液态钎料与铝基复合材料超声润湿复合机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝基复合材料(AlMMCs)具有比一般合金材料优良的比强度、比刚度、尺寸稳定性和耐磨损等性能,尤其是近年来该种材料制备技术的快速发展,成本大为降低,在航空航天、电子和汽车等领域的应用将越来越广泛。但是,由于该类材料增强相与基体物理、化学性能的巨大差异,焊接性较差。这使加工具有一定复杂形状、难以通过一次成型的功能结构件尤为困难。因此,高效、可靠的连接技术是铝基复合材料扩大应用亟待解决的关键问题。
     制约铝基复合材料接头质量及其应用的两个基本问题是实现填充材料同时与基体材料和增强相材料的物理润湿复合和复杂构件在非真空条件下的可靠连接。结合超声波的特点,以Al2O3、SiC颗粒增强铝基复合材料为主要对象,通过研究超声波作用下液态钎料与AlMMCs的润湿复合行为,创新性地提出了该种材料非真空、无钎剂条件下的超声波毛细焊接工艺,并为了优化接头性能,研究了液态焊缝中增强相颗粒运动、迁移和分布规律以及陶瓷颗粒/钎料复合体的凝固行为,获得了可控的、复合化的焊缝组织,接头性能显著提高,为铝基复合材料可靠、高效地焊接开辟了一条新途径。主要研究工作及结论包括:
     超声波作用下液态钎料与AlMMCs的润湿行为研究发现,大气环境中、从母材导入超声波的条件下,超声振幅大于临界值10μm后,液态钎料可在铝基复合材料表面实现良好的润湿铺展,当超声振幅小于10μm时,钎料润湿铺展的情况与钎料放置的位置有关。采用有限元的方法对润湿界面的声压场的数值模拟结果表明,只有当超声振幅达到10μm后,润湿界面才可产生较大的声负压,而当超声振幅小于10μm时,只有局部的润湿界面产生较大的声负压,而其它润湿界面处的声负压值接近零。计算的结果初步说明了实验观察到的结果。
     Zn-Al钎料可通过铝基复合材料表面氧化膜的(裂缝)通道潜入到氧化膜/基体界面并沿基体表面发生铺展,形成“皮下潜流”现象,而且表现出“线性铺展”的行为。线性铺展的速率随加热温度、母材表面粗糙度及吸气量的增加显著提高,而与钎料量无关。当潜流发生时,母材表面的氧化膜首先被潜流金属剥离后在超声波作用下破碎;当潜流现象不发生时,钎料首先通过氧化膜裂缝与母材基体发生扩散,导致基体液化,液化区表面的氧化膜在超声波作用下破碎。钎料与母材润湿结合后,钎料成为陶瓷颗粒增强的复合材料:亚微米级的颗粒以颗粒团的形式存在,而微米级的以单个颗粒的形式存在。
     基于超声润湿行为的基础上,探讨了超声辅助毛细填缝焊接过程的可行性。研究发现,在不润湿的基础上,超声波作用可实现钎料的水平填缝过程,钎料的液-气界面初始为凸界面,当界面润湿改善后转变为凹界面。较佳的焊接工艺为:超声波振幅10~25μm,作用时间大于3s,预留间隙100~400μm。接头中残留的氧化膜往往是断裂源,导致接头强度低。钎料填缝结束后,焊缝各个区域氧化膜的破除并不同步,需延长超声波作用时间使润湿界面的氧化膜彻底破除。无氧化膜及陶瓷颗粒增强的接头强度取决于钎料的强度。为了提高接头性能,有必要形成复合焊缝,但需保证其中的增强相均匀分布。
     为了获得复合焊缝,可将复合材料共晶液相层中的陶瓷颗粒通过超声作用,分散、混合到液态钎料层中,适宜的超声波振幅和作用时间范围分别为10~25μm和2~10s,振幅过小、作用时间过短不足以使颗粒分布均匀,振幅过大容易导致熔体发生雾化现象,作用时间过长熔体中出现颗粒聚集现象。透明介质中颗粒运动迁移的动态观察揭示了超声波作用下介质中的声流模式,以及超声振幅、熔体粘度对声流模式、颗粒分散的影响。
     为了控制陶瓷颗粒在液态焊缝中的上浮现象,通过实验及Stokes理论计算了颗粒的上浮速率。实验结果表明随着温度和颗粒的尺寸的增加,颗粒的上浮速率急剧增加;颗粒的体积份数提高时,颗粒的上浮速率几乎线性降低。理论计算值的变化规律与实验结果一致,但在数值上有所偏差,在此基础上提出了修正系数。修正后的上浮速率为:温度的影响:Vm = ( 0.0116Tm?4.2902)Vh;体积份数的影响: Vm = 0.414Vh(C<10%) ,Vm = ( 0.6591?0.0236C)Vh (C>10%)。
     常规凝固过程中基体晶粒的过度生长是导致增强相颗粒发生偏聚的主要原因。利用超声波对SiCp/Zn-Al复合体凝固过程中的晶粒细化及颗粒分布控制研究表明:超声波的作用方式对基体组织的细化以及颗粒的分布有非常重要的影响,采取适当的恒温处理,在一定的固相份数范围内(30~45%),利用先结晶的固相的“原位钉扎”作用,可避免颗粒宏观的偏聚,实现颗粒的均匀分布,同时又可获得组织细化的效果。
     超声波作用“破碎已形成的枝晶”在组织细化过程中起到了主导的作用。在超声波振幅不变的条件下,熔体的粘度决定了超声波细化的效果,当粘度超过1.0×10-4Pa·s后,组织细化不明显。经过晶粒细化及颗粒分布控制的复合体,强度提高近25%。
     焊缝中陶瓷颗粒分布控制的物理模拟的规律同样适用于实际焊接过程,经过优化控制的焊缝中颗粒分布均匀,基体组织细化,接头强度提高近20%。初步的工程应用研究表明,提出的铝基复合材料超声辅助焊接工艺,工艺过程简捷,实用性强,成功实现了工程构件的焊接,接头满足了高钎透率、高强度以及具有复合结构的要求。
Aluminum metal matrix composites (AlMMCs), which possess higher specific strength, stiffness, dimensional stability and wear resistance compared with unreinforced aluminum alloys, are of great potential uses in aerospace, electronic and transportation industries due to the lowered cost associated with the rapid development in material fabrication technology. However, these materials own poor weldability because of the great difference in the physical and chemical properties between the reinforcement and the matrix. This makes it difficult to fabricate complex components which can not be made in one processing step. So, efficient and reliable welding technology is the key problem that widing the use of AlMMCs must face to.
