声场与射流耦合作用下燃煤可吸入颗粒团聚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可吸入颗粒物是指通过口鼻进入人体呼吸道的颗粒物总称,通常指粒径小于10μm的颗粒物。该颗粒物对人类和环境的危害极大,而传统的除尘器捕集该类颗粒的效率却很低。利用可吸入颗粒的粘附特性,施加外场作用,使颗粒物发生团聚,可吸入颗粒平均粒径增大后容易被电除尘器等常规设备从携带气体中清除。因此可吸入颗粒物团聚作为一种预处理方法具有操作简单、效率较高、成本低廉,有望获得工业上的应用。
     本文利用流体力学软件FLUENT6.3对颗粒在流场中的运动轨迹进行模拟,分析颗粒在流场中的分布。建立了可吸入颗粒声场与射流耦合团聚实验设备,系统研究可吸入颗粒在声场、射流及声场与射流耦合作用下的冷态团聚特性。采用颗粒群动力学方程对颗粒碰撞团聚演变过程进行模拟计算,并与实验结果相比较。
     采用颗粒轨道模型模拟颗粒在流场中的运动轨迹,首次通过动量方程将声场引入模型中,声场作用使颗粒在团聚室内分布不均匀性增加,某些区域产生聚集。声场对小颗粒夹带速度高于对大颗粒的夹带速度。湍流射流团聚过程中,颗粒与湍流射流气体相互作用,不同粒径颗粒从湍流射流流场中获得能量不同,导致颗粒运动速度随颗粒粒径增大而减小。声场与射流耦合团聚过程中,射流与声场同时强化颗粒的运动。
     声场对颗粒的夹带作用导致可吸入颗粒碰撞团聚,在声场频率为1416 Hz时可吸入颗粒团聚清除效率达到最大值;声压级越高越有利于颗粒的团聚清除。团聚室内相对湿度为40-50%时,颗粒在声场中的临界停留时间为9.0-11.0 s。声场作用下不同粒径颗粒的团聚清除效率呈U型分布,较小颗粒(<1μm)与较大颗粒(5-10μm)的质量清除效率高于中间粒径颗粒(1-5μm)的清除效率。
     在可吸入颗粒团聚室中引入湍流气体射流,能够促进可吸入颗粒团聚。增大射流出口雷诺数和射流与主气流的气速比,可吸入颗粒的质量与数量清除效率均增大。当射流垂直主气流注入团聚室,可吸入颗粒的清除效率最高;射流与主气流逆向倾斜入射时,可吸入颗粒清除效率高于射流与主气流同向倾斜入射。
     声场与湍流射流耦合作用下颗粒团聚实验发现,可吸入颗粒清除效率随声场声压级增大而增加;在声场频率为1416 Hz时达到最大值。增大射流与主气流气速比能够提高颗粒清除效率。射流垂直入射,可吸入颗粒清除效率最高;但同向倾斜射流与声场耦合作用对颗粒的团聚促进效率高于逆向倾斜射流与声场耦合作用。颗粒清除效率随射流出口雷诺数增大而增加,但过高雷诺数的射流与声场的耦合作用反而使颗粒清除效率减小。
     可吸入颗粒在声场团聚、射流团聚及声场与射流耦合团聚过程中随飞灰颗粒质量浓度增加,颗粒质量与数量清除效率均降低。团聚室内气体相对湿度同样显著影响可吸入颗粒团聚清除效率,相对湿度为约40%时,可吸入颗粒清除效率达到最大值;相对湿度过高或过低,颗粒清除效率均降低。团聚后颗粒的质量中位径由2-3μm增大至5-7μm。
     对颗粒群动力学方程采用区域算法求解计算颗粒数目浓度的演化过程。计算过程中团聚核函数采用声场同向团聚核函数、经典湍流团聚核函数,将颗粒团聚清除效率的数值计算结果和实验结果进行了比较,两者基本吻合。对声场与湍流射流耦合作用下可吸入颗粒团聚核函数采用声场团聚核函数与湍流团聚核函数线性相加,对颗粒团聚动力学方程求解结果表明耦合作用下亚微米级颗粒数目浓度计算值略高于实验值;粒径较大微米级颗粒计算结果则与实验结果吻合良好。
Particles smaller than 10μm were defined as inhalable particles, which could penetrate deeply into the respiratory system. These particles cause serious healthy hazards due to being captured difficultyly by conventional filters such as electrostatic precipitators and cyclone separators. Inhalable particles were characterized by great adhesive forces due to very small size in diameter. External forces can accelerate the particles to collide and agglomerate together so that a significant shift of particle size distribution from small to large sizes. Large groups were convenient to be captured by conventional filters. Agglomeration process was an efficient preconditioning method for inhalble particles, which was easy in operation with low cost.
