车内可吸入颗粒物热运动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车内乘员的可吸入颗粒物吸入水平是道路环境空气污染状况,空调过滤器过滤性能和空调系统运行状况的综合反映。本文通过试验研究了道路环境的颗粒物分布特点,以国产A0级轿车为研究对象,研究了汽车空调过滤器针对道路环境可吸入颗粒物的技术性能,根据WHO颗粒物空气质量准则和道路环境颗粒物的分布状况,建立了车内环境可吸入颗粒物质量评价方法。
     指出道路环境可吸入颗粒分布具有显著的粒径分散性,比城市一般环境具有更高质量浓度,目前使用的过滤器不能有效控制车内可吸入颗粒物含量,存在容尘量低,空气阻力大,过滤效率低等问题。通过试验验证Eulerian-Lagrange方法的随机轨道颗粒模型可以模拟车内颗粒物气-固多相流运动。借助CFD方法分析空气流场、温度场对车内环境可吸入颗粒物热运动的作用,研究了空调工况、气流组织、送风量、过滤器效率等条件变化对颗粒物分布的影响,提出以颗粒物有效浓度作为评价参数,分析车内环境可吸入颗粒物的分布状况。根据模拟结果指出,在通常的道路环境下,单纯增加空调送风量,改变空调工况和气流组织不能有效降低车内环境可吸入颗粒物的有效浓度,最有效途径是改进过滤器性能,提高可吸入颗粒物过滤效率。
     本文为优化车内空调设计提供了理论依据。
The increasing number of epidemiological studies has shown that there is a significant positive correlation between morbidity and mortality in the crowd with the concentration of inhalable particulate matter in the atmosphere, and some biological mechanism has been confirmed by the toxicology studies. Automobile exhaust emissions are the major air pollution particles in urban, and 50% of particulate matter in the central areas of some major cities comes from the automobile exhaust, while that of the highway mainly comes from motor vehicles. Mass concentration of the ambient in urban road about PM2.5, PM10 is significantly higher than other regional cities. It has relation to traffic flow, car type, ambient temperature and humidity, wind velocity and so on. Urban air pollution caused by automobile exhaust emissions has been concerned by all sectors in society, but the hazards on interior staff's in the cabin caused by the particulate matter in the road environment have not yet attracted enough attention to and the research results are also very limited, China has not yet enacted the quality standards about inhalable particulate matter in vehicle.
     The level of inhalable particulate matter in vehicle occupant is a comprehensive reflection of air pollution in the road environment, performance of the air filter and working conditions of the air conditioning system. Taking effective technical methods to control inhalable particulate matter in the cabin, it needs to obtain the distribution status of particulate matter in the road environment, research automotive air filter's technical performance in inhalable particulate matter, acquire interior motion regulation of inhalable particulate matter under air-conditioning, take the advisable method to evaluate distribution status of particulate matter inside the vehicle and optimize air filter and airflow organized design so as to limite effective concentration of particulate matter.
     In this paper, according to WHO air quality guidelines for particulate matter and the distribution status of particulate matter in the road environment, it sets up the inhalable particulate matter quality standards in cabin. A domestic passenger car in Classas A0 is chose as benchmark to research automotive filter's performance about inhalable particulate matte by means of experimental method. The paper analyzes the relation among filtration efficiency with face velocity and particle diameter in initial and final status. According to the experiment results, preliminarily analyze the inhalable particulate matter distribution in the vehicle. Then, get the first boundary condition for simulation research and the parameters of key points in cabin included the wind speed, temperature, concentration of particulate matter and other parameters so as to verify the simulation model.
     In this paper, it adopts CFD simulation method to calculate air velocity field, temperature field, concentration field of inhalable particulate matter in the cabin, and analyze the influence character of inhalable particulate matter on the thermal motion caused by the air velocity field and temperature field as well as the distribution regulation under many kinds of complicated conditions.As the inhalable particulate matter in cabin was non-uniform distribution,the particulate matter of the passenger's nose height can be breathed in,The author first proposes the effective particle concentration and the distribution coefficient of that as the evaluation parameters to assess the distribution status of inhalable particles inside the cabin.
     Through experimental analysis, we can see that as a result of the vehicle exhaust emissions and one-time reflection by vehicle and pedestrian, the concentration of particulate matter in the road environment is more than that of other regional in urban. It infers that the particulate matter number of automobile exhaust emissions is mainly distributed in 1.0-5.0um diameter range, and PM2.5/PM10 ratio is lower in the area, that is to say, the mass concentration of PM2.5-PM10 in the road environment is higher than that of the general regions in urban.The number of various particles in the road environment is measured in winter is greater than the measurement results in summer.The relationship between PM2.5 and staff's health in the cabin is closer, so research working shouldn't neglect PM2.5 .