     The two basic problems that hinder the quality and application of AlMMCs joint are the wetting of both the reinforcement and the matrix by filler metal at the same time and joining complex component under vaccum-free condition. With these in mind, the ultrasonic assisted wetting of AlMMCs by liquid filler in air is investigated and an ultrasonic assisted capillary joining technology is firstly proposed. Furthermore, for obtaining a weld reinforced with particles (composite wled) and thus increasing the joint property, migration of particles in the liquid filler metal and solidification of particle/filler composite metal under ultrasonic action are investingated. As a result, a composite technology of particle-reinforced bond region is obtained and the property of bonded joint is significantly increased. The major research efforts and results of the present study include:
     The investigation of ultrasonic assisted wetting of AlMMCs in air shows that, with imposing ultrasonic on the base metal, satisfied spreading of liquid filler is obtained when ultrasonic vibration amplitude is higher than 10μm and the spreading of liquid filler is influenced by the droplet location when the ultrasonic vibration is less than 10μm. The acoustic pressure field at the wetting interface is calculated by using the acoustic analysis component enclosed in the finite element software ANSYS. The simulating results show that, only when the applied ultrasonic vibration amplitude exceeds 10μm, is the acoustic pressure at the wetting interface high enough to cause the cavitation effect; when the applied ultrasonic vibration amplitude is lower than 10μm, the acoustic pressure at local wetting interface is nearly equal to zero, demonstrating that acoustic cavitation would not occur in this case. These simulating results preliminarily explain the observed wetting experiment results.
     Zn-Al filler can penetrate to the substrate oxide film/substrate metal interface through the crack in the oxide and spreads on the bare substrate, leading to the formation of undermining phenomena. It is found the the propagation of undermining is linear with time before the depletion of the filler droplet. The undermining velocity at the‘linear’spreading stage is independent of the volume of the filler droplet, but increases with temperature, surface roughness and gaseous products absorbed by the substrate. When undermining occurs during wetting, the oxide film is firstly detached from the base metal surface by the undermining filler, and subsequently broken by the ultrasonic cavitation. When undermining is not present during wetting, liquid filler firstly diffuses into the base metal through the crack of the surface oxide, causing melting of the base metal. Consequently, the bond between the surface oxide film and the base metal is weakened and the oxide film can be eliminated easily by the ultrasonic cavitation. During wetting of the AlMMCs, sub-micron particles in the form of particle block, while micron particles individually transfer into the liquid filler and the liquid filler becomes a particle-reinforced material ultimately.
     Based on the ultrasonic assisted wetting result, the possibility of ultrasonic assisted infiltrating of joint gap in air is investigated. It is found that horizontal infiltration of a“non-wetting”capillary does occur under ultrasonic induction, during which the liquid-gas interface is convex at the beginning and transits into concave one after the interface wetting is improved. An optimum bonding technology is: ultrasonic vibration amplitude 10~25μm, vibration time >3s and joint gap 100~400μm. The oxide film remaining in the bond region is conventionally the fracture source. So, it is necessary to prolong ultrasonic vibration time to insure the thorough removal of the oxide film after joint filling, as the oxide film at the wetting interfaces could not be broken simultaneously. To improve the joint strength, forming composite weld (i.e. particle reinforced weld) is needed because the strength of the weld without particle reinforcement is strongly restricted by that of the filler metal.
     One way to form composite weld is by incorporating the particles in the eutectic liquid layer of the base metal into the liquid filler. The optimum processing parameters are: ultrasonic vibration amplitude 10~25μm and viration time 2~10s. The dynamic observations of particle migration in the transparent medium illustrate the styles of acoustic stream under ultrasonic vibration, as well as the effect of ultrasonic vibration amplitude and viscosity of medium on the acoustic streams and the associated particle dispersing result.
     In order to avoid the particle floating in the liquid filler, particle floating velocity is calculated by both the experimental and theoretical methods. Experimental results show that particle floating velocity increases significantly with heating temperature and paticle size, and decreases linearly with increasing particle volume fraction. The changing trend of theoretically calculating values is similar as those of the experimental, however, deviations still exist and corrections are proposed. The corrected floating velocities are: regarding T~ Vm = ( 0.0116Tm?4.2902)Vh; regarding particle volume fraction~ Vm = 0.414Vh(C<10%), Vm = ( 0.6591?0.0236C)Vh (C>10%).
     Particle pushing by the solid-liquid interface due to the over growth of matrix grain is mostly responsible for particle segregation in the traditional solidification. The results on control of grain refining and particle distribution in SiCp/Zn-Al melt show that the ultrasonic processing style has significant effect on the solidified microstructure. When proper isothermal ultrasonic processing is applied (the solid grain fraction is in the range of 30~45%), SiC particles are mechanically locked by solid grains, thus avoiding severe particle migration in the melt. In this case, grain refinement as well as uniform particle distribution is obtained.
     Disrupting the dendritics by the ultrasonic cavitation and streams is the main source of grain refining. Under constant ultrasonic vibration, the degree of grain refinement is dependent on the viscosity of the melt, which is rather low as the melt viscosity is higher than 1.0×10-4Pa·s. The strength of SiCp/Zn-Al composite subjected to proper treatment is increased closely up to 25%.
