稀疏度的情况下,相比基于压缩采样匹配追踪的常规压缩频谱感知算法,本文算法在合理利用系统资源、避免不必要的采样开销的同时,能够确保系统的频谱感知性能。
     最后,由于具有开放性和可配置型,认知无线电系统在现实中可能会受到恶意认知用户的攻击,其中常见的攻击方式是频谱感知数据伪造攻击。为了解决这一问题,本文分析了认知无线电网络中常见的攻击方式,并将声望系统引入认知无线电系统,针对集中式认知无线电网络提出了可靠的宽带压缩频谱感知算法,根据认知用户在联合频谱感知过程中的表现确定用户声望和权重,消除恶意用户的影响,保证系统感知性能。对于分布式认知无线电网络,本文在共识算法的基础上提出根据动态门限来调整融合权重的宽带压缩频谱感知方法。仿真表明通过结合压缩感知技术,本文算法能够有效减少认知用户感知宽带频谱的采样开销,并且在受到恶意认知用户攻击的集中式和分布式宽带认知无线电网络中都能够实现可靠准确的宽带频谱感知。
Developing based on software-defined radio, cognitive radio is an intelligent radio technology which is able to discover and utilize idle authorized spectrum which is allocated to primary user but not being used temporarily, via sensing external wireless spectrum environment persistently. Cognitive radio can efficiently solve the growing problem of spectrum resource scarcity caused by the rapid development of wireless communication technology and fast growth of wireless users. As the core technology of constructing and implementing cognitive radio, spectrum sensing enables cognitive radio system to discover and utilize spectrum resource, while protecting authorized primary user from harmful interference. As the rapid increase of wireless services and growing need of wireless spectrum resource, in order to improve the utilization of spectrum resource, wide-band spectrum sensing has become an important research direction in the field of cognitive radio.
     In wide-band cognitive radio systems, since the utilization of wide-band spectrum is very low, and primary users only occupy a small amount of spectrum, the signal in frequency domain has sparsity. Compressive spectrum sensing utilizes such sparsity, projects high-dimensional signals on low-dimensional measurements, and reconstructs original signals using optimization algorithms. In this way, wide-band spectrum can be scanned directly at sub-Nyquist rates, and efficient wide-band spectrum sensing can be realized. However, wide-band compressive spectrum sensing encounters many challenges: First, hidden terminal problem is brought by wireless fading environment, and harms the detection performance of wide-band spectrum sensing; Second, because of the lack of prior knowledge on sparsity order, cognitive users will have difficulties in deciding accurate sampling rates while sensing the wide-band spectrum, which will lead to sampling wastage or poor sensing performance; In addition, in the cognitive radio system there may exist some malicious cognitive users, who will attack the system by sending false spectrum sensing data during the data fusion process, which will impair the performance of wide-band spectrum sensing seriously.
     In order to solve above problems, this dissertation research on how to improve the performance of wide-band spectrum sensing using compressive sensing theory and collaborative spectrum sensing technology, in both centralized and distributed cognitive radio networks. Based on sequential compressive sensing, a wide-band spectrum sensing algorithm which can adaptively determine the optimal number of random measurements is proposed to solve the problem of sensing without the prior knowledge of the sparsity order. Additionally, a reliable wide-band compressive spectrum sensing is proposed to defend malicious users. The main work and contributions of this dissertation are as follows:
     Firstly, this dissertation introduces traditional narrow-band spectrum sensing techniques, and analyzes the challenges faced when sensing wide-band spectrum. Compressive sensing theory is introduced, and the technical characteristics of wide-band spectrum sensing are analyzed. Then collaborative spectrum sensing technology, which can solve the hidden terminal problem, is introduced. This dissertation has proposed a detailed analysis on the structures of multi-user centralized and distributed wide-band cognitive radio networks, and provided specifications to evaluate the performance of wide-band compressive spectrum sensing.
     Secondly, in order to solve the hidden terminal problem and reduce the burden of high sampling rates when sensing wide-band spectrum, this dissertation has proposed both centralized and distributed wide-band compressive spectrum sensing algorithms respectively for centralized and distributed cognitive networks. Cognitive users sample wide-band signals at sub-Nyquist rates, and gain spatial diversity gain via collaboration to relieve the negative influence caused by fading environment. In addition, original signals are reconstructed utilizing joint sparse property via iterative support detection. Simulations show that the proposed algorithms can reduce the sampling burden, and have better wide-band detection performances than conventional compressive spectrum sensing methods.