     According to the experimental results, we can also see that larger diameter particles shows higher filtration efficiency and filtration efficiency of the inhalable particulate matter increases with the increasing face velocity of the filter. The filtration efficiency of PM10 is better than that of PM2.5. Increasing air rate can reduce the mass concentration of inhalable particulate matter in supply air.
     At present, the air filter used in the car is not effective in keeping out PM2.5 and PM10 from air. The inhalable particulate matter in the fresh air still remains high concentration, mass concentration of PM10 exceeds the standard value inside the cabin which is proposed by the author, mass concentration of PM2.5 is close to the standard value, which will have adverse effects on staff's health on the long-term or short-term exposure in the cabin. As dust capacity of the filter is low, the dust on the filter's material has a greater impact on the resistance. The resistance increased significantly at a low filter velocity. For face velocity at 0.26 m / s, the final resistance is double times compared to that of the beginning; for face velocity at 0.09 m / s, the final resistance is 5.23 times compared to that of the beginning. The increased resistance reduces the air rate. It has a great potential to improve the automobile air filter, so it's necessary to improve the producing technology of filtration materials, improve filtration efficiency, reduce filter resistance and ncrease service life.
     Through analyzing the inhalable particulate matter characteristics of numerical simulation in cabin, it shows that the key problem of numerical simulation is phase distribution status, the descriptive methods, the determination of physical parameters and choice of numerical methods. Under conditions of heating and cooling, the results of simulation compare with the experimental results, which prove that random orbit model of the Eulerian-Lagrange method can almost simulate thermal motion of inhalable particulate matter in vehicle, and the mathematical and physical model, numerical calculation method, boundary conditions, heat conditions and the rationality and effectiveness about the thermal resource assumed in simulation was verified.
     The motion of the carried particles is gas-solid multiphase flow,the motion trajectories of the particles is acted by physical properties of the inhalable particles and flow field,temperature field. As movement mechanism of turbulence and gas-solid multiphase flow is very complicated. It is faced with many difficulties to use the traditional theoretical analysis and experimental methods to solve such problems. In this paper, under different conditions included air velocity field, temperature field, choose CFD method to calculate thermal motion of inhalable particulate matter, and study the distribution of conditions change included air-conditioning working conditions, air flow organization, airflow rate, separation efficiency.
     The results in simulation show that the air flow is restricted jet in cabin ,most of the space is covered by vortex region. The velocity field is consolidated by the forced and natural convection, and temperature gradient in horizontal and vertical directions is very large. With the variety of external forces working together, most of particles follow the airflow out of the air opening, part of particles in the region with eddy currents do disorderly movements, part of particle move to the surface of the object, take the elastic collision or are captured to end the trajectory. The movement of particles in the cabin is a comprehensive reflection of its own property,flow field and temperature field, and shows the characteristic of non-uniform distribution.
     The results in simulation also show that the concentration of inhalable particulate matter is higher in winter, and in most cases effective concentrations is below the average concentration in cabin, taking the upper return air system can reduce effective concentration of the interior zone. But, changing air-conditioning working conditions and airflow organization cannot make effective concentrations achieve the environmental quality standards by the author proposed. changing air rate is very complex to impact the concentration of PM2.5,and that is negative correlation with the effective concentration of PM10.Because of the separation capacity of filter is limited, at common air rate, the effective concentration still can not achieve the standard requirements proposed.the effective concentration of interior zone and separation efficiency of the filter have negative correlation, increasing filtration efficiency can effectively reduce effective concentration.If the filtration efficiency is improved at 30 percent, under the calculated condition, the effective concentrations of inhalable particulate matter inside the vehicle may achieve the environmental quality standards proposed.
     Therefore, relying solely on increasing airflow rate and changing air flow organization can not make the environment inside cabin meet the quality standards proposed in this paper, the most effective way to control inhalable particulate matter in cabin is improving separation efficiency of automotive air-conditioning filter.
引文
[1]陈孟湘.汽车空调[M].上海:上海交通大学出版社,2001.
    [2]Lance Wallace.Indoor Particles,A Review[J].Air & Waste Manage.Assoc,1996,46:98-126.
    [3]吴国平,胡伟,滕恩江,等.我国四城市空气中PM_(2.5)和PM_(10)的污染水平[J].中国环境科学,1999,19(2):133-137.