     FLUENT6.3, a CFD simulation software, was used to simulate the particle tracks of in flow field in order to evaluate the probability of collision. A macro-agglomeration setup was used for study the removal efficiency of inhalable particles in acoustic field, turbulent jet and the coupling effes of sound field and turbulent jet. The aerosol dynamics equation was solved by sectional methods to calculate the size distribution of inhalable particles during the agglomeration process.
     The discrete phase model in FLUENT6.3 was employed to calculate the tracks in flow field. Modified momentum equation containing acoustic field was first developed. Inhalable particles suspended in a gas flow were distributed honuniformly and even concentrated in local area due to the entrainment of acoustic field. The velocities of small particles were higher than those of large ones. For turbulent agglomeration process, inhalable particles could quickly acquire energy from turbulent jet to improve the particles velocity when particle moved to the core space of turbulent jet. The energy exchange between the fluid and particle varied with the particle size, which makes small particles have higher velocities.
     Each particle was entrained by the acoustic field in the propagation direction of the applied wave, and this entrainment served as the direct driving force leading to collision between the particles. Acoustic agglomeration showed that the maximum removal efficiency reached at the frequency of 1416 Hz. And the agglomeration of inhalable particles increased with increasing sound pressure level. The critic residence time of particles ranged from 9.0 s to11.0 s in acoustic field at 40-50% relative humidity. For inhalable particles, the small particles (<1μm) and large ones (5-10μm) were easy to remove, but mid-size particles (1-5μm) were difficult to be captured.
     A turbulent gas jet was introduced into the particle agglomeration chamber to generate the local turbulent field. Experimental findings indicated the mass and number removal efficiency increased with increasing Reynolds number in jet exit and velocity ratio of jet-to-crossflow. The gas jet at the injection angle of 90o could achieve high removal efficiency. Gas jet at the obtuse angle injection (120o or 140 o) favors the removal of mid-size particles compared with ones at the acute inclined injection (40o or 60o).
     The coupling effects of gas jet and acoustic field were employed to intensify the agglomeration process of inhalable particles. During the acoustic agglomeration and the coupling agglomeration process, the removal efficiency increased with an increase in sound pressure level, and reached to the maximum value at the frequency of 1416 Hz. During the jet agglomeration and the coupling agglomeration, the removal efficiency increased with increasing velocity ratio of jet-crossflow. The optimal agglomeraton was observed while gas jet was ejected vertical into acoustic agglomeration chamber. For jet agglomeration, increasing the Reynolds number in jet exit could enhance the removal of particles, whereas high Reynolds number in jet exit would decrease the removal value for the coupling agglomeration process.
     In agglomeration process the increased initial concentration of fly ash results in decreasing of removal efficiency of inhalable particles. When relative humidity in chamber approached 40-50%, the maximum removal efficiency was acquired, and higher or lower humidity could reduce the efficiency. After agglomeration, the mass mean median diameter of the aggregate group increased from 2-3μm to 5-7μm.
     Aerosol dynamics equation was solved by sectional method to simulate the evolution of particles number concentration. Classical orthokinetic coefficient and classical turbulent coefficient were choosen to calculate the agglomeration processes. The numerical removal efficiency in acoustic agglomeration or turbulent jet agglomeration process agreed well with experimental results and they fit well. In coupling agglomeration process, a linear combination of the acoustic kernel and turbulent kernel was used in aerosol dynamics equation. The simulation particle number concentration was slightly greater than the experimental ones for submicron particles, but they fit well for micron particles.
引文
[1]陈鹏.中国煤的分类、性质和用途,北京:化学工业出版社,2001, 379-391.
    [2]分析员.“十一五”中国经济发展的能源约束及数据分析,领导决策信息,2004,31:30-31.
    [3]车凤翔.中国城市气溶胶危害评价,中国粉体技术, 1999, 5(3): 4-10.
    [4]唐孝炎,张远航,邵敏,等.大气环境化学(第二版).北京:高等教育出版社,269-272,556-559
    [5]Ballester F, Tenias JM, Perez HS. Air pollution and emergency hospital admissions for cardiovascular diseases in Valeneia. Spain Journal Epidemiol Community Hea1th. 2001,55: 57-65.
    [6]Gary N, Sharon NY, Jane QK, eta1. An association between fine partiles and asthma emergency department visits for children in Seattle. Environment Health Perspective, 1999, 107(6): 489-493
    [7]世界卫生组织,空气质量准则.瑞典:世界卫生组织出版,2005, 9-10.
    [8]National Air Quality: Status and Trends, U.S. EPA Office of Air& Radiation, 1998.