     Thirdly, in the process of wide-band compressive spectrum sensing, the lack of prior knowledge of wide-band spectrum sparsity order will cause the system to employ overmuch or inadequate random measurements, which leads to sampling wastage or poor sensing performance. To solve this problem, this dissertation has proposed a novel wide-band compressive spectrum sensing algorithm based on sequential compressive sensing and sparsity adaptive matching pursuit. By obtaining sequential random measurements and reconstruction error, minimal number of random measurements can be determined. Simulations show that the proposed algorithm can utilize system resource efficiently, and achieve the desired spectrum sensing performance while avoiding the sampling wastage.
     Last but not the least, due to the openness and configurability, cognitive radio system may encounter spectrum sensing data falsification attacks by malicious cognitive users. To solve this problem, common forms of attack are analyzed. A reputation-based algorithm is proposed for centralized cognitive radio networks, where fusion center uses the reputation of cognitive users to determine their weights in data fusion, and eliminates the negative influence caused by malicious users. As for distributed cognitive radio networks, a consensus-based wide-band compressive spectrum sensing algorithm using dynamic threshold to adjust fusion weights is proposed. Simulations show that the proposed algorithms can both effectively reduce sampling costs, successfully combat spectrum sensing data falsify attacks, and achieve accurate and reliable wide-band spectrum sensing in respectively centralized and distributed cognitive networks.
引文
[1] McHenry M A. NSF Spectrum Occupancy Measurements Project Summary.http://www.Sharedspectrum.com/Measurements/[R/OL]. August2005.
    [2] Akella A, Judd G, Seshan S, et al. Self-Management in Chaotic WirelessDeployments[C]//Proceedings of the11th annual international conference onMobile computing and networking. Cologne, Germany. ACM,2005:185-199.
    [3]周志艳.面向认知无线电的频谱测量与信道占用模型硏究[D].北京交通大学硕士学位论文,2010:32-43.
    [4] Haykin S. Cognitive Radio: Brain-Empowered Wireless Communications[J].Selected Areas in Communications, IEEE Journal on,2005,23(2):201-220.
    [5] Song M, Xin C, Zhao Y, et al. Dynamic Spectrum Access: From CognitiveRadio to Network Radio[J]. Wireless Communications, IEEE Transactions on,2012,19(1):23-29.
    [6] Zhao G, Ma J, Li G Y, et al. Spatial Spectrum Holes for Cognitive Radio withRelay-Assisted Directional Transmission[J]. Wireless Communications, IEEETransactions on,2009,8(10):5270-5279.
    [7] Gelabert X, Sallent O, Perez-Romero J, et al. Flexible Spectrum Access forOpportunistic Secondary Operation in Cognitive Radio Networks[J].Communications, IEEE Transactions on,2011,59(10):2659-2664.
    [8] Goldsmith A, Jafar S A, I Maric, et al. Breaking Spectrum Gridlock withCognitive Radios: An Information Theoretic Perspective[J]. Proceedings of theIEEE,2009,97(5):894-914.
    [9] Ma J, Li G Y, Juang B. Signal Processing in Cognitive Radio[J]. Proceedingsof the IEEE,2009,97(5):805-823.
    [10] Hamdaoui B. Adaptive Spectrum Assessment for Opportunistic Access inCognitive Radio Networks[J]. Wireless Communications, IEEE Transactionson,2009,8(2):922-930.
    [11] Tandra R, Mishra S M, A Sahai. What is a Spectrum Hole and What Does ItTake to Recognize One?[J]. Proceedings of the IEEE,2009,97(5):824-848.
    [12] W Krenik, Batra A. Cognitive Radio Techniques for Wide AreaNetworks[C]//Design Automation Conference, Proceedings42nd,2005:409-412
    [13] De P, Liang Y. Blind Spectrum Sensing Algorithms for Cognitive RadioNetworks[J]. Vehicular Technology, IEEE Transactions on,2008,57(5):2834-2842.
    [14] Zeng Y, Liang Y. Spectrum-Sensing Algorithms for Cognitive Radio Based onStatistical Covariances[J]. Vehicular Technology, IEEE Transactions on,2009,58(4):1804-1815.
    [15] Cabric D, Mishra S M, Brodersen R W. Implementation Issues in SpectrumSensing for Cognitive Radios[C]//Signals, Systems and Computers,Conference Record of the Thirty-Eighth Asilomar Conference on,2004:772-776.
    [16] Yucek T, Arslan H. A Survey of Spectrum Sensing Algorithms for CognitiveRadio Applications[J]. Communications Surveys&Tutorials, IEEE,2009,11(1):116-130.
    [17] Cabric D, Brodersen R W. Physical Layer Design Issues Unique to CognitiveRadio Systems[C]//Personal, Indoor and Mobile Radio Communications,2005PIMRC IEEE16th International Symposium on,2005:759-763.