     The optimization law of grain refinement and particle distribution related to SiCp/Zn-Al composite also works in the case of joining of AlMMCs and the joint strength can be increased nearly up to 20%. The preliminary investigation on engineering use of the proposed ultrasonic assisted bonding technology for AlMMCs shows that this joining technolgy can successfully produce components including joints with high bonding area, high strength and composite structure similar as the base metal and is characterized by brief operation and high practicability, which meets the requirement of the engineering use.
引文
1 A. R. Kennedy. The microstructure and mechanical properties of Al-Si-B4C metal matrix composites. Journal of Materials Science. 2002, 37: 317-323
    2 J. M. Gómez De Salazar, M. I. Barrena. The influence of Si and Mg rich phases on the mechanical properties of 6061 Al-matrix composites reinforced with Al2O3. Journal of Materials Science. 2002, 37: 1497-1502
    3 G. Costanza, R. Montanari, F. Quadrini, et al. Influence of Ti coatings on the fatigue behaviour of Al-matrix MMCs. Part I: Fatigue tests and materials characterization. Composites: Part B. 2005, 36: 439-445
    4 Z. Q. Yu, G. H. Wu, L. T. Jiang, et al. Effect of coating Al2O3 reinforcing particles on the interface and mechanical properties of 6061 alloy aluminium matrix composites. Materials Letters. 2005, 59: 2281-2284
    5 A. S. Brown. Metal matrix composites: The next generation. Aerosp. Am. 1998, 36(6): 26-27
    6 W. R. Mohn, D. Vukobratorich. Recent applications of metal matrix composites in precision instruments and optical systems. J. Mater. Eng. 1988, 10: 225-231
    7 W. R. Mohn. Engineered metal matrix composites for precision optical systems. AMPE Journal. 1988, 1: 26-32
    8 T. E. Allison, G. S. Cole. Metal-Matrix composites in the automotive industry: opportunities and challengers. JOM. 1993, 45(2): 19-25
    9 R. J. Arsenault, L. Wang, C. R. Feng. Strengthening of composites due to microstructural changes in the matrix. Acta Metall. Mater. 1991, 39(1): 7-58
    10 T. C. Tszeng. The effects of particle clustering on the mechanical behavior of particle reinfored composites. Composites: Part B. 1998, 29: 299-308
    11 P. Kenesei, H. Biermann, A. Borbély. Structure-property relationship in particle reinfored metal-matrix composties based on holotomography. Scripta Materialia. 2005, 53: 787-791
    12 Z. L. Shi, M. Y. Gu, R. J. Wu, et al. Structure control of in-situ silicon particle reinforced Zn-27Al composite materials. Journal of Materials Processing Technology. 1997, 63: 417-420
    13 P. N. Bindumadhavan, H. K. Wah, O. Prabhakar. Assessment of particle-matrix debonding in particulate metal matrix composites using ultrasonic velocity measurements. Mater. Sci. Engin. 2002, 323A: 42-51
    14 A. L. Geiger, J. A. Walker. The processing and properties of discontinuously reinforced aluminum composites. JOM. 1991, 43(8): 8-15
    15 C. Rado, S. Kalogeropoulou, N. Eustathopoulos. Bonding and wetting in non-reactive metal/SiC systems: weak or strong interfaces? Materials Science and Engineering A. 2000, 276: 195-202
    16任家烈,吴爱萍.先进材料的连接.机械工业出版社, 2000: 186-267
    17 M. B. D. Ellis. Joining of aluminum based metal matrix composites. Materials World. 1994, 2(8): 415-417
    18 M. B. D. Ellis, M. Gittos, P. L. Threadgill. Joining of aluminum base metal matrix composites. International Materials Review. 1996, 42(2): 41-58
    19 K. Sudhakar. Joining of aluminum-based particulated-reinforced metal-matrix composites. Doctoral dissertation of The Ohio State University. 1990
    20 O. T. Midling, ?. Grong. Joining of particle reinforced Al-SiC MMCs. Key Engineering Material. 1995, 104-107: 355-372
    21 P. Diodati, G. Giannini. Cavitation damage on metallic plate surfaces oscillating at 20 kHz. Ultrasonics Sonochemistry. 2001, 8: 49-53
    22 Y. J. Chen, L. W. Huang, T. S. Shih. Diagnosis of oxide films by cavitation micro-jet impact. Materials Transactions. 2003, 44(2): 327-335
    23 G. I. Eskin. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry. 2001, 8: 319-325
    24 Y. B. Choi, G. Sasaki, K. Matsugi, et al. Effect of ultrasonic vibration on infiltration of nickel porous preform with molten aluminum alloys. Materials Transactions. 2005, 46: 2156-2158
    25 Y. F. Han, K. Li, J. Wang, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium. Materials Science and Engineering A. 2005, 405: 306-312
    26 V. Abramov, O. Abramov, V. Bulgakov, et al. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator. Materials Letters. 1998, 37: 27-34
    27 M. Abdelreihim, W. Reif. Practical applications for solidification of metals and alloys under ultrasonic vibrations. Metall. 1984, 38(12): 1156-1160
    28 A. Ramirez, M. Qian, B. Davis, et al. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scripta Materialia. 2008, 59: 19-22
    29 A. Chidambaram, D. Bholes. Particle denuded zones in alumina reinforced aluminum matrix composite weldments. Scripta Materialia. 1996, 35(3): 373-378
    30 T. Sritharan, L. S. Chan, L. K. Tan, et al. A feature of the reaction between Al and SiC particles in an MMC. Materials Characterization. 2001, 47: 75-77