    [9]齐文启.环境检测新技术,北京:化学工业出版社,2003, 241-253.
    [10]吴雷.城市颗粒物污染来源与特性分析.干旱环境监测, 2003,17(3):157-159.
    [11]Jerzy T, Henryk P, Kinetics of mineral matter transformation during coal combustion. Fuel, 2002, 81: 1251-1258.
    [12]Strand M, Pagels J. Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6MW biomass boiler. Energy &Fuels, 2002,16: 1499-1506
    [13]隋建才,徐明厚,丘纪华,等.可吸入颗粒物中超细颗粒物的治理与开发利用.热力发电, 2004, (12): 9-12.
    [14]Scnior C, Panagioyou T. Formation of ultra-fine particulate matter from pulverized coal combustion. Journal of American Chemistry Society, 2000, 45(1): 181-192.
    [15]Lind T, Kauppinen EI. Submicron agglomerate particle formation in laboratory and full-scale pulverized coal combustion. Journal of Aerosol Science, 1996, 27: 361-362.
    [16]Mclennan AR, Bryant GW, Ash formation mechanisms during combustion in reducing conditions. Energy & Fuels, 2000, 14: 150-159.
    [17]Clarke L and Sloss L. Trace elements-emissions from coal combustion and gasification. IEA Coal Research, IEACR/011, London, 1992, 111.
    [18]Larry LB. Char fragmentation and fly ash formation during pulverized coal combustion. Combust. Flame, 1992, 90: 174-184.
    [19]Flagan RC, Frienlander SK. Particle formation in pulverized coal combustion-a review in recent developments in aerosol Science. New York: Wiley, 1978. 25-59.
    [20]Mcnallan MJ, Yunck GJ, Elliott JF. The formation of inorganic particulates by homogeneous nucleation in gases produced by the combustion of coal.Combust. Flame, 1981, 42 (1): 45-60.
    [21]Linak WP, Wendt JOL. Trace element transformation mechanisms during coal combustion. Fuel processing technology, 1994, 39 (2): 173-198.
    [22] Reethof G, Acoustic agglomeration of power plant fly ash for environmental and hot gas clean-up, Journal of Vibration Acoustics Stress and Reliability in Design, 1988, 110(4): 552-557.
    [23]Mednikov EP. Acoustic coagulation and precipitation of aerosols. New York: Consulatants Bureau, 1965. 205-211.
    [24]Brandt O, Hiedemann E. The aggregation of suspended particles in gases by sonic and supersonic waves. Proceeding Reserch Society, 1936, 134: 1101-1110.
    [25]Dong S, Lipkens B, Cameron TM. The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols. Journal of Aerosol Science, 2006, 37: 540-553.
    [26]Hoffmann TL. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect. Journal of Aerosol Science, 1997, 28: 919-936.
    [27]黄虹宾,田志鸿,时铭显.声波团聚微粒技术的进展与分析,石油大学学报(自然科学版), 1995, 19(6): 126-130.
    [28]Temkin S. Gas dynamic agglomeration of aerosols: I. Acoustic waves. Physical of Fluids, 1994, 6: 2294-2303.
    [29]Song L. Modelling of acoustic agglomeration of fine aerosol particles. Ph.D. thesis. The Pennsylvania State University. 1990.
    [30]Hoffmann TL, Chen W, Koopmann GH, etal. Experimental and numerical analysis of bimodal acoustic agglomeration. Transactions of ASME, 1993, 115: 232-240.
    [31]Gonzalez I, Hoffman TL, Gallego JA. Theory and calculation of sound induced particle interactions of viscous origin. Journalof Vibration and Acoustics, 2000, 86: 784-797.
    [32]Gonzalez I, Elvira L, Hoffman TL, etal. Numerical study of the hydrodynamic interaction between aerosol particles due to the acoustic wake effect. Journalof Vibration and Acoustics, 2001,87: 454-460.
    [33]Hoffmann TL, Koopmann GH. Visualization of acoustic particle interaction and agglomeration: Theory and experiments. Journal of the Acoustical Society of America, 1996, 99: 2130-2141.
    [34]Gonzalez I, Hoffman TL, Gallego JA. Visualisation of hydrodynamic particle interactions: Validation of a numerical model. Acta Acustica united with Acustica, 2002, 88:19-26.
    [35]Hoffmann TL. Environmental implications of acoustic aerosol agglomeration, Ultrasonics, 2000, 38: 353-357
    [36]Song L, Koopmann GH, Hoffmann TL. Experimental and numerical analysis of bimodal acoustic agglomeration. Journalof Vibration and Acoustics, 1994, 116 (4): 208-214
    [37] Michael VJ, Rawling DC. Sonic agglomeration of aerosol particles. Water, Air, and Soil Pollution, 1976, 5: 319-334.