    [18] Ghozzi M, Marx F, Dohler M, et al. Cyclostatilonarilty-Based Test forDetection of Vacant Frequency Bands[C]//Cognitive Radio Oriented WirelessNetworks and Communications,1st International Conference on,2006:1-5.
    [19] Hur Y, Park J, Kim K, et al. A Cognitive Radio (CR) Testbed SystemEmploying a Wideband Multi-Resolution Spectrum Sensing (MRSS)Technique[C]//Vehicular Technology Conference, VTC64th, IEEE,2006:1-5.
    [20] Neihart N M, Roy S, Allstot D J. A Parallel, Multi-Resolution SensingTechnique for Multiple Antenna Cognitive Radios[C]//Circuits and Systems,ISCAS2007IEEE International Symposium on,2007:2530-2533.
    [21] Park J, Hur Y, Song T J, et al. Implementation Issues of a WidebandMulti-Resolution Spectrum Sensing (MRSS) Technique for Cognitlve Radio(CR) Systems[C]//Cognitive Radio Oriented Wireless Networks andCommunications,1st International Conference on,2006:1-5.
    [22] Tian Z, Giannakis G B. A Wavelet Approach to Wideband Spectrum Sensingfor Cognitive Radios[C]//Cognitive Radio Oriented Wireless Networks andCommunications,1st International Conference on,2006:1-5.
    [23] Mitola J. Cognitive Radio: An Integrated Agent Architecture for SoftwareDefined Radio [D]. Stockholm, Sweden; Royal Inst. Technol.(KTH),2000.
    [24] Mitola J, Maguire G Q, Jr. Cognitive Radio: Making Software Radios MorePersonal[J]. Personal Communications, IEEE,1999,6(4):13-18.
    [25] Akyildiz I F, Lee W Y, Yuran M C. Next Generation Dynamic Spectrum AccessCognitive Radio Wireless Network: A Survey[J]. Computer Networks,2006,1(50):2127-2159.
    [26] FCC. Facilitating Opportunities for Flexible, Efficient, and Reliable SpectrumUse Employing Cognitive Radio Technologies[R/OL]. December2003.http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-10-12A1.pdf.
    [27] Mitola J. Cognitive Radio for Flexible Mobile Multimedia Communications[J].Mob Netw Appl,2001,6(5):435-441.
    [28]张玉,葛利,嘉赤伟等.认知无线电系统中的关键技术研究[J].网络与通信,2010,26(11):99-101.
    [29] Axell E, Leus G, Larsson E G, et al. Spectrum Sensing for Cognitive Radio:State-of-the-Art and Recent Advances[J]. Signal Processing Magazine, IEEE,2012,29(3):101-116.
    [30] Seshukumar K, Saravanan R, Suraj M S. Spectrum Sensing Review inCognitive Radio[C]//Emerging Trends in VLSI, Embedded System, NanoElectronics and Telecommunication System (ICEVENT), InternationalConference on,2013:1-4.
    [31] Lee J. Cooperative Spectrum Sensing Scheme over Imperfect FeedbackChannels[J]. Communications Letters, IEEE,2013,17(6):1192-1195.
    [32] Wen Z, Fan C, Liu J, et al. Research on Spectrum Hole Distribution forCognitive Radio Systems[C]//Wireless Communications Networking andMobile Computing (WiCOM),6th International Conference on,2010:1-4.
    [33] Canberk B, Akyildiz I F, Oktug S. A QoS-Aware Framework for AvailableSpectrum Characterization and Decision in Cognitive RadioNetworks[C]//Personal Indoor and Mobile Radio Communications (PIMRC),21st International Symposium on, IEEE,2010:1533-1538.
    [34] Mishra V, Tong L, Chan S. QoS Based Spectrum Decision Framework forCognitive Radio Networks[C]//Networks (ICON),18th InternationalConference on, IEEE,2012:18-23.
    [35] Driouch E, Ajib W, Ben Dhaou A. A Greedy Spectrum Sharing Algorithm forCognitive Radio Networks[C]//Computing, Networking and Communications(ICNC), International Conference on,2012:1010-1014.
    [36] Si P, Ji H, Yu F R, et al. Optimal Cooperative Internetwork Spectrum Sharingfor Cognitive Radio Systems with Spectrum Pooling[J]. Vehicular Technology,IEEE Transactions on,2010,59(4):1760-1768.
    [37] Zou J, Xiong H, Wang D, et al. Optimal Power Allocation for HybridOverlay/Underlay Spectrum Sharing in Multiband Cognitive RadioNetworks[J]. Vehicular Technology, IEEE Transactions on,2013,62(4):1827-1837.