    [4]中国环境保护总局.2006年中国环境状况公报[R].北京:中国环境保护总局,2007.
    [5]吕莉莎.吉林省典型城市环境空气中总悬浮颗粒物源解析的对比研究[D].长春:吉林大学,2007.
    [6]唐琳,钱华,陈长虹.重型机动车污染排放与控制研究进展[J].上海环境科学,2003,增刊:30-33.
    [7]邓大跃,陈双基.汽车内空气污染研究综述[J].北京联合大学学报(自然科学版),2004,18(2):52-59.
    [8]周志翔,徐永荣.汽车颗粒物污染的生态影响与公路绿带的屏障作用[J].环境科学与技术,2000,增刊:36-40.
    [9]邓大跃,陈双基.汽车内的空气污染[J].环境科学动态,2004(2):46-47.
    [10]赵晓红,阎春生,牛静萍.兰州市汽车尾气颗粒物污染及其致突变性[J].中国公共卫生学报,1997,16(6):362-363.
    [11]李桂军.机动车尾气排放污染及其危害防治[J].矿业安全与环保,2003,30(4):19-21.
    [12]刘大锰,黄杰,高少鹏,等.北京市区春季交通源大气颗粒物污染水平及其影响因素[J].地学前缘,2006,13(2):228-233.
    [13]周祖光.汽车尾气的污染及其治理[J].上海环境科学,1989,8(6):39-42.
    [14]Dockery D W,Pope C A,Xu X,et al.An association between air pollution and mortality in six United States cities[J].New England Journal of Medicine,1993,329:1753-1759.
    [15]Pope C A,Bates D V,Raizenne M E.Health effects of particulate air pollution[J].time for reassessment Environmental Health Perspectives,1995,103(5):472-480.
    [16]世界卫生组织.关于颗粒物、臭氧、二氧化氮和二氧化硫的空气质量准则(2005年版)[R].Geneva:WHO,2008.
    [17]熊志明.大气悬浮颗粒物对室内空气品质影响的预测模拟研究[D].长沙:湖南大学,2004.
    [18]谈明光,吴元芳.上海市大气中可吸入颗粒物PM_(10)对人体外周血淋巴细胞的毒性研究[J].微量元素与健康研究,2004,21(1):1-7.
    [19]Hideki Fukino,Shuji,Mimura,et al.Mutagenicity of airborne particles[J].Mut.Res.1982,102:237
    [20]杨建军,马亚萍,吴丙耀.不同粒径大气颗粒物中金属元素含量及其免疫毒性研究[J].环境与健康杂志,1995,12(4):155
    [21]董晨.大气PM_(2.5)对心血管系统的毒作用[D].上海:复旦大学,2005.
    [22]熊志明,张国强,彭建国,等.室内可吸入颗粒物污染研究现状[J].暖通空调,2004,34(4):32-36.
    [23]United States Environmental Protection Agency.National Ambient Air Quality Standards[R].Washington:United States Environmental Protection Agency,2008.
    [24]国家环境保护局,国家技术监督局.GB 3095-1996环境空气质量标准[S].北京:中国标准出版社,1996:1-8.
    [25]国家质量监督检验检疫总局,卫生部,国家环境保护总局.GB/T 18883-2002室内空气质量标准[s].北京:中国标准出版社,2003:1-12.
    [26]熊志明,张国强,彭建国,等.大气可吸入颗粒物对IAQ的影响研究进展[J].建筑热能通风空调,2004,23(2):32-36.
    [27]鹿世化,顾洲.夏季南京市公交空调车空气品质调查分析[J].南京工业职业技术学院学报,2004,4(3):27-30.
    [28]林泽键,张淑娟.空调公交车内影响空气品质的机理研究[J/OL].环境污染与防治,2007(2):1-9.
    [29]陈焕新.空调列车室内空气品质与气流组织的研究[D].武汉:华中科技大学,2002.
    [30]Taeyoung Han,Linjie Huang.A sensitivity study of occupant thermal comfort in a cabin using virtual thermal comfort engineering[C].SAE Paper.2005-01-1509.
    [31]Kondo,F.and Aioki,Y.Prediction method on effect of thermal performance of heat exchanger due to non-uniform air flow distribution[C].SAE Paper 850041.
    [32]D.P.Wyon,S.Larsson,B.Forsgren,and Ⅰ.Lundgren.Standard procedures for assessing vehicle climate with a thermal manikin[C].SAE,890049.