    31 R. Garcia, V. H. Lopez, E. Bedolla, et al. A comparative study of the MIG welding of Al/TiC composites using direct and indirect electric arc processes. Journal of Materials Science. 2003, 38: 2771-2779
    32 R. Garcia, V. H. Lopez, E. Bedolla. Welding of aluminium by the MIG process with indirect electric arc (MIG-IEA). Journal of Materials Science. 2007, 42: 7956-7963
    33 T. M. Yue, J. H. Xu, H. C. Man. Pulsed Nd-YAG laser welding of a SiC particulate reinforced aluminium alloy composite. Applied Composite Materials. 1997, 4(1): 53-64
    34 K. U. Bhat, M. K. Surappa. Microstructural studies in low specific energy laser surface treated Al(A356)-SiCP composites. Journal of Materials Science. 2004, 39: 2795-2799
    35 H. W. de Vries. Influence of welding on structure of Al-Mg-Si matrix composites. Material Science and Technology. 1999, 15(2): 202-206
    36 A. Ure?a, M. D. Escalera, L. Gil. Influence of interface reaction on fracture mechanism in TIG arc-welded aluminum matrix composites. Composites Science and Technology. 2000, 60: 613-622
    37 M. A. Chen, C. S Wu, J. Q. Gao. Welding of SiC particle reinforced 6061 Al matrix composite with pulsed TIG. Trans. Nonferrous Met. Soc. China. 2002, 12(5): 805-810
    38 H. Li, R. M. Vilar, Y. M. Wang. Laser beam processing of a SiC particulate reinforced 6061 aluminium metal matrix composite. Journal of Materials Science. 1997, 32: 5545-5550
    39 T. J. Lienert, E. D. Brandon, J. C. Lippold. Laser and electron beam welding of SiCp reinforced aluminum A-356 metal matrix composite. Scripta Metallurgical Materialia. 1993, 28(11): 1341-1346
    40 J. S. Park, K. Landry, J. H. Perepezko. Kinetic control of silicon carbide/metal reactions. Materials Science and Engineering A. 1999, 259: 279-286
    41 H. M. Wang, Y. L. Chen, L. G. Yu.‘In-situ’weld-alloying/laser beam welding of SiCp/6061Al MMC. Materials Science and Engineering A. 2000, 293: 1-6
    42 T. X. Fan, D. Zhang, R. J. Wu, et al. Effect of Ti upon the interfacial reaction in SiCp/Al composites during multiple remelting above the liquidus. Journal of Materials Science Letters. 2002, 21: 1157-1161
    43 G. Yang, T. X. Fan, D. Zhang. Chemical reaction in Al matrix composite reinforced with SiCp coated by SnO2. Journal of Materials Science. 2004, 39: 3689-3694
    44 Y. Coo. Effect of in situ reaction on microstructure of TIG welding SiCp/A356 with Ti as filler metal. Materials Science and Technology. 2007, 23: 917-922
    45 J. M. Gómez de Salazar, M. I. Barrena. Dissimilar fusion welding of AA7020/MMC reinforced with Al2O3 particles. Microstructure and mechanical properties. Materials Science and Engineering. 2003, A352: 162-168
    46 R. Gurler. Fusion welding of SiC particulate-reinforced aluminum 392 metal matrix composite. Journal of Materials Science Letters. 1998, 17: 1543-1544
    47 J. C. Lee, J. Y. Byun, S. B. Park, et al. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater. 1998, 46(5): 1771-1780
    48 J. T. Niu, D. G. Zhang, G. J. Ji. Effect of pulse parameters on microstructure of joint in laser beam welding for SiCp/6063 composite. Trans. Nonferrous Met. Soc. China. 2003, 13(2): 289-293
    49 J. M. G. de Salazar, A. Soria, M. I. Barrena. Welding of AA6061-(Al2O3)p composite: effect of weld process variables and post-welding heat treatement on microstructure and mechanical properties. Science and Technology of Welding and Joining. 2005, 10 (3): 339-343
    50 P. P. Lean, L. Gil, A. Ure?a. Dissimilar welds between unreinforced AA6082 and AA6092/SiC/25p composite by pulsed-MIG arc welding using unreinforced filler alloys (Al-5Mg and Al-5Si). Journal of Materials Processing Technology. 2003, 143-144: 846-850
    51 R. Garcia, V. H. Lopez, A. R. Kennedy, et al. Welding of Al-359/20%SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA). Journal of Materials Science. 2007, 42: 7794-7800
    52 A. Ure?a, J. M. Gómez de Salazar, M. D. Escalera, et al. Study of the brazeability of aluminum matrix composites. Welding Journal. 1997, (2): 92s-102s
    53 A. Ure?a, L. Gil, E. Escriche, et al. High temperature soldering of SiC particulate aluminium matrix composites (Series 2000) using Zn-Al filler alloys. Science and Technology of Welding and Joining. 2001, 6(1): 1-11
    54 X. P. Zhang, G. F. Quan, W. Wei. Preliminary investigation on joining performance of SiCp-reinforced aluminum metal matrix composites (Al/SiCp-MMC) by vacuum brazing. Composites Part A-Applied Science and Manufacturing. 1999, 30: 823-827
    55林丽华,唐逸民,陈立功,等.碳化硅颗粒增强铝基复合材料SiCP/LD2的钎焊机理.焊接学报. 1997, 3(11): 12-17
    56 J. S. Zou, R. Q. Xu, Q. Z. Zhao, et al. Study on vacuum induction brazing of SiCp/LY12 composite using Al2Cu2Si2Mg filler metal. China Welding. 2003, 12:107-111
    57 W. P. Weng, T. H. Chuang. Interfacial characteristics for brazing of aluminum matrix composites with Al-12Si filler metals. Metallurgical and Materials Transactions A. 1997, 28: 2673-2682
    58吕世雄,吴林,戴明.一种无保护低温焊接铝基复合材料的方法. ZL00117764.8
    59 S. G. Wang, J. H. Xu, L. Wang, et al. Brazability of aluminium matrix composites in resistance furnace protected by inert gas. Rare Metal Materials and Engineering. 2005, 34: 978-981