    [38] Xie R, Yu F R, Ji H. Energy-Efficient Spectrum Sharing and Power Allocationin Cognitive Radio Femtocell Networks[C]//INFOCOM, Proceedings IEEE,2012:1665-1673.
    [39] Luo C, Yu F R, Ji H, et al. Cross-Layer Design for TCP PerformanceImprovement in Cognitive Radio Networks[J]. Vehicular Technology, IEEETransactions on,2010,59(5):2485-2495.
    [40] Xue D, Ekici E. Cross-Layer Scheduling for Cooperative Multi-Hop CognitiveRadio Networks[J]. Selected Areas in Communications, IEEE Journal on,2013,31(3):534-543.
    [41] Chen Z, Guo N, Qiu R C. Building a Cognitive Radio NetworkTestbed[C]//Southeastcon, Proceedings of IEEE,2011:91-96.
    [42] Alizadeh-Shabdiz F. Wifi Localization Market, Technology, andFuture[C]//23rd International Technical Meeting of the Satellite Division of theInstitute of Navigation, ION GNSS. Portland. Institute of Navigation,2010:1761-1778.
    [43] Masrub A, Abbas R S, Al-Hmood H, et al. Cooperative Sensing for DynamicSpectrum Access in Cognitive Wireless Mesh Networks[C]//BroadbandMultimedia Systems and Broadcasting (BMSB), International Symposium on,IEEE,2013:1-5.
    [44] Bo H, Grace D, Mitchell P. Cognitive Greedy-Backhaul Routing MetricExploiting Cross-Layer Design for Wireless Ad Hoc and MeshNetworks[C]//Cognitive Radio Oriented Wireless Networks&Communications (CROWNCOM), Proceedings of the Fifth InternationalConference on,2010:1-5.
    [45] Yong D, Li X. Video on-Demand Streaming in Cognitive Wireless MeshNetworks[J]. Mobile Computing, IEEE Transactions on,2013,12(3):412-423.
    [46] Chihkai C, Hudson R E, Kung Y. Energy-Based Cooperative Spectrum Sensingfor Emergency Communications over Fading Channels in Cognitive RadioPublic Safety Networks[C]//Global Communications Conference(GLOBECOM), IEEE,2012:1345-1350.
    [47] Sasirekha G V K, Bapat J. Collaborative Spectrum Sensing in EmergencyCognitive Ad Hoc Networks: A Public Goods Game[C]//CommunicationSystems and Networks (COMSNETS),2013Fifth International Conference on,2013:1-2.
    [48] Baker A, Ghosh S, Kumar A, et al. Notice of Violation of Ieee PublicationPrinciples LDPC Decoder: A Cognitive Radio Perspective for Next Generation(XG) Communication[J]. Circuits and Systems Magazine, IEEE,2007,7(3):24-37.
    [49] Weiss T A, Jondral F K. Spectrum Pooling: An Innovative Strategy for theEnhancement of Spectrum Efficiency[J]. Communications Magazine, IEEE,2004,42(3): S8-14.
    [50] Ko C, Wei H. Game Theoretical Resource Allocation for Inter-BS Coexistencein IEEE802.22[J]. Vehicular Technology, IEEE Transactions on,2010,59(4):1729-1744.
    [51]石磊.认知无线电中空闲频谱检测技术的研究[D].哈尔滨工业大学博士学位论文,2011:7-24.
    [52]陈雷,李永成,王英泓等.认知无线电的频谱感知算法研究[J].通信技术,2013,9(1):38-41.
    [53]刘鑫,何晨光,谭学治.认知无线电加权联合频谱感知优化算法[J].四川大学学报(工程科学版),2013,45(1):152-157.
    [54] Brown T X. An Analysis of Unlicensed Device Operation in LicensedBroadcast Service Bands[C]//New Frontiers in Dynamic Spectrum AccessNetworks, DySPAN First IEEE International Symposium on,2005:11-29.
    [55] Barbiroli M, Carciofi C, Guidotti A, et al. Evaluation and Analysis of theHidden Node Margin for Cognitive Radio System Operation in a RealScenario[C]//Antennas and Propagation (EUCAP), Proceedings of the5thEuropean Conference on,2011:1309-1313.
    [56] Zou Q, Zheng S, Sayed A H. Cooperative Spectrum Sensing via SequentialDetection for Cognitive Radio Networks[C]//Signal Processing Advances inWireless Communications, SPAWC '09IEEE10th Workshop on,2009:121-125.
