基于FFT的实时系统控制模型的辨识与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PID控制是迄今为止最通用的控制方法。调查结果表明,90%以上控制回路中均采用自整定PID控制器。因此,PID控制器参数自整定技术是一门集自适应控制、智能控制、自动化过程控制为一体的高科技工程新技术,是当前十分热门的研究课题之一。然而由于被控对象参数变化,PID控制器参数也要随之变化,才能更好地控制被控对象,因此控制模型的辨识成为一个关键问题。
     基于频率特性的PID控制器参数自整定方法(SF法)是针对工程上常用的Z-N法与继电反馈法在获取临界周期Tc和临界增益Kc时可能会给系统带来扰动而提出的。该算法的创新之处在于它是基于连续频谱的识别,应用FFT进行时频序列转换然后在频域内建模。虽然该算法已在MATLAB中得到了仿真结果,但算法仍存在着一些不足,如导致频谱失真的主要误差因素-能量泄漏问题;重复性差及MATLAB仿真无法满足实时性要求等问题。
     本文针对上述问题,提出R(refine)-SF法,该算法在FFT(快速傅里叶)之前采用高通滤波来滤除信号的低频部分,使信号变化比较平稳的低频部分为零,再对其截断时,就避免了能量泄漏问题。同时巧妙地利用频率特性表达式中的除法将分子Y(jω)与分母X(jω)中混有的相同滤波器频谱消去。对重复性问题的研究发现是微分控制引起被控对象的输入信号峰值尖锐,在对其采样时的“栅栏效应”引起的误差。本文在LabVIEW平台下,通过OPC服务器连接下位机,使整个程序全部由LabVIEW和智能仪表的实时运算来实现,从而满足了实时性的要求。
     在实时系统中的实验结果表明,该算法求得的被控对象的频率特性与真实值相近,可以应用到需要求解被控对象频率特性的其他PID参数整定方法中。因此,该方法具有一定的推广应用价值。
Self-tuning PID controller has been widely used in industrial proceeding control,research result shows that more than 90 percent control circuits make use of self-tuning PID controller. The PID controller parameters self-tuning technique is a new technique in high—tech engineering for gathering from orientation controlling, intelligence control, automating process control, is one of the current very popular research problems. However, because of parameter changes of controlled object,the parameter of PID controller also changes immediately, then it can better control the controlled object, therefore recognition of controlled object become a key problem.
     Aim at the problem of getting vibrating period and amplitude in methods of Z-N method and relay-tuning method, referring a algorithm of PID controllers parameters self-tuning based on frequency characteristic. The benefits to this algorithm is based on the identification of continuous spectrum, time-frequency conversion and modeling using FFT.Although the algorithm has been in the MATLAB simulation,but it has some shortcomings,such as energy leakage,which is the major factors leading to distortion of the spectrum; poor repeatability and poor real time.
     In this paper we refer a R(refine)-SF algorithm,it use a high-pass filter to filt lower frequency before of FFT.High-pass filter can make the low frequency part of signal equal zero,then the algorithm avoid energy leakage.Meanwhile use skilfully the nature of devide in the expression of frequency charactistic to eliminate the errors of frequency of filter in the denominator and nominator. On the poor repeatability found that differential controller cause input signal sharp amplitude, which cause the error when sampled.This paper communicate data between the smart meters and LabVIEW through OPC server as a bridge, and the whole process is controlled real-timely by LabVIEW and the smart meters to meet the requirment of real-time.
     The experimental results in the real-time system show that the frequency of object in this algorithm close to the real value,this method can applicate in other PID parameters tuning method. Therefore,this method has some promotional value.