    [33]Schwartz J,.Dockery D W,Neas L M.Is daily mortality associated specifically with fine particles[J].Journal of the air & Waste managements Association,1996.46:927-939
    [34]Pope CA,Burnett R T,Thun M J,et al.Lung cancer,cardiopulmonary mortality,and long-term exposure to fine particulate air pollution[J].JAMA,2002,287:1132-1141.
    [35]Peter A,Perz S,Doring A,et al.Increases in heart rate during an air pollution episode[J].Am J Epidemiology,1999,150:1094-1098.
    [36]Pope C A,Verrier R L,Lovett E G,et al.Heart rate variability associated with particulate air pollution and mortality in 20 US city,1984-1994[J].AM,Heart J,1999,138:890-899
    [37]Laden F,Neas L M,Dockery D W,et al.Association of fine particulate matter from different sources with different sources with daily mortality in six U.S.cities[J].Environ Health Perspect,2000,108(10):941-947.
    [38]Burnett R T,Smith-Doiron M,Stieb D,et al.Efects of particulate and gaseous air Pollution on cardiorespiratory hospitalizations[J].Arch Environ Health,1999,54(2):130-139.
    [39]Goldberg M S,Bumett R T,Bailar J C,et al.The association between daily Mortality and ambient air particle pollution in Montreal,Quebec[J].Environ Research,2001,86:26-36.
    [40]Schwartz J,Harvesting and long term exposure effects in the relation between air Pollution and mortality[J].Am J Epidemiol,2000,151(5):440-448
    [41]Samet J M,Dominici F,Curriero F C,et al.Fine particulate air pollution and Mortality in 20 US cities[J].N Engl J Med,2000,343(24):1742-1749
    [42]Schwartz J.Air pollution and hospital admission for heart disease in eight U.S.counties[J].Epidemiology,1999,10(1):17-22.
    [43]Ware J H.Particulate air pollution and mortality:clearing the air[J].N Engl J Med,2000,343(24):1798-1799.
    [44]Aunan k,Pan XC.Exposure-response functions for health effects of ambient air pollution applicable for china:a Meta analysis[J]Science of the Total Environment,2004,329:3-16
    [45]胡伟,魏复盛,滕恩江,等.空气污染对儿童及其父母呼吸系统健康的影响[J].中国环境科学,2000,20(5):425-428.
    [46]王臻,王辰.可吸入颗粒物对呼吸系统危害的研究进展[J].国外医学呼吸系统分册,2004,24(4):231-236.
    [47]Peters A,Wichmann H E,Tuch T,et al.Respiratory effects are associated with the number of ultrafine particles[J].Am J Respir Crit Care Med,1997,155:1376-1383
    [48]Penttinen P,Timonen K L,Tittanen P,et al.Ultrafine particles in urbin air and respiratory health among adult asthmatics[J].Eur Respir J,2001,17:428-435
    [49]Dale Stephenson,Cauri Seshadri,John M Veranth.Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel[J].AIHA J,2003,64:516-521.
    [50]Donaldson K,Li X Y,MacNee W.Ultrafine particle mediated lung injury[J].Aerosol Sci,1998,29:553-560.
    [51]Zhang Q W,Kusaka Y,Sato K,et al.Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals:Role of free radicals[J].Toxicol Environ Health,1998,53:423-438.
    [52]Anderson M,Svartengren M,Philipson K,et al.Regional humanlung deposition studied by repeated investigations[J].Aerosol Sci,1988,19:1121 - 1124.
    [53]王起超,李东侠,方凤满.长春市空气中总悬浮微粒分布规律及来源的探讨[J].地理科学,2002,22(3):355-359.
    [54]赵国君,包清华,董晨阳.长春市大气污染物分布特征及变化规律研究[J].长春理工大学学报,2005,28(3):123-126.
    [55]庄国顺,郭敬华,衰蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及对全球环境的影响[J].科学通报,2001,46(3):191-197.
    [56]马晓旦,黄晓晶.交通主干道旁室内外PM_(10)分析研究[J].能源研究与信息,2004,20(3):146-150
    [57]Gilles J A.On-road particulate matter emissions in the Sepulveda tunnel,Los Angeles,California[J].Environ Sci Technol,2001,35:1054-1063.
    [58]Heidron,Schmid.Decadal reductions of traffic emissions on a transit route in Austria-results of the Tauerntunnel experiment 1997.[J].Atmospheric Environment,,2001,35:3585-3593.