    [57] You C, Kwon H, Heo J. Cooperative TV Spectrum Sensing in Cognitive Radiofor Wi-Fi Networks[J]. Consumer Electronics, IEEE Transactions on,2011,57(1):62-67.
    [58] Ganesan G, Li Y. Cooperative Spectrum Sensing in Cognitive Radio, Part I:Two User Networks[J]. Wireless Communications, IEEE Transactions on,2007,6(6):2204-2213.
    [59] Ganesan G, Li Y. Cooperative Spectrum Sensing in Cognitive Radio, Part II:Multiuser Networks[J]. Wireless Communications, IEEE Transactions on,2007,6(6):2214-2222.
    [60] Duan D, Yang L, Principe J C. Cooperative Diversity of Spectrum Sensing forCognitive Radio Systems[J]. Signal Processing, IEEE Transactions on,2010,58(6):3218-3227.
    [61] Ma J, Li Y. Soft Combination and Detection for Cooperative Spectrum Sensingin Cognitive Radio Networks[C]//Global Telecommunications Conference,GLOBECOM '07IEEE,2007:3139-3143.
    [62] Rao A, Alouini M S. Cooperative Spectrum Sensing over Non-IdenticalNakagami Fading Channels[C]//Vehicular Technology Conference (VTCSpring), IEEE73rd,2011:1-4.
    [63] Stotas S, Nallanathan A. Cooperative Spectrum Sensing Protocols in CognitiveRadio Based on Energy Detection[C]//Cognitive Wireless Systems(UKIWCWS), First UK-India International Workshop on,2009:1-5.
    [64]刘航,于丹,孔祥维.低信噪比条件下提高认知无线电的频谱感知能力的方法[J].电子与信息学报,2009,31(4):993-996.
    [65]石磊,蒋韡琳,张中兆.认知无线电空闲频谱的联合检测算法[J].华南理工大学学报(自然科学版),2010,38(1):38-42.
    [66] Mahesh R, Vinod A P. A Low-Complexity Flexible Spectrum-Sensing Schemefor Mobile Cognitive Radio Terminals[J]. Circuits and Systems II: ExpressBriefs, IEEE Transactions on,2011,58(6):371-375.
    [67] Liu C, Qi A, Zhang P, et al. Wideband Spectrum Detection Based onCompressed Sensing in Cooperative Cognitive Radio Networks[C]//Communications and Networking in China (CHINACOM),8th InternationalICST Conference on,2013:638-642.
    [68] Sakarya F A, Nagel G S, Tran L H, et al. Wideband Compressed Sensing forCognitive Radios[C]//Military Communications Conference, MILCOM2011:31-36.
    [69] Qian Y, Lei Y, Sun H, et al. Multi-User Cooperative Wideband SpectrumSensing with Bayesian Compressed Sensing in Cognitive Radio[C]//WirelessCommunication Systems (ISWCS), International Symposium on,2012:536-540.
    [70] Tian Z, Giannakis G B. Compressed Sensing for Wideband CognitiveRadios[C]//Acoustics, Speech and Signal Processing, ICASSP IEEEInternational Conference on,2007:1357-1360.
    [71] Candes E J, Plan Y. A Probabilistic and Ripless Theory of CompressedSensing[J]. Information Theory, IEEE Transactions on,2011,57(11):7235-7254.
    [72] Candes E J, Romberg J, Tao T. Robust Uncertainty Principles: Exact SignalReconstruction from Highly Incomplete Frequency Information[J].Information Theory, IEEE Transactions on,2006,52(2):489-509.
    [73] Davenport M A, Boufounos P T, Wakin M B, et al. Signal Processing withCompressive Measurements[J]. Selected Topics in Signal Processing, IEEEJournal of,2010,4(2):445-460.
    [74] Donoho D, Reeves G. The Sensitivity of Compressed Sensing Performance toRelaxation of Sparsity[C]//Information Theory Proceedings (ISIT), IEEEInternational Symposium on,2012:2211-2215.
    [75] Donoho D L. Compressed Sensing[J]. Information Theory, IEEE Transactionson,2006,52(4):1289-1306.
    [76] Donoho D L, Tanner J. Precise Undersampling Theorems[J]. Proceedings ofthe IEEE,2010,98(6):913-924.
    [77] Meng J, Yin W, Li H, et al. Collaborative Spectrum Sensing from SparseObservations in Cognitive Radio Networks[J]. Selected Areas inCommunications, IEEE Journal on,2011,29(2):327-337.
    [78] Meng J, Yin W, Li H, et al. Collaborative Spectrum Sensing from SparseObservations Using Matrix Completion for Cognitive RadioNetworks[C]//Acoustics Speech and Signal Processing (ICASSP), IEEEInternational Conference on,2010:3114-3117.