    [38]张济忠.分形,北京:清华大学出版社, 1995,5-9.
    [39]郑世琴,刘淑艳,黄虹宾,等.用分形理论处理煤飞灰颗粒在声场中的团聚现象,燃烧科学与技术, 1999, 5(2):168-174.
    [40]Funcke G, Frohn A. Investigation of the influence of different parameters on the acoustic agglomeration process using a numerical simulation, Journal of Aerosol Science, 1995, 26(9): S147-148.
    [41]Cheng MT. Sonic agglomeration of ammonium-Chloride aerosols in intense sound fields, Ph.D. thesis. State University of New York At Buffalo, 1981.
    [42]Chen C. Study on the effect of acoustic agglomeration of monodispersed standard-Size aerosols, Master's thesis, graduate institute of environmental science and engineering, Feng Chia University, Taiwan, 2004.
    [43]Ricra F. Ultrasonic agglomeration of micron aerosols under standing wave conditions. Journal of Sound and Vibration, 1986, 110: 413-427.
    [44]姚刚,沈湘林.基于分形的超细颗粒声波团聚数值模拟.东南大学学报(自然科学版), 2005, 35(1):145-148.
    [45]Tiwary R, Reethof G. Numerical simulation of acoustic agglomeration and experimental verification. Journal of Vibration Acoustics Stress and Reliability in Design, 1987, 109: 185-191
    [46]Groguss P. The applications of airborne and liquid borne sounds to industrial technology Ultrasonics Science and Technology, 1964, 12(1): 25-31
    [47]姚刚,赵兵,沈湘林.燃煤可吸入颗粒物声波团聚效果的实验研究和数值分析.热能动力工程, 2006, 21(2):175-178.
    [48]姚刚,盛昌栋,杨林军,等.燃烧超细颗粒声波团聚的谱分布数值模拟.燃烧科学与技术, 2005, 11(3): 273-277.
    [49]陈厚涛,赵兵,徐进,等.燃煤飞灰超细颗粒物声波团聚清除的实验研究,中国电机工程学报, 2007, 27(35): 28-32.
    [50]Reethof G. Acoustic agglomeration of power plant fly ash for environmental and hHot gas clean-up. Journal of Vibration Acoustics Stress and Reliability in Design, 1988, 110: 552-558.
    [51]Rodriguez-Marto JJ, Gomez-Moreno FJ, Martin-Espigares M, etal. Acoustic agglomeration for electrostatic retention of fly ashes at pilot scale. Journal of Aerosol Science, 1996, 127: 621-622.
    [52]Gallego-Juarez JA,Sarabia ERiera-Franco, Rodiguze-CorralG, etal. Application of acousticagglomeration to reduce fine particle emissions from coal combustion plants. Environment Science & Technology. 1999, 33:3843-3849.
    [53]Sarabia E Riera-Franco, Elvira-Segura L, Gonzalez-Gomez I. etal. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts. Ultrasonics, 2003,41: 277-281.
    [54] Komarov SV, Yamamoto T, Uda T, etal. Acoustically controlled behavior of dust particles in high temperature gas atmosphere. ISIJ International, 2004, 44 (2): 275-284.
    [55]Rodi W.湍浮力射流与羽流,青岛:海洋出版社, 1991,121-125.
    [56]余常昭.环境流体力学导论.北京:清华大学出版社, 1998,135-156.
    [57]Theodoridis GS, Lakeha D, Rodi W. Three-dimensional calculations of the flow field around a turbine blade with film cooling injection near the leading edge. Flow, Turbulence and Combustion.2001, 66: 57-83.
    [58]Atkinson KN, Khan ZA. Experimental investigation of opposed jets discharging normally into across-stream. Journal of Fluid Mechanics, 1982, 115: 493-504.
    [59]Kohii A. Bogard D G. Adiabatic effectiveness, thermal fields, and velocity fields for film cooing with large angle injection .ASME Journal of Turbomachinery, 1995, 119(2):352-358.
    [60]Lee SW, Lee JS, Ro ST. Experimental study on the flow characteristics of stream wise inclined jets in crossflow on flat plat. ASME Journal of Turbomachinery, 1994, 116: 97-105
    [61]Quinn W, Militzer J. Experimental and numerical study of a turbulent free square jet. Physics of Fluids, 1988, 31(5): 1017-1025
    [62]Quinn W. Stream wise evolution of a square jet cross section. AIAA Journal, 1992, 30(2): 2852-2857.
    [63]Kamotani Y, GreberI. Experiments on a turbulent jet in across flow. AIAA Journal, 1972, 10(11):1425-1470.