    60 W. C. Moshier, J. S. Ahearn, D. C. Cooke. Interaction of Al-Si, Al-Ge and Zn-Al eutectic alloys with SiC/Al discontinuously reinforced metal matrix composites. Journal of Materials Science. 1987, 22: 115-122
    61 L. M. Liu, J. T. Niu, Y. H. Tian, et al. Diffusion bonding mechanism and microstructure of welded joint of aluminium matrix composite Al2O3p/6061. Trans. Nonferrous Met. Soc. China. 1999, 9(4): 826-830
    62 C. S. Lee, H. Li, R. S. Chandel. Vacuum-free diffusion bonding of aluminium metal matrix composite. Journal of Materials Processing Technology. 1999, 89-90: 326-330
    63 C. S. Lee, H. Li, R. S. Chandel. Stimulation model for the vacuum-free diffusion bonding of aluminium metal-matrix composite. Journal of Materials Processing Technology. 1999, 89-90: 344-349
    64 A. Urena. Diffusion bonding of discontinuously reinforced SiC/Al matrix composite: the role of interlayers. Key Engineering Materials. 1995, 104-107: 523-540
    65 A. Urena, J. M. Gomez de Sakazar, M. D. Escalera. Diffusion bonding of an aluminum copper alloy reinforced with silicon carbide particles (AA2041/SiC/13p) using metallic interlayer. Scripta Materialla. 1996, 35(11): 1285-1293
    66 A. Ure?a, J. M. Gómez de Sakazar, M. D. Escalera, et al. Diffusion bonding of alumina reinforced 6061 alloy metal matrix composite using Al-Li interlayer. Materials Science and Technology. 2000, 16:103-109
    67 M. B. D. Ellis. Progress in joining aluminum based metallic matrix composites. Proceeding of the Pre-Assembly Symposium of 47th Annual Assembly of IIW. Dalian, China, 1994, 1: 244-249
    68刘黎明.铝基复合材料材料非夹层液相扩散焊接机理研究.哈尔滨工业大学博士学位论文. 2000
    69 L. M. Liu, J. T. Niu, L. H. Han. Study on diffusion welding parameters of particle reinforced aluminium matrix composite Al2O3p/6061Al. Rare Metals. 1999, 18: 299-304
    70 W. Guo, H. Meng. Study on Liquid-phase-impact diffusion welding SiCp/ZL101. Composites Science and Technology. 2007, 67: 1041-1046
    71 L. M. Liu, J. T. Niu. Effects of diffusion welding parameters on joint strength of SiCw/6061Al composite. Acta Metallurgica Sinica (English Letters). 2000, 13(1): 201-204
    72 H. Arik, M. Aydin, A. Kurt, et al. Weldability of Al4C3-Al composites viadiffusion welding technique. Materials and Design. 2005, 26: 555-560
    73 X. P. Zhang, L. Ye, Y. W. Mai, et al. Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminum metal matrix composites (Al/SiCp-MMC). Composites Part A-Applied Science and Manufacturing. 1999, 30: 1415-1421
    74 P. G. Partridge. The role of interlayers in diffusion bonded joints in Al MMC. Journal of Materials Science. 1991, 26: 2255-2258
    75 M. Muratoglu, O. Yilmaz, M. Aksoy. Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for ddifferent heat treatments. Journal of Materials Processing Technology. 2006, 178: 211-217
    76 M. J. Zhao, L. Q. Chen, J. Bi. Effect of interlayer on properties of diffusion bonded joints of silicon carbide particulate-reinforced aluminum composites. Journal of Materials Science Letters. 1999, 18: 2005-2006
    77 S. Fukumoto, A. Hirose, K. F. Kobayashi. Evaluation of the strength of diffusion bonded joints in continuous fiber reinforced metal matrix composites. Journal of Materials Processing Technology. 1997, 68: 184-191
    78 A. A. Shirzadi, E. R. Wallach. New approaches for transient liquid phase diffusion bonding of aluminum based metal matrix composites. Materials Science and Technology. 1997, 13: 135-142
    79 W. D. MacDonald, T. W. Eagar. Transient liquid phase bonding. Annu. Rev. Mater. Sci. 1992, 22: 23-46
    80 R. Klehnm, T. W. Eagar. Joining of 6061 aluminum matrix-ceramic particle reinforced composites. WRC Bulletin. 1993, 385: 1-26
    81 R. Askew, J. F. Wilde, T. I. Khan. Transient liquid phase bonding of 2124 aluminum metal matrix composite. Materials Science and Technology. 1998, 14: 920-924
    82 R. F. Chen, D. W. Zuo, M. Wang. Improvement of joint strength of SiCp/Al metal matrix composite in transient liquid phase bonding using Cu/Ni/Cu film interlayer. Journal of Materials Science and Technology. 2006, 22(3): 291-294
    83 S. X. Lü, J. C. Yan. Rotating TLP bonding of SiCw/6061Al MMCs with zinc-based filler metal. Proceedings of 2001 International Brazing & SolderingConference. Yangzhong, China, 2001: 236-239
    84 Z. Li, T. H. North. Counteraction of particle segregation during transient liquid-phase bonding of aluminum-based MMC material. Journal of Materials Science. 1995, 30: 1075-1082
    85 Y. Zhai, T. H. North. Transient liquid-phase bonding of alumina and metal matrix composite materials. Journal of Materials Science. 1997, 32: 1393-1397
    86 Z. Li, W. Fearis, T. H. North. Particle segregation and mechanical properties in transient liquid phase bonded metal matrix composite Material. Mater. Sci. Tech. 1995, 11: 363-369
    87 Y. Zhai, T. H. North. Counteracting particulate segregation during transient liquid-phase bonding of MMC-MMC and Al2O3-MMC joints. Journal of Materials Science. 1997, 32: 5571-5575
    88 D. Q. Sun, W. H. Liu, S. S. Jia, et al. Formation process, microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint. Trans. Nonferrous Met. Soc. China. 2004, 14(1): 105-110
    89 G. F. Zhang, J. X. Zhang, Y. Pei, et al. Joining of Al2O3p/Al composites by transient liquid phase (TLP) bonding and a novel process of active-transient liquid phase (A-TLP) bonding. Materials Science and Engineering A. 2008, 488: 146-156