    [79] Hong S. Multi-Resolution Bayesian Compressive Sensing for Cognitive RadioPrimary User Detection[C]//Global Telecommunications Conference(GLOBECOM2010), IEEE,2010:1-6.
    [80] Tian Z, Tafesse Y, Sadler B M. Cyclic Feature Detection with Sub-NyquistSampling for Wideband Spectrum Sensing[J]. Selected Topics in SignalProcessing, IEEE Journal of,2012,6(1):58-69.
    [81] Sun X, Zheng Z, Li B. CS-Feature Detection Spectrum Sensing Algorithm forCognitive Radio[J]. Advances in Information Sciences and Service Science,2012,4(1):37-45.
    [82] Wu H, Wang S. Adaptive Sparsity Matching Pursuit Algorithm for SparseReconstruction[J]. Signal Processing Letters, IEEE,2012,19(8):471-474.
    [83] Wang Y, Tian Z, Feng C. Sparsity Order Estimation and Its Application inCompressive Spectrum Sensing for Cognitive Radios[J]. WirelessCommunications, IEEE Transactions on,2012,11(6):2116-2125.
    [84] Malioutov D M, Sanghavi S R, Willsky A S. Sequential CompressedSensing[J]. Selected Topics in Signal Processing, IEEE Journal of,2010,4(2):435-444.
    [85] Attar A, Tang H, Vasilakos A V, et al. A Survey of Security Challenges inCognitive Radio Networks: Solutions and Future Research Directions[J].Proceedings of the IEEE,2012,100(12):3172-3186.
    [86] Fragkiadakis A G, Tragos E Z, Askoxylakis I G. A Survey on Security Threatsand Detection Techniques in Cognitive Radio Networks[J]. CommunicationsSurveys&Tutorials, IEEE,2013,15(1):428-445.
    [87] Sumathi A C, Vidhyapriya R. Security in Cognitive Radio Networks-aSurvey[C]//Intelligent Systems Design and Applications (ISDA),12thInternational Conference on,2012:114-118.
    [88] Wang W, Li H, Sun Y, et al. Catchit: Detect Malicious Nodes in CollaborativeSpectrum Sensing[C]//Global Telecommunications Conference, GLOBECOMIEEE,2009:1-6.
    [89] Yu F R, Tang H, Huang M, et al. Defense against Spectrum Sensing DataFalsification Attacks in Mobile Ad Hoc Networks with Cognitive Radios[C]//Military Communications Conference, MILCOM IEEE,2009:1-7.
    [90] Yan Q, Li M, Jiang T, et al. Vulnerability and Protection for DistributedConsensus-Based Spectrum Sensing in Cognitive Radio Networks[C]//INFOCOM, Proceedings IEEE,2012:900-908.
    [91] Chen R, Park J, Bian K. Robust Distributed Spectrum Sensing in CognitiveRadio Networks[C]//INFOCOM,27th Conference on ComputerCommunications IEEE,2008:1-7.
    [92] Bagwari A, Singh B. Comparative Performance Evaluation of SpectrumSensing Techniques for Cognitive Radio Networks[C]//ComputationalIntelligence and Communication Networks (CICN), Fourth InternationalConference on,2012:98-105.
    [93] Wu T, Hsieh H. An Investigation of Primary Transmitter Detection Techniquesin Cognitive Radio Networks from Network OptimizationPerspective[C]//Wireless Communications and Networking Conference,WCNC IEEE,2008:2753-2758.
    [94] Chen X, Chen H, Meng W. Cooperative Communications for Cognitive RadioNetworks: From Theory to Applications[J]. Communications Surveys&Tutorials, IEEE,2014, PP(99):1-13.
    [95] Axell E, Leus G, Larsson E G. Overview of Spectrum Sensing for CognitiveRadio[C]//Cognitive Information Processing (CIP),2nd InternationalWorkshop on,2010:322-327.
    [96] Wang L, Wang J, Ding G, et al. A Survey of Cluster-Based CooperativeSpectrum Sensing in Cognitive Radio Networks[C]//Cross StraitQuad-Regional Radio Science and Wireless Technology Conference(CSQRWC),2011:247-251.
    [97] Aissa I, Frikha M, Tabbane S. Dynamic Spectrum Hole Management inCognitive Radio[C]//New Technologies, Mobility and Security (NTMS),4thIFIP International Conference on,2011:1-4.
    [98] Atapattu S, Tellambura C, Jiang H. Energy Detection Based CooperativeSpectrum Sensing in Cognitive Radio Networks[J]. Wireless Communications,IEEE Transactions on,2011,10(4):1232-1241.