    [64]Crabb D, Durao DFC, Whitelaw JH. Around jet normal to a crossflow. Transactions of ASME, Journal of Fluid Engineering, 1981, 103: 142-153.
    [65]Andreopoulos J, Rodi W. Experimental investigation of jets in a crossflow. Journal of Fluid Mechanics, 1984, 138: 93-127.
    [66]Andreopoulos J. On the structure of jets in a crossflow. Journal of Fluid Mechanics, 1985, 157: 163-197.
    [67]Sherif SA, Pletcher RH. Measurements of the flow and turbulence characteristics of round jets in crossflow. Journal of Fluids Engineering, 1989, 111(1): 165-171.
    [68]Smith SH, Mungal MG. Mixing, structure and scaling of the jet in crossflow. Journal of Fluid Mechanics, 1998, 357(1):83-122.
    [69]Johari H. Penetration and mixing of fully modulated turbulent jets in crossflow. AIAA Journal, 1999, 37(7):842-850.
    [70]Hussain AK. Coherent structures-reality and myth. Physics of Fluids, 1993, 26(10): 2816-2850
    [71]Fiedler HE. Coherent structures in turbulent flow. Progress in aerospace science. 1998, 25(3): 231-269.
    [72]Mousse ZM, Trischka JW, Eskinazi S. The neareld in the mixing of a round jet with across-stream, Journal of Fluid Mechanics, 1977, 80: 49-80.
    [73]Sykes RI, Lewellen WS, Parker SF. On the vorticity dynamics of a turbulent jet in a crossflow. Journal of Fluid Mechanics, 1986, 168: 393-413.
    [74]Krothapalli A, Lourenco L, Buchlin JM. Separated flow upstream of a jet in a crossflow. AIAA Journal., 1990,28:414-420.
    [75]Kelso RM., Smits AJ. Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Physics of Fluids, 1995, 7:153-158.
    [76]Fric TE, Roshko A. Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics, 1994, 279(1):147-153.
    [77]Heven BA, Kurosaka M. Kidney and anti-kidney vortices in crossflow jets. Journal of Fluid Mechanics, 1997, 352: 27-64.
    [78]Chang YR, Chen KS. Prediction of opposing turbulent line jets discharged laterally into a confined crossflow. International Journal of Heat and Mass Transfer, 1995, 38(9): 1693-1703.
    [79]Chang Y R, Chen K S. Measurements of opposing heated line jets discharged a tanangle to a confined crossflow, International Journal of Heat and Mass Transfer, 1994,37(12):2935-2946.
    [80]Irmisch S. Simulation of film-cooling aerodynamics with a 2-D Navier-Stokes solver using unstructured dgrids. ASME 95-GT-024, 1995.
    [81]Vogel DT. Navier-Stokes calculation of turbine flows with heat transfer and film cooling, International symposium gas turbines,1993.
    [82]Lakehal D, Theodoridis G, Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model. International Journal of Heat and Fluid Flow, 2001, 22(2):113-122.
    [83]Rodi W, Turbulence models and their application in hydraulics(3rd). Oxfordshire: Taylor& rancis Group,1993,45-52.
    [84]Shyy W. Computational techniques for complex transport phenomena, Cambridge: Cambridge University Press, 1997.
    [85]Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics-the finite volume method, Longman Scientific and Technology, 1995.
    [86]Lakehal D, Theodoridis G, R odi W. Computation of film cooling of a flat plate by lateral injection from a row of holes. International Journal of Heat and Fluid Flow, 1998,19(5):418-430.
    [87]Lakehal D, Thiele F. Sensitivity of turbulent shedding flows past cylinders to non-linear stress-strain relations and Reynolds stress models. Computers and Fluids, 2001,30(1):21-35.
    [88]Theodoridis G, Lakehal D, Rodi, W. 3D calculations of the flow field around a turbine blade with film cooling injection near the leading edge.Flow, Turbulence and Combustion, 2001, 66(1): 57-83.
    [89]Rodi W. Experience with two-layer models combining the k-εmodel with a one-equation model near the wall, AlAA 91-0216, 1991.
    [90]Rai MM. Navier-Stokes simulations of blade-vortex interaction using high-order accurate upwinds chemes, AlAA 87-0543, 1987.
    [91]Tamamidis P, Assanis D N. Three-dimensional incompressible flow calculations with alternative discretization schemes. Nmerical Heat Transfer(Part B), 1993, 24(1):57-76.
    [92]吴海玲,陈听宽,罗毓珊.应用不同紊流模型的二维横向射流传热数值模拟研究,西安交通大学学报, 2001 35(9): 903-907.