    [59]John M.E.Storey,John F,et al.Particulate Matter and Aldehyde Emissions from Idling Heavy-Duty Diesel Trucks[J].SAE PAPER 2003-01-0289.
    [60]瞿彩莲,窦明池.非织造布过滤材料在汽车工业中的应用[J].现代纺织技术,2006(6):60-62.
    [61]Orest Lastow,Albert Podgorski.Single-Fiber Collection Efficiency[M].Chapter3,advance in aerosol filtration,Lewis publishers,Boca Roton,1997.
    [62]R.C.Brown.Theory of Airflow through Filters Modelled as Arrays of Parallel Fibers[J].Chemical Engnieering Science,1993,48(20):3535-3543.
    [63]R.C.Brown.Airflow through Filters-beyond Single- Fiber Theory[M].Chapter8,advance in aerosol filtration,Lewis publishers,Boca Roton,1997.
    [64]朱晖.环境空气中微粒过滤材料性能的实验研究[D].上海:东华大学硕士学位论文,2005.
    [65]张国权.气溶胶力学一除尘净化理论基础[M].北京:中国环境利学出版社,1987.
    [66]C.N.戴维斯著,黄日广译.空气过滤[M].北京:原子能出版社,1979.
    [67]许钟麟.空气洁净技术原理[M].北京:科学出版社,2003.
    [68]Kvetoslav R.Spurny.The history of dust and aerosol Filtration[M].Chapterl,advance in aerosol filtration,Lewis publishers,Boca Roton,1997.
    [69]Davies,C N.Air filtration[M].Academic Press,London,1973.
    [70]Davies,C.N.The separation of airborn dust and articles[J].Proc.Inst.Mech.Eng,1952,1B:185-213.
    [71]Friedlander,S.K.Theory of aerosol filtration[J].Ind.Eng.Chem.,1958,50,1161-1164.
    [72]Davies,C.N The clogging of fibrous aerosol Filters[J].Aerosol Sci,1970,1,35-39.
    [73]D.Thomas,P.Penicot,P.Contal,et al.J.Vendel.Clogging of fibrous filters by solid aerosol particles Experimental and modeling study[J].Chem.Eng Sci,2001,56,3549-3561.
    [74]Kvetoslav R.Spurny.Aerosol filtration Science at the end of the 20~(th) Century[M].Chapter2,advance in aerosol filtration,Lewis publishers,Boca Roton,1997.
    [75]Rosner D.E.,P.Tandon,A.G.Konstanpulous Local size distribution of particles deposited by internal impaction on cylindrical target in dust-loaden[J].Aerosol Sci,1995,61,257-1279.
    [76]付海明,沈恒根.空气过滤理论研究与发展[J].过滤与分离,2003,13(3):20-24.
    [77]曹国庆,张益昭,许钟麟.生物安全实验室气流组织效果的数值模拟研究[J].暖通空调,2006,36(12):1-4.
    [78]杨彩青,赵彬,杨旭东.三种室内颗粒运动分布模拟方法的比较[J].暖通空调,2007,37(4):7-11.
    [79]薛若军,王革,蒋旭旭.带浮尘源空调房间内两相流数值研究[J].暖通空调,2005,35(7):14-19.
    [80]李孔清,龚光彩,汤广发.室内悬浮颗粒的数值模拟[J].暖通空调,2005,35(2):20-24.
    [81]李孔清,龚光彩,汤广发.悬浮颗粒数值模拟模型改进研究[J].暖通空调,2005,35(11):1-5
    [82]Ikuta,S.,Tanaka,K.,Kato K.Numerical simulation of Air and heat flow in a heater unit[C].SAE Paper 890574.
    [83]Busch J,Pien W S,Abdul Nour,et al.Computational fluid dynamics analysis and validation for a HVAC duct design[C].SAE Paper 940597.
    [84]Currle J,Harper M.,Ross F,et al.Evaluation of the HVAC system of passenger cars and prediction of the microclimate in the passenger compartment by application of numerical flow analysis[C].SAE Paper 971788.
    [85]Niklas Axelsson,Hans Enwald.Accuracy in flow simulations of climate control-Part 1:The air distribution system[C].SAE Paper.1999-01-1200.
    [86]Zenitha Chronéer and Niklas Axelsson.Accuracy in flow simulations of climate control - Part 2:The passenger compartment[C].SAE Paper.1999-01-1201.
    [87]Joachim Currle and J(u∣¨)rgen Maué.Numerical study of the influence of air vent area and air mass flux on the thermal comfort of car occupants[C].SAE Paper.2000-01-0980.