    [99] Bhargavi D, Murthy C R. Performance Comparison of Energy, Matched-Filterand Cyclostationarity-Based Spectrum Sensing[C]//Signal ProcessingAdvances in Wireless Communications (SPAWC), IEEE Eleventh InternationalWorkshop on,2010:1-5.
    [100]Theiler J, Foy B R. Effect of Signal Contamination in Matched-FilterDetection of the Signal on a Cluttered Background[J]. Geoscience and RemoteSensing Letters, IEEE,2006,3(1):98-102.
    [101]Wang J, Huang J, Jiao Y, et al. Adaptive Matched Filter Detection Method onUnderwater Small Aperture Array[C]//Statistical Signal Processing Workshop(SSP), IEEE,2011:97-100.
    [102]Kapoor S, Rao S V R K, Singh G. Opportunistic Spectrum Sensing byEmploying Matched Filter in Cognitive Radio Network[C]//CommunicationSystems and Network Technologies (CSNT), International Conference on,2011:580-583.
    [103]Liu Q, Gao J, Chen L. Optimization of Energy Detection Based CooperativeSpectrum Sensing in Cognitive Radio Networks[C]//Wireless Communicationsand Signal Processing (WCSP), International Conference on,2010:1-5.
    [104]Zhang S, Wu T, Lau V K N. A Low-Overhead Energy Detection BasedCooperative Sensing Protocol for Cognitive Radio Systems[J]. WirelessCommunications, IEEE Transactions on,2009,8(11):5575-5581.
    [105]Shen J, Liu S, Wang Y, et al. Robust Energy Detection in Cognitive Radio[J].Communications, IET,2009,3(6):1016-1023.
    [106]Shen B, Huang L, Zhao C, et al. Energy Detection Based Spectrum Sensing forCognitive Radios in Noise of Uncertain Power[C]//Communications andInformation Technologies, ISCIT International Symposium on,2008:628-633.
    [107]Kalamkar S S, Banerjee A. On the Performance of Generalized EnergyDetector under Noise Uncertainty in Cognitive Radio[C]//Communications(NCC),2013National Conference on,2013:1-5.
    [108]Arezumand H, Azmi P, Sadeghi H. Cooperative Spectrum Sensing Based on aLow-Complexity Cyclostationary Detection Method for Cognitive RadioNetworks[C]//Computer and Knowledge Engineering (ICCKE),1stInternational eConference on,2011:308-313.
    [109]Bkassiny M, Jayaweera S K, Li Y, et al. Blind Cyclostationary FeatureDetection Based Spectrum Sensing for Autonomous Self-Learning CognitiveRadios[C]//Communications (ICC), IEEE International Conference on,2012:1507-1511.
    [110] Ustok R F, Ozbek B. Spectrum Sensing Based on Cyclostationary FeatureDetection for Cognitive Radios with Multiple Antennas[C]//Signal Processingand Communications Applications (SIU), IEEE19th Conference on,2011:550-553.
    [111] Kim H, Shin K G. Efficient Discovery of Spectrum Opportunities withMac-Layer Sensing in Cognitive Radio Networks[J]. Mobile Computing, IEEETransactions on,2008,7(5):533-545.
    [112] Boufounos P T, Baraniuk R G.1-Bit Compressive Sensing[C]//InformationSciences and Systems, CISS,42nd Annual Conference on,2008:16-21.
    [113] Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by BasisPursuit[J]. SIAM Rev,2001,43(1):129-159.
    [114] Tibshirani R. Regression Shrinkage and Selection Via the Lasso: ARetrospective[J]. Journal of the Royal Statistical Society: Series B (StatisticalMethodology),2011,73(1):273-282.
    [115] Candes E J, Wakin M B. An Introduction to Compressive Sampling[J]. SignalProcessing Magazine, IEEE,2008,25(2):21-30.
    [116] Tropp J A, Gilbert A C. Signal Recovery from Random Measurements ViaOrthogonal Matching Pursuit[J]. Information Theory, IEEE Transactions on,2007,53(12):4655-4666.
    [117] Dai W, Milenkovic O. Subspace Pursuit for Compressive Sensing SignalReconstruction[J]. Information Theory, IEEE Transactions on,2009,55(5):2230-2249.
    [118] Needell D, Tropp J A. Cosamp: Iterative Signal Recovery from Incomplete andInaccurate Samples[J]. Commun ACM,2010,53(12):93-100.
    [119] Baron D, Sarvotham S, Baraniuk R G. Bayesian Compressive Sensing ViaBelief Propagation[J]. Signal Processing, IEEE Transactions on,2010,58(1):269-280.