    [93]夏丽萍,林杰明.圆射流在非恒定横向流中的掺混扩散.水利学报,2001, 5: 82-88.
    [94]Azzi A, Lakehal D. Perspectives in modeling film-cooling of turbine blades by transcending conventional two-equation turbulence models, Proceedings of IMECE'01, New York, 2001.
    [95]Lebceuf F, Huang GP. Model and computation of discrete jets in crossflow, European Journal of Mechanics, B:Fluids, 1991, 10(6):629-650.
    [96]Demuren AO, Characteristics of three-dimensional turbulent jets in crossflow. International Journal of Engineering Science, 1993, 31(6):899-913.
    [97]Kim SW, Benson TJ. Fluid flow of a row of jets in crossflow-a numerical study. AIAAJ, 1993, 31(5):806-811.
    [98]Kim SW, Benson TJ. Calculation of a circular jet in crossflow with a Multiple-Time-Scale turbulence model. International Journal of Heat and Mass Transfer, 1992, 35(10):2357-2365.
    [99]Garg VK, Rigby DL. Heat transfer on a film-cooled blade-effect of hole physics. International Journal of Heat and Fluid Flow, 1999, 2(1): 10-25.
    [100]Walters KD, Leylek JH. Impact of film-cooling jets on turbine aerodyne microsses, ASME Journal of Turbomachinery, 2000, 122(3): 537-545.
    [101]Garg VK, Ameri A. Comparison of two-equation turbulence models for prediction of heat transfer on film-cooled turbine blades. Numerical Heat Transfer, 1997, 31(3): 347-371.
    [102]Olsson M .Large eddy simulation of turbulent jets, Ph.D. Thesis, Royal Institute of Technology, Sweden, 1997.
    [103]刘高文,刘松龄.涡轮叶栅前缘上游端壁气膜冷却的流场实验研究.航空动力学报,2001, 16(2): 135-141.
    [104]Yuan LL, Street RL .Large-eddy simulation of a round jet in cross flow. Journal of Fluid Mechanics, 1999, 379: 71-104.
    [105] Pratsinis SE. Flame Aerosol Synthesis of Ceramic Powders. Progress in Energy and Combustion Science, 1998, 24(3): 197-219.
    [106]Wena Z, Yuna S, Thomsona M, etal. Modeling soot formation in turbulent kerosene/air Jet diffusion flames. Combustion and Flame, 2003, 135(3): 323-340.
    [107]Schwarzer HC, Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles. AIChE Journal, 2004, 50, 3234-3247.
    [108]Shaw, R.A. Particle-turbulence interactions in atmospheric clouds. Annual Review of Fluid Mechanics, 2003, 35(2):183-227.
    [109]Saffman PG, Turner JS. On the collision of drops in turbulent clouds. Journal of Fluid Mechanics, 1956, 1: 16-30.
    [110]Krone RB, Estuarine Transport Processes: Symposium. University of South California Press. 1978.
    [111]Obermair S, Gutschi C, Woisetschl?ger J, etal. Flow pattern and agglomeration in the dust out -let of a gas cyclone investigated by phase Doppler anemometry. Powder &Technology, 2005, 156: 34-42.
    [112]许世森.细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究.动力工程, 1999, 19(4):310-313
    [113]Lu S, Ding Y, Guo J. Kinetics of fine particle aggregation in turbulence. Advances in Colloid and Interface Science, 1998,78:197-235.
    [114]Serra T and Casamitjana X. Modelling the aggregation and break-up of fractal aggregates in a shear flow. Applied Scientific Research,1998, 59: 255-268,.
    [115]Serra T, Colomer J, Casamitjana X, Aggregation and break up of particles in a shear flow. Advances in Colloid and Interface Science, 1997,187: 466-473.
    [116]Burban PY, Lick W, Lick J. The flocculation of fine-grained sediments in estuarine waters. J. Geophysics Research, 1989, 94(C6): 8323-8330.
    [117] Duru P, Koch D L, Cohen C. Experimental study of turbulence-induced coalescence in aerosols. Int. J. Multiphase Flow, 2007, 33(9): 987-1005.
    [118]Chun J, Koch DL. Coagulation of monodisperse aerosol particles by isotropic turbulence. Physics of Fluids, 2005,17(2), 102-115.
    [119] Dodin Z, Elperin T. On the collision rate of particles in turbulent flow with gravity. Physicsof Fluids, 2002, 24(8): 2921-2924.
    [120] Kim DS, Hong SB, Kim YJ, etal. Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. Journal of Aerosol Science, 2006, 37:1781-1787.