    90 J. H. Huang, Y. L. Dong, Y. Wan, et al. Joining of SiCp/Al composites by insert powder layers. Trans. Nonferrous Met. Soc. China. 2005, 15(5): 1067-1071
    91 J. H. Huang, Y. Wan, H. Zhang, et al. TLP bonding of SiCp/2618Al composites using mixed Al-Ag-Cu system powders as interlayers. Journal of Materials Science. 2007, 42: 9746-9749
    92 X. Wu, H. Li, R. S. Chandel, et al. Effect of mechanical vibration on TLP brazing with BNi-2 nickel-based filler metal. Journal of Materials Science Letters. 2000, 19: 319-321
    93 J. Hashim, L. Looney, M. S. J. Hashmi. The enhancement of wettability of SiC particles in cast aluminium matrix composties. Journal of Materials Processing Technology. 2001, 119: 329-335
    94 S. Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan, et al. In?uence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology. 2006, 171: 268-273
    95 J. Hashim, L. Looney, M. S. J. Hashmi. Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology. 1999, 92-93: 1-7
    96吕毓雄,毕敬,申红伟,等.超声液相铸造SiCw/Al及SiCp/Al复合材料.中国有色金属学报. 1993, 3(1): 58-61
    97 G. I. Eskin, D. G. Eskin. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrasonics Sonochemistry. 2003, 10: 297-301
    98王俊.用高能超声法制备的MMCp及其细观力学行为.东南大学博士学位论文. 1997
    99 L. Pan, J. Tao, Z. L. Liu, et al. Zinc matrix composites prepared by ultrasonic assisted casting method. Trans. Nonferrous Met. Soc. China. 2005, 15:104-109
    100马立群.在超声场中微细颗粒增强MMC的研制及有关理论探讨.东南大学博士学位论文. 1995
    101 Y. Yang, J. Lan, X. C. Li. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Engin. A. 2004, 380(1-2): 378-383
    102 X. C. Li, Y. Yang, X. D. Cheng. Ultrasonic-assisted fabrication of metal matrix nanocomposites. Journal of Materials Science. 2004, 39: 3211-3212
    103 G. Cao, H. Konishi, X. Li. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Engin. A. 2008, 486: 357-362
    104 X. F. Shen, A. V. Anilkumar, R. N. Grugel1, et al. Utilizing vibration to promote microstructural homogeneity during floating-zone crystal growth processing. Journal of Crystal Growth. 1996, 165: 438-446
    105 G. R. Li, Y. T. Zhao, Q. X. Dai, et al. In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsedelectromagnetic field. Journal of University of Science and Technology Beijing. 2007, 14(5): 460-463
    106 H. W. de Vries, G. den Ouden. Effects of electromagnetic stirring on particle mixing during GTA welding of Al-Mg-Si matrix composites. Science and Engineering of Composite Materials. 1999, 8(4): 219-227
    107 C. G. Kang, S. W. Youn. Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming. Journal of Materials Processing Technology. 2004, 147: 10-22
    108 Z. Q. Li, S. Y. Zhang, B. Y. Wu. Solidification and microstructure of ZA27/SiCp composite fabricated by mechanical-electromagnetic combination stirring process. Materials Science and Technology. 2001, 17(4): 465-471
    109 Y. Genma, Y. Tsunekawa, M. Okumiya, et al. Incorporation of alumina particles with different shapes and sizes into molten aluminum alloy by melt stirring with ultrasonic vibration. Materials Transactions JIM. 1997, 38 (3): 232-239
    110 Y. Tsunekawa, H. Suzuki, Y. Genma. Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring. Materials and Design. 2001, 22: 467-472
    111 D. R. Uhlmann, B. Chalmers. Interaction between particle and a solid-liquid interface. Journal of Applied Physics. 1964, 35(10): 2986-2993
    112 S. N. Omenyi, A. W. Neumenn. Thermodynamic aspects of particle engulfment by solidifying melts. Journal of Applied Physics. 1976, 47(9): 3956-3962
    113 H. Nakae, S. S. Wu. Engulfment of Al2O3 particles during solidification of aluminum matrix composites. Mater. Sci. Engin. A. 1998, 252: 232-238
    114 S. S. Wu, H. Nakae. Nucleation effect of alumina in Al-Si/Al2O3 composites. Journal of Materials Science Letters. 1999, 18: 321-323
    115 A. A. Chernov, A. M. Mel’nikova. Sov. Phys. Crystallogr. 1966, 10: 672-675
    116 A. M. Zubko, V. G. Nikonova. Soviet Physics Crystallogrowth. 1973, 18: 239-241
    117 M. K. Surappa, P. K. Rohatgi. J. Mater. Sci. Lett. 1981, 16(2): 562-564
    118 A. Mortensen, I. Jin. Solidification processing of metal matrix composites.International Materials Reviews. 1992, 37(3): 101-128
    119 J. Cisse, G. F. Bolling. The steady-state rejection of insoluble particle by salol grown from the melt. Journal of Crystal Growth. 1971, 11: 25-28
    120 G. F. Bolling, J. Cisse. A theory for the interaction of particles with a solidifying front. Journal of Crystal Growth. 1971, 10: 56-66
    121 D. M. Stefanescu, B. K. Dhindaw, S. A. Kacar, et al. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metallurgical Transactions. 1988, 19A: 2847-2855
    122 D. Shangguan, S. Ahuja, D. M. Stefanescu. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metallurgical Transactions A. 1992, 23: 669-680
    123 H. Yasuda, I. Ohnaka, T. Yano, et al. Engulfment and pushing of inclusions in solidifying front of organic materials. ISIJ International. 1996, 36 (Supplement): S167-S170
    124 P. K. Rohatgi, F. M. Yarandi, Y. Liu, et al. Segregation of silicon carbide by settling and particle pushing in cast aluminum-silicon-carbide particle composites. Materials Science and Engineering. 1991, A147: L1-L6