引文
[1] Astrom K J, Hagglund T. The Future of PID Control. Control Engineering Practice. 2001,(9): 1163-1175
    [2] 王伟,张晶涛.PID参数先进整定方法综述.自动化学报,2000,26(3):347-355
    [3] 刘杨.基于频率特性的白整定控制器的研究.硕士学位论文.大连交通大学,2005,12:12-13
    [4] 刘彬等.面向过程控制的一种新技术—OPC数据访问标准.计算机工程,2000,10:127-129
    [5] Hang C C, Ho W K, Cao L S. A comparison of two design methods for PID controllers. ISA TRANS, 1994,33(2): 147-151
    [6] 杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述.化工自动化及仪表,2005,32(5):1-7
    [7] 刘镇,姜学智,李东海.PID控制器参数整定方法综述.电力系统自动化,1997,21(8):79-83
    [8] Hang C C, Sin K K. An On-line Auto-tuning Method Based on Cross-correlation. IEEE Transactions on Industrial Electronics, 1991,38 (6): 428-437
    [9] Hang C C, Sin K K. A Comparative Performance Study of PID Auto-tuners. IEEE Control SystMag, 1991,(11): 41-47
    [10] Ho W K, Lim KW, Xu W. Optimal Gain and Phase Margin Tuning for PID Controllers. Automatica, 1998,(8): 1009-1014
    [11] Morari M, Zafiriou E. Robust Process Control. PrenticeHall Inc. 1989: 155-157
    [12] Astrom K J, Hagglund T. PID Controllers: Theory, Design and Tuning. N. C. : Research Triangle Park, Instrument Society of America, 1995:23-28
    [13] Ho W K, Hang C C, WojsznisW, Tao Q H. Frequency domain approach to self-tuning PID control. Control Eng. Practice, 1996,4(6):807-813
    [14] 柴天佑,张贵军.基于给定的相角裕度和幅值裕度PID 参数自整定新方法.自动化学报,1997,23(2):167-172
    [15] A V Oppenheim, R W Schafer. Discrete-Time Sign Processing. Prentice-Hall, 1989:25
    [16] 李天昀,葛临东.基于CZT利Zoom-FFt的频谱细化分析中能量泄漏的研究.电子对抗技术,2003,18(5):11-15
    [17] 胡寿松.自动控制原理.北京:科学出版社.2001:58-60
    [18] 齐维贵.基于FFT的预期频域设计法.哈尔滨建筑大学学报,1996,29(4):69~74
    [19] 丁康,张晓飞.频谱校正理论的发展.震动工程学报,2000,13(1):14-22
    [20] Astrom K J,Wittenmark B.计算机控制系统——原理与设计(第三版).北京:电子工业出版社,200 1:447-448
    [21] 齐维贵,丁宝,朱学利,吕丽.基于时频序列变换的系统频域法研究.电工技术学报,2002,17(6):78-81,86
    [22] 王永等.LabVlEW中CIN的创建方法和应用.国外电子测量技术.2001,5:31-34
    [23] 陈敏,汤晓安.虚拟仪器LabVIEW与数据采集.小型微型计算机系统.2001,4:501-503
    [24] 石博强等.LabVIEW6.1编程技术实用教程.中国铁道出版社.2002,11:144-148
    [25] 沈永红等.虚拟仪器及LabVIEW.河南科技,2004,2:24-25
    [26] 王锡仲,齐维贵,丁宝.FFT在控制工程中的应用.自动化博览,1999(2):26-28
    [27] 胡广书.数字信号—理论、算法与实现.北京:清华大学学出版社 1997:55-64
    [28] Cooley J W, Tukey J W. An algorithm for the machine computation of complex Fourier series. Mathematics of Computation, 1965,19(Apr):297-301
    [29] 顾树生,王建辉.自动控制原理.北京:冶金出版社,2004:135-144
    [30] B.P.拉兹.线性系统与信号.西安:西安交通大学出版社,2006:369-375
    [31] 张晓飞.离散频谱误差分析与校正方法.硕士学位论文,重庆大学.1999,3:7-8
    [32] 刘瑞成,张成臣.基于面向方面的实时系统建模方法.计算机科学,2006,33(7):262-265
    [33] 袁爱进.微型消息总线系统.大连:大连三合仪表,2004:56-58
    [34] 沈国华,黄志球等.面向试飞工程数据仓库系统的设计与实现.计算机工程与设计,2002,102-105
    [35] 杨乐平,李海涛,杨磊.LabVIEW程序设计与应用.北京:电子工业出版社.2005,5
    [36] 周一军.改进型临界比例度法用于PID参数的自整定.自动化仪表,23(1):14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700