    [121]Park SH, Jung CH, Jung KR, Lee BK, Lee KW. Wet scrubbing of polydisperse aerosols by freely falling droplets. Journal of Aerosol Science, 2005, 36: 1444-1458
    [122] Li X, Bruce E. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid. Environment Science & Technology, 1997, 31(4), 1237-1242
    [123]Yadha V, Helble JJ. Modeling the coalescence of heterogeneous amorphous particles. Journal of Aerosol Science, 2004,35:665-681.
    [124]Zucca A, Marchisio DL, Barresi AA,etal. Implementation of the population balance equation in CDF codes for modelling soot formation in turbulent flames. Chem Eng Sci 2006, 61:87-95.
    [125]Mao D, Edwards JR, Kuznetsov AV, Srivastava R. A model for fine particle agglomeration in circulating fluidized bed absorbers. Heat and Mass Transfer, 2002, 38: 379-388.
    [126]Alipchenkov V, Zaichik L, Solovev A. Influence of condensation on coagulation of aerosol particles during their Brownian and turbulent motion. Heat Transfer Research, 2004, 35(1/2): 99-107.
    [127]Brunk BK, Koch DL, Lion LW. Observations of coagulation in isotropic turbulence. Journal of Fluid Mechanics 1998,371: 81-107.
    [128] Stelios R. PDF Method for Population Balance in Turbulent Reactive Flow. Chemical Engineering Science, 2007, 62(23): 6865-6878.
    [129]Chun J, Koch DL, Rani SL, etal. Clustering of aerosol particles in isotropic turbulence. Journal of Fluid Mechanics. 2004,536(1): 219-251.
    [130]Sundaram S, Collins LR. Collision statistics in an isotropic particle-laden turbulent suspensions. Part 1. Direct numerical simulations. Journal of Fluid Mechanics, 1997, 335: 75-109.
    [131] Reade WC, Collins LR. Effect of preferential concentration on turbulent collision rates. Physics of Fluids, 2000, 12: 2530-2540.
    [132] Zaichik LI, Alipchenkov VM. Pair dispersion and preferential concentration of particles in isotropic turbulence, Physics of Fluids, 2003,15(6): 1776-1787
    [133] Derevich IV. Particle collision in a turbulent flow, Fuid Dynamics, 1996, 34(2):249-260
    [134]郭庆杰,李彦,刘会娥等.一种流化床粘性颗粒包裹装置. CN.200410075557.8.
    [135]Guo Q, Li Y, Wang M, etal. Fluidization behaviors for coating cohesive particles. Chemical Engineering and Technology., 2005, 28(7):752-756.
    [136]Guo Q, Li Y, Wang M,etal. Fluidization characteristics of SiO2 nanoparticles in an acoustic fluidization bed. Chemical Engineering and Technology, 2006, 29(1):78-86.
    [137]Liu H, Li Y, Guo Q. Fluidization quality improvement for cohesive particles by fine powder coating. Industrial and Engineering Chemistry Research, 2006, 45(5):1805-1810.
    [138]Guo Q, Tang Z, Yue G. Flow pattern transition in large jetting fluidized bed with double nozzles, AIChE Journal, 2001, 47(6):1309-1317.
    [139]郭慕孙,李佑楚,李洪钟,等.化学工程手册.北京:化学工业出版社, 1987,84-97.
    [140]金涌,祝京旭,王展文,等.流态化工程原理.北京:清华大学出版社,2001,17-37.
    [141]马大猷.现代声学理论基础.北京:科学出版社, 2004,138-145.
    [142]杜功焕.声学基础(第二版).南京:南京大学出版社, 2001, 203-211.
    [143]何祚镛,赵玉芳.气溶胶测量.北京:国防工业出版社, 1981,397-402.
    [144]白志鹏,张灿等译.气溶胶测量.北京:化学工业出版社,2007, 155-160,297-321.
    [145]霍德华.气体中的细粒.北京:化学工业出版社, 1986, 56.
    [146]孙聿峰译.气溶胶技术.哈尔滨:黑龙江科技出版社, 1989,67-79.
    [147]胡岳华,徐敬.细粒浮选体系中颗粒间静电及范德华相互作用.有色矿冶, 1994,(2):16-21.
    [148]弗里德兰德.烟、尘和霾雾气溶胶性能基本原理.北京:科学出版社, 1983,153-179.
    [149]S.图梅.大气气溶胶.北京:科学出版社,1984,79-91.
    [150]张殿印,王纯.除尘器手册.北京:化学工业出版社,2005.
    [151]岑可法,樊建人.工程气固多相流动的理论与计算.杭州:浙江大学出版社, 1990, 303-375.
    [152]章澄昌,周文贤.大气气溶胶教程.北京:气象出版社,1995,71-85,118-121.