    125 Y. Wu, H. Liu, E. J. Lavernia. Solidification behavior of Al-Si/SiC MMCs during wedge-mold casting. Acta Metal. Mater. 1994, 42(3): 825-837
    126 Q. Han, J. D. Hunt. Redistribution of particles during solidification. ISIJ International. 1995, 35(6): 693-699
    127 Q. Han, J. D. Hunt. Particle pushing: critical flow rate required to put particle into motion. Journal of Crystal Growth. 1995, 152: 221-227
    128 S. Sen, B. K. Dhindaw, D. M. Stefanescu, et al. Melt convection effects on the critical velocity of particle engulfment. Journal of Crystal Growth. 1997, 173: 574-584
    129 Y. B. Zhong, Z. M. Ren, Q. X. Sun, et al. Behavior of particles in front of metallic solid/liquid interface in electronmagnetic field. Trans. Nonferrous Met. Soc. China. 2003, 13(4): 755-763
    130钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究.上海大学博士学位论文. 1999
    131 Y. B. Zhong, Z. M. Ren, Q. X. Sun. Pushing/engulfment behavior of the particles in front of metallic solid/liquid interface in electromagnetic field.Acta Metallurgica Sinica. 2003, 39(12): 1269-1275
    132 Q. X. Sun, Y. B. Zhong, Z. M. Ren, et al. Effect of electromagnetic field on the behavior and distribution of the particles in front of metallic solidification interface. Acta Metallurgica Sinica. 2005, 41(3): 321-325
    133谢国宏,厉松春,王务献,等.颗粒增强Al-4%Mg复合材料在等轴晶凝固过程中的颗粒推挤.金属学报. 1995, 31(6): 275-279
    134 S. S. Wu, Y. You, P. An, et al. Effect of modification and ceramic particles on solidification behavior of aluminum-matrix composites. Journal of Materials Science. 2002, 37: 1855-1860
    135 J. A. Garcia-Hinojosa, C. González R, J. A. Juárez I, et al. Effect of grain refinement treatment on the microstructure of cast Al-7Si-SiCp composites. Materials Science and Engineering A. 2004, 386: 54-60
    136 D. M. Stefanescu, A. Moitra, A. S. Kacar, et al. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during: directional solidification of Al/graphite composites. Metallurgical Transactions A. 1990, 21(1): 231-239
    137 S. Gowri, F. H. Samuel. Effect of cooling rate on the solidification behavior of Al-7Pct Si-SiCp matal-matrix composites. Metallurgical and Materials Transactions A. 1992, 23: 3369-3376
    138 T. S. Srivatsan, T. S. Sudarshan, E. J. Lavernia. Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Progress in Materials Science. 1995, 39: 317-409
    139 A. M. Samuel, A. Gotmare, F. H. Samuel. Effect of solidification rate and metal feedability on porosity and SiC/Al2O3 particle distribution in an Al-Si-Mg(359) alloy. Composites Science and Technology. 1995, 53: 301-315
    140 A. Cetin, A. Kalkanli. Effect of solidification rate on spatial distribution of SiC particles in A356 alloy composites. Journal of Materials Processing Technology. 2008, 205: 1-8
    141陈思忠,袁易全.近代超声原理与应用.南京大学出版社, 1996
    142冯若,李化茂.声化学及其应用.安徽科技出版社, 1999
    143 H. Abdel-aleem, K. Mitsuaki, N. Kazumasa, et al. Influence of oxide film on the bondability of aluminum in ultrasonic bonding and materials evaluation of bonds. Quarterly Journal of Japan Welding Society. 2004, 22(3): 45-53
    144 J. Tsujino, K. Hidai, A. Hasegawa, et al. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens. Ultrasonics. 2002, 40: 371-374
    145 J. Tsujino, T. Ueoka, T. Kashino, et al. Transverse and torsional complex vibration systems for ultrasonic seam welding of metal plates. Ultrasonics. 2000, 38: 67-71
    146邹僖.钎焊.机械工业出版社, 1991: 3-112
    147 R. W. Gunkel. Solder aluminum joints ultrasonically. Welding Design & Fabrication. 1979, 58(9): 90-92
    148 V. L. Lanin. Ultrasonic soldering in electronics. Ultrasonics Sonochemistry. 2001, 8: 379-385
    149 M. Naka, K. M. Hafez. Applying of ultrasonic waves on brazing of alumina to copper using Zn-Al filler alloy. Journal of Materials Science. 2003, 38: 3491-3494
    150 M. H. Khalid, Naka Masaaki. Statistical analysis of alumina/metal brazed joints under applying of ultrasonic waves. Trans.JWRI. 2003, 32(2): 309-312
    151李明雨.钎料液滴激光强迫超声振动及对钎料润湿的影响.哈尔滨工业大学博士学位论文. 2001
    152 T. Watanabe. Soldering of high strength aluminum alloys with the aid of ultrasonic vibration. International Brazing & Soldering Conference Proceedings, April 2-5, 2000, New Mexico, USA: 523-530
    153 H. R. Faridi, H. J. Devletian, P. H. Le. A new look at flux-free ultrasonic soldering. Welding Journal. 2000, (9): 41-45
    154 O. V. Abramov. Action of high intensity ultrasonic on solidifying metal. Ultrasonic. 1987, 25(2): 73-82
    155 G. I. Eskin. Principles of ultrasonic treatment: application for light alloys melts. Advanced Performance Materials. 1997, 4: 223-232
    156 G. M. Swallowe, J. E. Field, C. S. Rees, et al. A photographic study of the effect of ultrasound on solidification. Acta Metall. 1989, 37(3): 961-967
    157 J. Campbell. Effects of vibration during solidification. Inter. Mat. Rev. 1981, (2): 71-104
    158 X. Jian, H. Xu, T. T. Meek, et al. Effect of power ultrasound on solidification of aluminum A356 alloy. Materials Letters. 2005, 59: 190-193
    159 J. W. Li, T. Momono, Y. Fu, et al. Effect of ultrasonic stirring on temperature distribution and grain refinement in Al-1.65%Si alloy melt. Trans. Nonferrous Met. Soc. China. 2007, 17: 691-697