    [88]Tom Takabayashi,Yoshiichi Ozeki and Shin-ichi Tanabe.Numerical comfort imulator for thermal environment(Part 2) An application of simulator for the evaluation of solar reduction glass in a vehicle model[C].SAE Paper.2002-01-0235.
    [89]Taeyoung Han and Linjie Huang.A Model for relating a thermal comfort scale to EHT comfort index[C].SAE Paper.2004-01-0919.
    [90]Taeyoung Han and Linjie Huang.A Sensitivity study of occupant thermal comfort in a cabin using virtual thermal comfort engineering.[C].SAE Paper.2005-01-1509.
    [91]高青,吴山力.车辆空调冷负荷计算探讨[J].流体工程,1993,21(2):60-63.
    [92]吴双.汽车空调车身热负荷计算方法分析与比较[J].制冷与空调,2002,2(6):20-23.
    [93]李夔宁,杨颖,童明伟.微型汽车空调冷负荷计算[J].重庆大学学报,2002,25(8):65-69.
    [94]祁照岗,陈江平,胡伟.汽车空调风道系统CFD研究与优化[J].汽车工程,2005,27(1):103-106.
    [95]朱娟娟,陈江平,陈芝久.汽车空调双后风道结构数值模拟与优化[J].制冷技术,2004(3):8-10.
    [96]程勉宏,刘刚.汽车空调风道设计对车内噪声的影响[J].沈阳航空工业学院学报,2005,22(4):37-39.
    [97]朱娟娟,苏秀平,陈江平.汽车空调除霜风道结构优化研究[J].汽车工程,2004,26(6):747-749.
    [98]陈江平,孙召璞,阙.轻型客车室内通风的数值模拟与实验研究[J].应用科学学报,2002,20(2):169-172.
    [99]吴俊云,童灵,陈芝久.空调客车室内三维紊流流动与传热数值研究[J].上海交通大学学报,1999,33(3):331-334.
    [100]简晓文,陈江平,陈芝久.一种简便实用的汽车空调车室设计仿真方法[J].流体机械,2001,29(5):50-52.
    [101]周谟仁.流体力学泵与风机[M].北京:中国建筑工业出版社,1979.
    [102]Chen Q.Prediction of room air motion by Reynolds-stress models[J].Buildind and Environment,1996,31(3):233-244.
    [103]符济湘,俞渭雄.洁净技术与建筑设计[M].北京:中国建筑工业出版社,1986.
    [104]于玺华.现代空气微生物学[M].北京:人民军医出版社,2002.
    [105]刘强,王明星,李晶.大气气溶胶研究现状和发展趋势[J].中国粉体技术,1999,5(3):17-23.
    [106]Morawaska L,Thomas S.Bofinger N D,et al.Comprehensive chararterization of aerosols in a subtropical urban atmosphere:particle size distribution and correlation with gaseous pollutants[J].Atmospheric Environment,1998,32:2461-2478.
    [107]国家技术监督局.GB/T 14295-93空气过滤器[S].北京:中国标准出版社,1994:1-6.
    [108]白志鹏,张灿等译.气溶胶测量原理、技术及应用[M].北京:化学工业出版社,2007.
    [109]国家技术监督局.GB/12218-89一般通风用空气过滤器性能试验方法[S].北京:中国标准出版社,1990:1-8.
    [110]国家质量监督检验检疫总局,建设部.GB50243-2002通风与空调工程施工质量验收规范[S].北京:中国计划出版社,2002:92.
    [111]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [112]吴玉林,刘树红.粘性流体力学[M].北京:中国水利水电出版社,2007.
    [113]龚光彩,陈可,马扬.数值模拟V型百叶窗过滤器气粒两相场分布[J].过滤与分离,2004,3(14):19-22.
    [114]李孔清,龚光彩,汤广发.悬浮颗粒数值模拟模型改进研究[J].暖通空调,2005,11(35):1-5.
    [115]傅得薰,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [116]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [117]周美玉.工业设计人类工程学[M].北京:中国轻工业出版社,2001.
    [118]Joachim Currle and J(u∣¨)rgen Maué.Numerical study of the influence of air vent area and air mass flux on the thermal comfort of ear occupants[C].SAE Paper,2000-01-0980.
    [119]潘峰,宋传学.组合式空调机流场温度场数值模拟[J].流体机械,2005,33(增刊):266-269.
    [120]潘峰,宋传学.北京双鹤药业输液车间空调工程设计[J].暖通空调,2006,36(7):80-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700