    [153]杨训仁,陈宇.大气声学.北京:科学出版社,2007,60-66.
    [154]Temkin S. Elements of acoustic. New York, Wiley,1981,175-201.
    [155]Temkin S, Leung CN. On the velocity of a rigid spheres in a sound wave. Journal of Sound and Vibration, 1976,49:75-92.
    [156]戴干策,陈敏恒.化工流体力学(第二版).北京:化学工业出版社,2005,118-119.
    [157]Sportisse B, Debry E. Solving aerosol coagulation with size-binning methods. Applied Numerical Mathematics, 2007,57(7):1008-1020
    [158]Jeong JI, Choi MA. A sectional method for the analysis of growth of polydisperse non- spherical particles undergoing coagulation and coalexcence. Applied Numerical Mathematics, 2001, 32(5):565-582.
    [159]Limtrakul S, Chalermwattanatai A, Unggurawirote K,etal. Discrete particle simulation of solids motion in a gas-solid fluidized bed. Chemical Engineering Science, 2003,58: 915-921.
    [160]葛蔚.颗粒流体系统的微观模拟和多尺度分析.北京:中国科学院过程工程研究所. 2001.
    [161]Ge W, Li J. Macro-scale phenomena reproduced in microscopic system-pseudo -particle model of fluidization. Chemical Engineering Science, 2003,58(8):1565-1585.
    [162]Manoucheri M, Ezekoye OA. Polystyrene soot agglomeration enhancement in an ultrasonic acoustic field. Journal of Hazardous Waste and Hazardous Materials, 1996, 13(2):121-130
    [163]Ezekoye OA, Wibowo YW. Simulation of acoustic agglomeration processes using a sectional algorithm. Journal of Aerosol Science, 1999, 30(9):1117-1138.
    [164]Dong S, Lipkens B, Cameron TM. The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosol. Journal of Aerosol Science, 2006, 37(5): 540-553.
    [165]Fukagata K, Zahrai S, Bark FH. Dynamics of Brownianparticles in a turbulent channel flow. Heat and MassTransfer, 2004, 40(9): 715-726.
    [166]Podczeck F, Newton JM., James MB. Influence of relative humidity of storage air on the adhesion and autoadhesion of micronized particles to particulate and compacted powder surfaces. Journal of Colloid and Interface Science, 1997, 187(2): 484-491.
    [167]Pratsinis SE. Flame aerosol synthesis of ceramic powders. Progress in Energy and Combu -stion Science, 1998, 24(3): 197-219.
    [168]Wena Z, Yuna S, Thomsona M, etal. Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combustion and Flame, 2003, 135(3): 323-340.
    [169]Schwarzer HC, Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles. AIChE Journal, 2004, 50(12): 3234-3247.
    [170]Wang LP, Wexler AS, Zhou Y. Statistical mechanical description and modeling of turbulent collision of inertial particles. Journal of Fluid Mechanics, 2000, 415: 117-153.
    [171]Duru P, Koch DL, Cohen C. Experimental study of turbulence-induced coalescence in aerosols. International Journal of Multiphase Flow, 2007, 33(9): 987-1005.
    [172]Derevich I V. Coagulation kernel of particles in a turbulent gas flow. International Journal of Heat and Mass Transfer, 2007, 50(7-8): 1368-1387.
    [173]Dominguez A, Aartrijk M, Castello L, etal, Particles-laden Flow. Houten: Springer Netherlands, 2007, 361-362.
    [174]Kohii A, Bogard DG. Adiabatic effectiveness, thermal fields, and velocity fields for film cooing with large angle injection, ASME Journal of Turbomachinery, 1997, 119(2):352-358.
    [175]Maximova N, Dahl O. Environmental implications of aggregation phenomena: current understanding. Current Opinion in Colloid and Interface Science, 2006, 11 (4): 246-266.
    [176]蔡丹云,郑水华,樊建人,等.质量浓度比对气固两相圆湍射流影响的实验研究.动力工程, 2005, 25(3): 408-411.
    [177]Li X, Logan BE. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid. Environment Science & Technology. 1997, 31: 1237-1242.
    [178]Haep S, Drosten U, Otto E, etal. Modelling the influence of acoustic agglomeration on parti -cle size distribution by modal dynamic equation. Journal of Aerosol Science 1997, 28: S331-S332.
    [179]Ezekoye OA, Wibowo YW.Simulation of acoustic agglomeration processes using a sectional algorithm. Journal of Aerosol Science, 1999, 30:1117-1138.
    [180]Sheng C, Shen X. Modelling of acoustic agglomeration processes using the direct simulation Monte Carlo method. Journal of Aerosol Science, 2006, 37:16-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700