    160 H. B. Xu, T. T. Meek. Degassing of molten aluminum A356 alloy using ultrasonic vibration. Materials Letters. 2004, 58(29): 3669-3673
    161 M. Takeuchi, K. Yamanouchi. Ultrasonic micro-manipulation of small particles in liquid. J. Appl. Phy. 1994, 33(58):3045-3047
    162何柞镛,赵玉芳.声学理论基础.国防工业出版社, 1981: 49-150, 46-449
    163马大猷.声学手册.科学出版社, 1983
    164 W. F. Gale, J. W. Fergus, W. M. Ingram. Wettability of NiAl by a liquid Ni-Si-B alloy. Journal of Materials Science. 1997, 32: 4931-4940
    165 Y. Shen, W. F. Gale, J. W. Fergus, et al. Wettability of preoxidised tial substrates by liquid aluminium, copper and silver. Mater. Sci. Tech. 2001, 17: 1293-1298
    166 I. Okamoto, A. Ohmori. A study on tunneling flow of filler metal in aluminum brazing. Transaction of JWR. 1980, 9(2): 143-150
    167张启运,刘淑祺,郭海,等.熔盐钎剂对铝氧化膜作用过程的研究.金属学报. 1985, 21(1): B35
    168 G. Levi, W. D. Kaplan. Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium. Acta Materialia. 2002, 50: 75-88
    169 V. H. López, A. R. Kennedy. Flux-assisted wetting and spreading of Al on TiC. Journal of Colloid and Interface Science. 2006, 298: 356-362
    170 K. Landry, N. Eustathopoulos. Dynamics of wetting in reactive metal/ceramic system: linear spreading. Acta Mater. 1996, 44(10): 3923-3932
    171 O. Dezellus, F. Hodaj, C. Rado, et al. Spreading of Cu-Si alloys on oxidized SiC in vacuum: experimental results and modeling. Acta Mater. 2002, 50: 979-991
    172 J. C. Ambrose, M. G. Nicholas, A. M. Stoneham. Dynamics of braze spreading. Acta Metall. Mater. 1992, 40: 2483-2488
    173 A. Meier, P. R. Chidambaram, G. R. Edwards. Modelling of the spreading kinetics of reactive brazing alloys on ceramic substrates: copper-titanium alloys on polycrystalline alumina. Acta Mater. 1998, 46: 4453
    174 P. G. De Gennes. Wetting: statics and dynamics. Reviews of Modern Physics. 1985, 57(3): 827-863
    175 A. Chakrabarti. Dynamics of wetting and spreading: a numerical study. Physical Review B. 1992, 45(11): 6286-6288
    176方洪渊,冯吉才.材料连接过程中的界面行为.哈尔滨工业大学出版社, 2004
    177 G. Palasantzas, J. T. M. Dehosson. Wetting on rough surfaces. Acta Mater. 2001, 49: 3533-3538
    178 J. G. Li. Importance of liquid metal-solid wetting in modern materials science and technology. Rare Metals. 1994, 13(2): 81-91
    179 F. Delannay, L. Froyen, A. Deruyttere. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. Journal of Materials Science. 1987, 22: 1-16
    180 B. Wielage, I. Hoyer, S. Weis. Soldering aluminum matrix composites. Welding Journal. 2007, (3): 67-70
    181 S. S. Wu, H. Nakae, T. Kanno, et al. Zone-melted unidirectional solidification of particulate dispersed composites. J. Mater. Sci. 2001, 36: 225-229
    182 R. Asthana. Effect of isothermal hold on settling in SiCp-A359 composites. J. Mater. Sci. 2000, 19: 2259-2262
    183 A. Ourdjini, K. C. Chew, B. T. Khoo. Settling of silicon carbide particles in cast metal matrix composites. J. Mater. Process. Technol. 2001, 116: 72-76
    184 A. Kolsgaard, S. Brusethaug. Settling of SiC particles in an AlSi7Mg melt. Mater. Sci. Eng A. 1993, 173: 213-219
    185 L. V. Vugt, L. Froyen. Gravity and temperature effects on particle distribution in Al-Si/SiC composites. J. Mater. Process. Technol. 2000, 104: 133-144
    186 J. Hashim, L. Looney, M. S. J. Hashmi. Particle distribution in cast metal matrix composites-Part I. J. Mater. Process. Technol. 2002, 123: 251-257
    187 J. F. Richardson, W. N. Zaki. Trans. Inst. Chem. Eng. 1954, 32: 35-53
    188 R. Di Felice. The sedimentation velocity of dilute suspensions of nearly monosized spheres. International Journal of Multiphase Flow. 1999, 25: 559-574
    189 R. Di Felice, L. G. Gibilaro, P. U. Foscolo. On the hindered settling velocity of spheres in the inertial flow regime. Chemical Engineering Science. 1995, 50(18): 3005-3006
    190 J. F. Chen, Y. Luo, J. H. Xu, et al. Visualization study on sedimentation of micron iron oxide particles. J. Colloid Interface Sci. 2006, 301: 549-553
    191 K. Kambakas, P. Tsakiropoulos. Sedimentation casting of wear resistant metal matrix composites. Materials Science and Engineering A. 2006, 435-436: 187-192
    192 Z. J. Xu, E. E. Michaelides. The effect of particle interactions on the sedimentation process of non-cohesive particles. International Journal of Multiphase Flow. 2003, 29: 959-982
    193 S. W. Ho, A. Saigal. Solidification of SiC particulate-reinforced aluminum metal matrix composites. Advanced Composite Materials. 1996, 5(3): 213-224
    194 S. C. Jeng, S. W. Chen. The solidification characteristics of 6061 and A356 aluminum alloys and their ceramic particle-reinforced composites. Acta Mater. 1997, 45(12): 4887-4899
    195 D. J. Lloyd. The solidification microstructure of particulate reinforced aluminium/SiC composites. Composites Science and Technology. 1989, 35(2): 159-179
    196 J. Braszczyński, A. Zyska. Analysis of the influence of ceramic particles on the solidification process of metal matrix composites. Materials Science and Engineering A. 2000, 278: 195-203
    197罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.化学工业出版社, 2007: 1-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700