    [120] Baraniuk R G, Cevher V, Duarte M F, et al. Model-Based CompressiveSensing[J]. Information Theory, IEEE Transactions on,2010,56(4):1982-2001.
    [121]Candes E J. The Restricted Isometry Property and Its Implications forCompressed Sensing[J]. Applied&Computational Mathematics,2008,346(9-10):589-592.
    [122]Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: Efficient Samplingof Sparse Bandlimited Signals[J].Information Theory, IEEE Transactions on,2010,56(1):520-544.
    [123]Zhu H, Hai J. Replacement of Spectrum Sensing and Avoidance of HiddenTerminal for Cognitive Radio[C]//Wireless Communications and NetworkingConference, WCNC, IEEE,2008:1448-1452.
    [124]Ahmed K, Bashir F, Najum ul H, et al. Comparative Study of CentralizedCooperative Spectrum Sensing in Cognitive Radio Networks[C]//SignalProcessing Systems (ICSPS),2nd International Conference on,2010:246-249
    [125]Maleki S, Chepuri S P, Leus G. Optimal Hard Fusion Strategies for CognitiveRadio Networks[C]//Wireless Communications and Networking Conference(WCNC), IEEE,2011:1926-1931.
    [126]Yan Y, Li A, Kayama H. Study on Soft Decision Based Cooperative Sensing inCognitive Radio Network[C]//Vehicular Technology Conference Fall (VTC2009-Fall),2009IEEE70th,2009:1-5.
    [127]Fawcett T. An Introduction to Roc Analysis[J]. Pattern Recognition Letters,2006,27(8):861-874.
    [128]Zeng F, Chen L, Tian Z. Distributed Compressive Spectrum Sensing inCooperative Multihop Cognitive Networks[J]. Selected Topics in SignalProcessing, IEEE Journal of,2011,5(1):37-48.
    [129]Tian Z. Compressed Wideband Sensing in Cooperative Cognitive RadioNetworks[C]//Global Telecommunications Conference, GLOBECOM IEEE,2008:1-5.
    [130]Guibene W, Moussavinik H, Hayar A. Combined Compressive Sampling andDistribution Discontinuities Detection Approach to Wideband SpectrumSensing for Cognitive Radios[C]//Ultra Modern Telecommunications andControl Systems and Workshops (ICUMT),3rd International Congress on,2011:1-7.
    [131]Wang Y, Yin W. Sparse Signal Reconstruction Via Iterative SupportDetection[J]. SIAM Journal on Imaging Sciences,2010,3(3):462-491.
    [132]Donoho D L, Tsaig Y. Fast Solution of L1-Norm Minimization Problems Whenthe Solution May Be Sparse[J]. Information Theory, IEEE Transactions on,2008,54(11):4789-4812.
    [133]Khajehnejad M A, Xu W, Avestimehr A S, et al. Analyzing Weighted L1Minimization for Sparse Recovery with Nonuniform Sparse Models[J]. SignalProcessing, IEEE Transactions on,2011,59(5):1985-2001.
    [134]Zhang Y, Deng W, Yin W, et al. YALL1: Your Algorithms for L1[EB/OL].http://yall1.blogs.rice.edu/.2011.
    [135]吴宏林,王殊.基于压缩感知的加权宽带谱重构算法[J].信号处理,2012,28(6):812-820.
    [136]Lin X, Boyd S, Kim S J. Distributed Average Consensus withLeast-Mean-Square Deviation[J]. Journal of Parallel and DistributedComputing,2007,67(1):33-46.
    [137]Do T T, Lu G, Nguyen N, et al. Sparsity Adaptive Matching Pursuit Algorithmfor Practical Compressed Sensing[C]//Signals, Systems and Computers,42ndAsilomar Conference on,2008:581-587.
    [138]Davenport M A, Needell D, Wakin M B. Signal Space Cosamp for SparseRecovery with Redundant Dictionaries[J]. Information Theory, IEEETransactions on,2013,59(10):6820-6829.
    [139]Arshad K, Moessner K. Robust Collaborative Spectrum Sensing in thePresence of Deleterious Users[J]. Communications, IET,2013,7(1):49-56.
    [140]Li Z, Yu F R, Huang M. A Distributed Consensus-Based CooperativeSpectrum-Sensing Scheme in Cognitive Radios[J]. Vehicular Technology,IEEE Transactions on,2010,59(1):383-393.
    [141]Olfati-Saber R, Fax J A, Murray R M. Consensus and Cooperation inNetworked Multi-Agent Systems[J]. Proceedings of the IEEE,2007,95(1):215-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700